52
March 2005 J. Goodman – Univ. of Maryland Neutrino Astronomy Neutrino Astronomy Why Neutrinos Questions in ultra high energy astrophysics Source of UHE cosmic rays – GRBs – AGN Other Physics Questions – DM, Top Down models, etc Understanding the W-B bound Why the kilometer scale or bigger Overview of experimental approach Cherenkov Detectors- IceCube – Nestor, Antares, Baikal Radio - Rice, Anita, Salsa

Neutrino Astronomy March 2005J. Goodman – Univ. of Maryland Neutrino Astronomy Why Neutrinos Questions in ultra high energy astrophysics –Source of UHE

Embed Size (px)

Citation preview

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Neutrino Astronomy

• Why Neutrinos • Questions in ultra high energy astrophysics

– Source of UHE cosmic rays– GRBs– AGN– Other Physics Questions – DM, Top Down models, etc

• Understanding the W-B bound– Why the kilometer scale or bigger

• Overview of experimental approach– Cherenkov Detectors- IceCube – Nestor, Antares, Baikal– Radio - Rice, Anita, Salsa

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Why Neutrinos

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Why not protons?

• Protons are bent in the magnetic fields of our galaxy and local cluster

• Energy of >1019eV needed to point back to even galactic sources

• Above a few 1019eV GZK cutoff limits their range too

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Effect of IR Absorption on Distant Sources

z = 0.03z = 0.1z = 0.2

z = 0

.3

z = 0.0

e+

e-

~eV

~TeV

• No direct measurement of IR extragalactic background light exists due to zodiacal foreground.

• TeV absorption constrains IR which depends on cosmology of galaxy and star formation models.

IR Model of Stecker & deJager (1998)

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Photon Attenuation on IR

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Questions in ultra high energy astrophysicsQuestions in ultra high energy astrophysics

Source of UHE cosmic rays

GRBs

AGN

Dark Matter

Other Physics Questions

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Origin of Cosmic Rays

Extragalactic flux Extragalactic flux sets scale for manysets scale for manyacceleration modelsacceleration modelsAtmospheric

neutrinos

See Monday PM & Thursday

AM

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Knee

Ankle

New component with hard spectrum?

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Alternative Models

Bottom upBottom up

– GRB fireballs– Jets in active galaxies– Accretion shocks in

galaxy clusters – Galaxy mergers– Young supernova

remnants– Pulsars, Magnetars– Mini-quasars– …

• Observed showers either protons (or nuclei)

Top-downTop-down– Radiation from topological

defects– Decays of massive relic

particles in Galactic halo– Resonant neutrino

interactions on relic ’s (Z-bursts)

• Mostly pions (s,s,not

protons) • Disfavored!Disfavored!• Highest energy cosmic raysHighest energy cosmic rays• are not gamma raysare not gamma rays• Overproduce TeV-neutrinosOverproduce TeV-neutrinos

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

SNRs

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

HESS: RXJ1713

First resolved TeV -ray image of

a Shell type SNR (Resolution ~10

arcmin)

Acceleration source of Cosmic

Rays, but is it evidence of

Protons?

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

HESS: RXJ1713 – Molecular Clouds

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

RXJ1713 Spectrum

H.E.S.S.: full remnant

CANGAROO: hotspot

Index 2.2±0.07±0.1

preliminary

Index 2.84±0.15±0.20

In favor of 0:• no cut-off in the

HE tail of HESSspectrum

• signal from thedirection of

molecular clouds

See HESS Talk

Tuesday Afternoon

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Have-rays from 0 decay been discovered?

E N (E) = E N (E)

1 < < 8transparent transparent sourcesource

00 = = ++ = = -

acceleratorbeam dump(hidden source)

flux predicted observed -ray flux

~40 per km2 ~40 per km2 RX J1713-3946 RX J1713-3946 per year (galactic center)per year (galactic center)

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Milagro (TeV) Diffuse Source

See Milagro

Talk Tues Afternoon

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Produces cosmic ray beamProduces cosmic ray beam

Radiation field:Radiation field:

Active Galactic Nuclei

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Active Galactic Nuclei (AGN)

Fermi acceleration

Jets

Black Hole

Accretion Disk

Shock fronts

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

VLA image of Cygnus A

See Monday Morning

AGN Session

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

GZK

Gamma Beam Energy (GeV)

Cro

ss S

ect

ion (mb)

0.1

0.01

γ + p→Δ (1232)→ π o p or π + n

Gamma Beam Energy (GeV)

Cro

ss S

ect

ion (mb)

0.1

0.01

γ + p→Δ (1232)→ π o p or π + n

Gamma Beam Energy (GeV)

Cro

ss S

ect

ion (mb)

0.1

0.01

γ + p→Δ (1232)→ π o p or π + n

0.6 x 10-27 cm2

p

n p

π+ μ+

e+

E = 6 x10 19 eV

E ~4 x 10 19 eV

p + p + CMBCMB →→ ++ + n + n

= = (n(ncmbcmb p + p + ))-1-1

= 10 Mpc= 10 Mpc

Cutoff above 50 EeVCutoff above 50 EeV

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

GZK

Cosmogenic neutrinos are guaranteed if primaries are nucleons.

May be much larger fluxes, for some models, such as topological defects

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

GZK

See Monday

PM + Thurs AM Sess.

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

GRBs

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

GRBs

Shocks: external collisions with interstellar material or internal collisions when slower material is overtaken by faster in the fireball.

See Wed AM+ Thu PM GRB sessions

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

eenp

e-

p+

R < 108 cmR 1014 cm, T 3 x 103

secondsR 1018 cm, T 3 x 1016 seconds

E 1051 – 1054 ergsShock variability is reflected in the complexity of the GRB time

profile.

6 Hours 3 Days

Radio

Optical

-ray

X-ray (2-10 keV)

Fireball Phenomenology & The Gamma-Ray Burst (GRB) Neutrino ConnectionFireball Phenomenology & The Gamma-Ray Burst (GRB) Neutrino Connection

Progenitor(Massive

star)Magnetic Field

---

Electron

-ray

Meszaros, P

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Lorentz Invariance Violation

Bounds on energy dependence of the speed of light can be used to place constraints on the effective energy scale for quantum gravitational effects.

t ~ (E/EQG

) L/c

E2-c2p2~E2(E/EQG

)- This may be modified in some quantum gravity models.

This has the important observational consequence that this will giverise to energy dependent delays between arrival times of photons.

E2 = m2c4 +p2c2 - in the Lorentz invariant case,

The expected time delay is :

This may be measurable for very high energy photons/neutrinos coming from large distances.

See Wed. Afternoon

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Galactic Microquasars

See Talk Monday Morning

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

What About Dark Matter?

• ~85% of the matter in the Universe is Dark Matter– At most a few % of the matter is baryons – Most people believe that the lightest SUSY particle is a

stable neutralino and is probably the dark matter– These are weakly interacting and heavy– Evidence of clustering

See Friday Afternoon

Session on Dark Matter

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Wimp Capture

Earth

Detector

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Wimp Detection

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Neutrino Astronomy Explores Extra Dimensions

100 x 100 x SMSM

GZK rangeGZK range

TeV-scale gravity increases PeV TeV-scale gravity increases PeV -cross section-cross section

See Wednesday Afternoon Session

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

radiationenvelopingblack hole

black hole

p + p + -> n + -> n + ++

~ cosmic ray + neutrino -> p + -> p + 00

~ cosmic ray + gamma

Cosmic Neutrino Factory

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

W-B Bound

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Evading the Bound

• “Neutrino only” sources that are optically thick to proton photo-meson interactions and from which protons cannot escape. – No observational evidence (from baryons

or high energy photons)• Cores of AGNs (rather than in the jets) by

photo-meson interactions or via p−p collisions in a collapsing galactic nucleus or in a cacooned black hole.– The most optimistic predictions of the

AGN core model have already been ruled out by AMANDA

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Mannheim, Protheore and Rachen Model

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Neutrinos from Cosmic Rays

~50 events/km2/yr

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Size Perspective for KM3

50 m

1500 m

2500 m

300

m

AMANDAII

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Detection Technique

neutrino

muon or tau Cerenkov

light cone

detector

interaction

•The muon radiates blue light in its wake

•Optical sensors capture (and map) the light

See Talks in this

Session

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Detection ofe

~ 5 m

Electromagnetic and hadronic cascadesO(km) long muon tracks

direction determination by cherenkov light timing

17 m

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Eµ= 10 TeVEµ= 6 PeV

Measure energy by counting the number of fired PMT. (This is a very simple but robust method)

Muon Events

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Determining Energy

10 TeV 6 PeV 375 TeV Cascade

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Double Bang

+ N -->- + X

+ X (82%)

E << 1PeV: Single cascade (2 cascades coincide)E ≈ 1PeV: Double bangE >> 1 PeV: partially contained (reconstruct incoming tau track and cascade from decay)

Regeneration makes Earth quasi transparent for high energie ;(Halzen, Salzberg 1998, …)Also enhanced muon flux due to Secondary µ, and µ

(Beacom et al.., astro/ph 0111482)

Learned, Pakvasa, 1995

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Tau Cascades

E << 1PeV: Single cascade (2 cascades coincide)E ≈ 1PeV: Double bangE >> 1 PeV: partially contained (reconstruct incoming tau track and cascade from decay)

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Neutrino ID (solid)Neutrino ID (solid)Energy and angle (shaded)Energy and angle (shaded)

e

Log(energy/eV)12 18156 219

e

Neu

trin

o fl

avor

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Tau Transparency/Regeneration

• e and µ are absorbed in the Earth via charged current interactions (muons range out)

• Above ~100 TeV the Earth is opaque to e & νµ.

• But, the Earth never becomes completely opaque to

• Due to the short lifetime, ’s produced in charged-current

interactions decay back into • Also, secondary e & νµ. fluxes are

produced in the tau decays.

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Flavor Ratios

• The ratio of flavors at the source is expected to be 0:2:1= : : e

• Since the distance to the source is >> than the oscillation length – any admixture at the source should wind up:

1:1:1= : : e

when arriving at earth

• What if that isn’t true?

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Exotic neutrino properties if not 1:1:1

• Neutrino decay (Beacom, Bell, Hooper, Pakvasa& Weiler)

• CPT violation (Barenboim& Quigg)

• Oscillation to steriles with very tiny delta δm2

(Crocker et al; Berezinskyet al.)

• Pseudo-Dirac mixing (Beacom, Bell, Hooper, Learned, Pakvasa& Weiler)

• 3+1 or 2+2 models with sterile neutrinos (Dutta, Reno and Sarcevic)

• Magnetic moment transitions (Enqvist, Keränen, Maalampi)

• Varying mass neutrinos (Fardon, Nelson & Weiner; Hung & Pas)

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Amanda-II

Amanda-B10

IceCube

0 5 10 sec

Count rates

Supernova Monitor

B10: 60% of Galaxy

A-II:95% of Galaxy

IceCube:up to LMC

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Large Scale Neutrino Detectors

NESTOR Pylos, Greece

ANTARESANTARESLa-Seyne-sur-Mer, FranceLa-Seyne-sur-Mer, France

BAIKAL Russia

IceCube, South Pole, Antarctica

NEMOCatania, Italy

See Talks in this

Session

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Radio Cherenkov Detectors

Rice Anita Salsa

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Acoustic Detectors

SAUND(Study of Acoustic Underwater Neutrino Detection)

March 2005J. Goodman – Univ. of MarylandNeutrino Astronomy

Conclusions

Now Soon Future

Amanda Cherenkov arrays ???

SK Radio Detectors

Neutrino Astronomy is just beginning to open a new window on the Universe!