87
Network A Network B v i Thevenin's Theorem and Norton's Theorem Two networks to describe Thevenin's theorem LOAD To be replaced P Q

Network Notes IMP

Embed Size (px)

Citation preview

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 1/87

Network A Netwov

i

Thevenin's Theorem and Norton's Theore

Two networks to describe Thevenin's the

LOADTo be replaced

P

Q

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 2/87

Network A

Thevenin's Theorem : Characteristics of Net

To be replaced1. Linear eleme

2. Sources :

dependent (con

or independent3. Initial condi

passive elemen4. No magnetic

controlled-sou

coupling to net

P

Q

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 3/87

hevenin's Theorem : Characteristics of Netw

Nonlinear ElemeLinear Elements

L R C D T M

Yes No

  i

i

v1 i1

Independent Sources Controlled Sou

v

v

Yes Yes

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 4/87

Vg

L1 L2

M

C1R

C2

Vo

(1-D)(Vg-Vo) -D(Vg-Vo)

Vg

L1

M

L2

M

C1

C2

(1-D)(Vg-Vo) -D(Vg-

Network ANetw

NO

Thevenin's Theorem : Characteristics of Net

P

Q

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 5/87

Vg

L1 L2C1R

C2

Vo

(1-D)(Vg-Vo) -D(Vg-Vo)

Vg

L1

M

L2

M

C1

C2

(1-D)(Vg-Vo)-D(Vg-Vo)

Network ANetw

NO

Thevenin's Theorem : Characteristics of Net

P

Q

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 6/87

Thevenin's Theorem: Network A is replac

and Vth

Netwov

i

LOAD

Network C

Vth

Network A

P

Q

M

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 7/87

Thevenin's Theorem: How to find Vth?

Netw

LOAD

VthNetwork A

Disconnect

P

Q

Open Ckt. Voltage

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 8/87

Thevenin's Theorem: How to determine C

Network A

P

Q

1. Set Initial Conditions to

2. Independent Sources TuOff 

3. Dependent Sources are O

Network C

P

M

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 9/87

Determination of Vth : An Example

Vcc

R1

R2

Rc

Re

IB

Ic

IB+IC

Simplification of the base circuit

Vcc

R1

R2

R

R

I

N

B

B

B

Network A Net

Vth

Vth=Vcc[R2/(R

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 10/87

hevenin's Theorem : Characteristics of Netw

Nonlinear ElemeLinear Elements

L R C D T M

Yes

  i

i

v1 i1

Independent Sources Controlled Sou

v

v

Yes Yes

Yes

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 11/87

Determination of Network C : Example

Sim lification of the base circuit

Vcc

R1

R2

B

Network A

R1

R2

B

Network C

N

Shorted

B

Rb=(R

Note : No initial condition and No dependent

M

M

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 12/87

Vcc

R1

R2

Rc

Re

IB

Ic

IB+IC

Simplification of the base circuit

R

R

I

N

B

B

Net

Vth=Vcc[R2/(R1+R2)]

Application of Thevenin's Theorem: An Ex

Vth

Rb

Rb=(R1||R2)

M

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 13/87

Vcc

R1

R2

Rc

Re

IB

Ic

IB+IC

Simplification of the base circuit

R

RI

N

B

B

Net

Vth=Vcc[R2/(R1+R2)]

Application of Thevenin's Theorem: An Ex

VthRb

Rb=(R1||R2)

  IB IB

Linear Model

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 14/87

Application of Thevenin's Theorem: Exa

Common Source Amplifier : Small Signal Gai

Vdd

R1

R2

RL

Rs

Id

Is

N

GCb

Vo=VOvi

D

S

Av=

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 15/87

Application of Thevenin's Theorem: Examp

R1R2

rd

Rs

N

G

Cb

vo

viRL

S

D

gm vgs

Linear Small Signal Equivalent Circuit of the CS A

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 16/87

Application of Thevenin's Theorem: Exampl

Simplified Small Signal Equivalent Circuit of CS Ampl

rd

Rs

N

G

vo

viRL

S

D

gm vgs

Network BNetwork A

Netw

Vth

M

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 17/87

Application of Thevenin's Theorem: Exa

rd

Rs

N

G

viS

D

gm.vgs

Network A

Vth=-(gm.vg

Determination of Vth

=-(gm.rd

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 18/87

Application of Thevenin's Theorem: Examp

rd

Rs

G

S

D

gm.vgs

Network C

Determination of Netwok C

Shorted

M

M

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 19/87

Application of Thevenin's Theorem: Examp

Determination of Rth

rd

Rs

G,M

S

D

gm.vgs

vgs

vx

ixvx=(ix-gm.vg

vgs=-ix.Rs

Therefore,

vx=ix.rd+gm+ix.R

Rth=vx

ix

=rd+Rs(1+

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 20/87

Application of Thevenin's Theorem: Exa

Vth

DM

N

The equivalent circuit of the CS amp

RL

rd Rs(1+  )

Rth

 =gm

 vivo

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 21/87

Application of Thevenin's Theorem: Example

vi

vo

L C

R RL

RLC Network : Zero Initial Conditions on L and

vi

Network A Network B L C

R

L C

RZth = 1/sC + sL||R

Vth=vi RR+sL

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 22/87

Norton's Theorem:Network A is replacedand Ith

Netwv

i

LOA

Network CIth

Network A

P

Q

M

Network A Ith

Network C as in Theveni

=>Norton's Theorem

Thevenin's Theore

P

Q

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 23/87

 

− vg + v1 + v2 + v3 = 0

v1 + v2 + v3 = vg

VgLoop

Direction

B

A

v1 v2

v3

R1 R2

R3

C D

One-loop resistive network towhich Kirchoff's Voltage Law is applied

Fig. 1

Fig.2

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 24/87

v1

R11

vg

1

1

vg

1

Req

ib

ia

i1 i2

i4i3

b

c

d

a

Fig. 3

Fig. 4(a)

Fig. 4(b)

i1+i2=i3+i4

Equivalent Network 

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 25/87

 Req = R1 + R2 + ........... + Rn =  j=1n  R j

Series Connected Resistive Network

R1 R21

vg

1

ia

Fig. 5

Rn

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 26/87

Fig. 5(a)

1

1

ia

L1 L2va

i1 i2

Fig. 5(b)

vg

ib

Equivalent Inductive One-Port Network 

Leq= 1/L1+1/L2

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 27/87

Number of Network Equations

i1

i3

i2

ef'

f

3i1 + 2i2 - i3=4-i1 + 5i2 + 3i3 =-2i1 + 12 i2 + 5i3 = 0

* Equations must be linearly independent

Ax=b

UniqueSolution

gSolve:

* Formulate the network using minimum no of variabl

Formulation:(1)

(2)(3)

Note: 2*(2)+(1)=(3)

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 28/87

How to formulate the network using linearly independ

=> How many unknowns in a network with 'n' nodes a

=> 2*b unknown(branch voltage a

=> effectively b u

example : if voltacapacitor is knowbe found out

CdVc/dt = Ic

from

n=5 and b=8

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3RL

b1

b2 b3

b4

b5

b6 b7

R2

b8

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 29/87

1

How many KCLs and how many KVLs?

(1) (n-1) nodes => (n-1(2) b-(n-1) KVL equat

example : n-1=4 => 4

b-(n-1)=8-4

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3RL

b1

b2 b3

b4b5

b6 b7

R2

b8

note: easy to apply KC

apply KVL because thloops

V

(b4,b1,b2), (b2,b5,b8),(b4,b1,b5,b8), (b4,b6,b(b1,b6,b7,b5)

Problem: With a wrong choice the equations will be line

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 30/87

1

How to define voltages and currents in KCL an

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3RL

b1

b2 b3

b4b5

b6 b7

R2

b8

Node Voltage : Voltwith respect to the r

Example : V4 (i.e. vbranch b3)

Branch Voltage : Vobranch of the netwo

Example : VC3 (i.e.

branch b7)

Note: Vc3 = V4-V3It is enough if we know the node voltages and v

VC3

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 31/87

How to define voltages and currents in KCL an

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3RL

b1

b2 b3

b4b5

b6 b7

R2

b8

Loop Current : Currof the network 

Example : i2 (i.e. cuconsisting of branch

Branch Current : Cubranch of the netwo

Example : Ib2 (i.e. c

branch b2, through c

Note: Ib2 = i1-i2 =>It is enough if we know the loop currents and v

i2

VIb2

i1

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 32/87

RL

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3

b1

b2 b3

b4b5

b6 b7R2

b8V

Formulate network equations with explicit applic

Independent Equations: => Draw a graph : Figure with

information

0 :

12

b1

bb4

b6

Choice of variables:

Loop Currents and Branch Voltages

Graph of

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 33/87

Formulate network equations with explicit applic

0 : Ref Node

12

43

b1

b2

b3

b4

b5

b6 b7

b8

Graph of the network 

0 : R

Construct a tree => A connected graph spanning all nodhave a circuit. A tree has n nodes an

A tree of th

=> Graph has more than one tree

12

b1

b2b

b4

b6

(b1,b2,b5,b7)Tree:

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 34/87

Formulate network equations with explicit applic

Tree of the network 

0 : Ref Node

12

4

3

b1

b2b3

b4

b5

b6 b7

b8

(b1,b2,b5,b7)Tree: Co-tree:

(b4,b6,b3,b8)

=>The co-tree h

Every branch of(known as chordformation of a lo

is known as fund

Example : (b6 , fundamental circ

No of fundamen

no of chords = b

If we apply KVL to these fundamental circuits then thelinearly independent

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 35/87

Formulate network equations with explicit applic

0 : Ref Node0

12

C1

R1

C2

b1

b

b4

b6

V

Original N

12

4

3

b1

b2b3

b4

b5

b6 b7

b8

(b1,b2,b5,b7)Tree: Co-tree:

(b4,b6,b3,b8)

V=Vb1+Vb2

Vb2=Vb5+Vb8Vb6=Vb1+Vb5-Vb7Vb7=-Vb3-Vb2+Vb5

=>(b4: chord)

=>(b8: chord)=>(b6: chord)=>(b3: chord)

KVLs:

i1i2

i3 i4

7 voltage

are unkn

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 36/87

Formulate network equations with explicit applic

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3

b1

b2 b3

b4b5

b6 b7R2

b8V

Original Network 

V-I relationship

12

4

3

b1

b2 b3b4

b5

b6 b7

b8

0

I1

I3

I2

I4

Vb1=Ib1*R1

Vb2=1/C2 Ib2 dt

Vb3=Ib3*R3Vb4=V

Vb5=Ib5*R2

Vb6=1/C1 Ib6 dt

Vb7=1/C3 Ib7 dt

Vb8=R4*Ib8

R4

Expressed in terms of 8 (b

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 37/87

Formulate network equations using KVL

Appl

Ib1=

12

4

3

b1

b2b3

b4

b5

b6 b7

b8

0

I1

I3

I2

I4Appl

Ib2=

Appl

Ib5=

Apply

Ib7=I

Note: Ib4=-I1 ; Ib6=I3; Ib8=I2; Ib3=I4

Ib4

=> enouloop cur

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 38/87

Formulate network equations using KVL:

Ib1= (I1-I3)

Ib2=I1-I2+I4

Ib5=I2-I3-I4

Ib7=I4+I3

Ib4=-I1 ; Ib6=I3; Ib8=I2; Ib3=I4

V=Vb1+Vb2

Vb2=Vb5+Vb8Vb6=Vb1+Vb5-Vb7Vb7=-Vb3-Vb2+Vb5

=>(b4: chord)

=>(b8: chord)=>(b6: chord)=>(b3: chord)

Vb1=

Vb2=

Vb3=

Vb4

Vb5=

Vb6=

Vb7=

All the

Vb8

KVLs:

KCLs: Eleme

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 39/87

Network equations using KV

Vb6=Vb1+Vb5-Vb7

Vb7=-Vb3-Vb2+Vb5 =>

V=Vb1+Vb2 => V = (I1-I3)R1+ 1/C2

Vb2=Vb5+Vb8 => 1/C2 (I1-I2+I4)dt = (I2-I

1/C3 (I4+I3)dt=-I4*R3-1/C2 (I1-I2+I4)dt+(I

I3dt = (I1-I3)R1 + (I2-I3-I4)R2 -1/C3 (1/C1

Unknowns:Loop Currents: I1,I2,I3 and I4

Loop Variable Ana

Therefore the analy

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 40/87

Loop Variable Analysis: Matrix Representation

-1/C2 dt -R1

-1/C2 dt 1/C2 dt

+R2+R4

-1-R2 -R2

-R1 -R21/C3 dt +1/C1dt

+R1+R2 +1

1/C2 dt -1/C2 dt -R2 1/C2 dt +R2

1/C3 dt

+R

0

0

0

1/C2 dtR1+V

=

-1/C

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 41/87

Loop Variable Analysis: Generali

Graph of a network with L

independent loop currents

I1

I2

I3

I4

IL

Voltage drop in loop k produced by current Ij

Rkj*Ij+Lkj*dIj/dt +1/Ckj Ij dt = (Rkj+Lkj d/dt

=akjIj

akj: symbol to summarize the operation on Ij

Rkj = totalcom

k anLkj =

Ckj =

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 42/87

Loop Variable Analysis: Generali

The general form of KVL

akjIj=Vk  j=1

L

General form of KVL for L loop

akjIj=Vk , k =1,....,L j=1

L

a11 a12 a13

aL1 --- ---

--- --- ---

Operator onI1 I2 I3

V1

V2

VL

, Vk is the active voltage source in

Loop 1 =>

Loop 2 =>

Loop L =>

-=Vector Equation:

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 43/87

Loop Variable Analysis: Matrix Representation

-1/C2 dt -R1

-1/C2 dt 1/C2 dt

+R2+R4

-1/C2 d-R2 -R2

-R1 -R21/C3 dt +1/C1 dt

+R1+R2

R2

+1/C3 d

1/C2 dt -1/C2 dt -R2 1/C2 dt +R21/C3 dt +1/C

+R3+R2

0

0

0

1/C2 dtR1+V

=

=a11 =a12 =a13 =a14

=a21

-1/C2 dt

Solution : Find the inverse of the matrix (square: b-(n-1)*b-(n-1))

May use Gauss Elimination Method : A process called trangulariz

=a31

=a41

=a22

=a23 =a24

=a32

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 44/87

RL

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3

b1

b2 b3

b4b5

b6 b7R2

b8V

Formulate network equations with explicit applic

Independent Equations: => Draw a graph : Figure with

information

0 :

12

b1

bb4

b6

Choice of variables:

Node Voltages and Branch Currents

Graph of

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 45/87

Formulate network equations with explicit applic

0 : Ref Node

12

43

b1

b2

b3

b4

b5

b6 b7

b8

Graph of the network 

0 : R

Construct a tree => A connected graph spanning all nodhave a circuit. A tree has n nodes an

A tree of th

=> Graph has more than one tree

12

b1

b2b

b4

b6

(b1,b2,b5,b7)Tree:

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 46/87

Formulate network equations with explicit applic

Tree of the network 

0 : Ref Node

12

4

3

b1

b2b3

b4

b5

b6 b7

b8

(b1,b2,b5,b7)Tree: Co-tree:

(b4,b6,b3,b8)

=>The tree has (

Every branch ofis responsible foformation of a c

is known as fund

Example : (b1 ,b4,

No of fundamentalno of branches in a

If we apply KCL to these fundamental cut-sets then thelinearly independent

 A cut-set is the whose removal dis

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 47/87

Identify the fundamental cut-sets to apply KCL

2

4

3

b1

b2b4

b7

1

1 b1

b4

b6

2

0

4

b12

b6

b2 b3b4

0

4

b3

b5

b8

b6

(b5,b3,b8,b7)

b7

3

4b6

1

b3

0

(b7,b3,b6)

0

0

1

1

4

2 3This nodeis disconnected

This is afundamentalcut-set

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 48/87

RL

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3

b1

b2 b3

b4b5

b6 b7R2

b8V

Formulate network equations with application of

b3

b6

21

0

Ib6+Ib3+Ib

-Ib4-Ib1-Ib

Ib6-Ib7+Ib

Ib2+Ib4-Ib

Cut-set of b1:

Cut-set of b7:

Cut-set of b2:

Cut-set of b5:

A BI1

In

I1+ I2 + ... + In =0

Conservation of Charges

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 49/87

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3

b1

b2 b3

b4b5

b6 b7R2

b8V

Original Network 

V-I relationship of the elements

Ib1=Vb1/R1

Ib2=C2 dVb2/dt

Ib3=Vb3/R3Vb4=V ; Ib4=? Ideal

Ib5=Vb5/R2

Ib6=C1dVb6/dt

Ib7=C3dVb7/dt

Ib8=Vb8/R4

R4

Expressed in terms of 8 (b

In terms of branch voltage an

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 50/87

Formulate network equations using KC

Apply KV

Vb1=

12

4

3

b1

b2b3

b4

b5

b6 b7

b8

0

Vb2=

Vb5

Vb7

=> enounode vo

Ib8

Vb3

Vb4

Vb6

Vb

Ib5

Ib4

Ib1

Ib6 Ib7

Ib3

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 51/87

Formulate network equations using KCL: All

Elements:KCLs:

Ib6+Ib3+Ib5-Ib8=0

-Ib4-Ib1-Ib6=0

Ib6-Ib7+Ib3=0

Ib2+Ib4-Ib3+Ib8=0

V

V

Ib1=Vb1/R1

Ib2=C2 dVb2/dt

Ib3=Vb3/R3

Vb4=V ;

Ib5=Vb5/R2

Ib6=C1dVb6/dt

Ib7=C3dVb7/dt

Ib8=Vb8/R4

V2,V3,V4 and Ib4

Note: V1 is given (V1=V)

However, Ib4 is unknown

Note: You can write KCLs at all nodes except the refereand obtain (n-1) linearly independent equations

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 52/87

Network equations using KC

Unknowns:Node Voltages: V2,V3, V4 and Ib4

Node Variable

Therefore the an

No. of Unknowns: n-1 =4

C1d/dt (V-V4) + V4/R3 + V2-V3/R2 - V3/R4 =

-Ib4 - (V1-V2))/R1 -C1d/dt (V-V4) = 0

C1d/dt (V-V4) -C3d/dt (V4-V3) + V4/R3 = 0

C2d/dt (V2-V3) + Ib4 - V4/R3 + V3/R4 = 0

Solve a system of linear integro-differential equ

Note: If (n-1) < b- (n-1) then it is advantageous to use n

as we need to solve less number of linearly indep

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 53/87

Node Variable Analysis:Matrix Representation

=

C1dV/dt 0 1/R2 -1/R2-1/R4 -C1d/dt +1/R

-1 1/R1 0 C1d/dtV/R1 +

C1dV/dt

0 0 C3d/dt 1/R3 + C3d/dC1dV/dt

1 C2d/dt 1/R4 + C2d/dt -1/R30

  The voltage source V is equivalent to a current source Ib4 (u

voltage V (known)

Note : There is no active current source.

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 54/87

Node Variable Analysis: Generali

Current flowing out of node k due to voltage in

Vj*(1/R1 + 1/R2 + ...) + (1/L1+1/L2 + ...) Vjdt +

= (1/Rkj + 1/Lkjbkj dt + Ckjd/dt)Vj =

bkj: symbol to summarize the operation on Vj

C1C2

R1

R2

L1

L2

node jnode k 

Elements Connecting Nodes j and k 

1/Rkj = (1/R

1/Lkj = (1/L

Ckj = C1+C2

Ikj

node xIkx

Ik (Active Source)

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 55/87

Loop Variable Analysis: Generali

The general form of KCL

bkjVj=Ik  j=1

L

General form of KCL for N nodes

bkjVj=Ik , k =1,....,N j=1

L

b11 b12 b13

bL1 --- ---

--- --- ---

Operator of I1 I2 I3

I1

I2

IN

, Ik is the active current source con

Node 1 =>

Node 2 =>

Node N =>

-=Vector Equation:

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 56/87

Node Variable Analysis:Identify the operators

=

-1 1/R1 0 C1d/dV/R1 +C1dV/dt

0 1/R2 -1/R2-1/R4-C3d/dt C3d/d

-V/R1

0 0 C3d/dt -1/R3-(C3+C1)d-C1d/dt

 

Note : There is no active current source.

0 -1/R2-1/R1-C2d/dt 1/R2 0

0

The voltage source V is equivalent to a current source Ib4 (voltage V (known)

=b12 =b13 =b14

=b22 =b23 =b24

=b32 =b33 =b34

=b42 =b43 =b44

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 57/87

Apply KCL at each node: Formulation by observatio

 

0 : Ref Node

12

4

3

C1 C3

R1

C2 R3

b1

b2 b3

b4b5

b6 b7

R2

b8V

-Ib4 - (V-V2)/R1-C1d/dt KCL at Node 1:

KCL at Node 2 :

(V-V2)/R1 - C2d/dt (V2)

KCL at Node 3:

(V2-V3)/R2 -V3/R4 + C3

KCL at Node 4:

C1d/dt(V-V4) - V4/R3 - C

R4

Note: For a DC source dV/dt = 0

Even without identificationof the trees it will bepossible to formulatethe network equations  

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 58/87

v1

v2

v1+v2=v

i1+i2=ii1 i2

Sources can be combined

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 59/87

i

v vR

R

i

No Difference

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 60/87

v(t)

R v1(t)

i1(t)

i1(t)

Rv/R

Source Transformation

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 61/87

v(t)

v1(t)i1(t)

L

vdti=1/L

v1(t)

v(t)

v1(t)i1(t)

v1(t)

i=Cdv/dt

C

C

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 62/87

Source Transformation

Equivalent Networks

v1

R1

R2

L1

v1

R1 L1

v1

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 63/87

Network Functions

Port : A pair of termi

current into one term

current out of otherOne-Port

Network V

I

I

A one-port network ispecified if voltage-c

at the terminals of the

1

I

I5

I

I

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 64/87

Network Functions

Two-Port Network :=>Defined by two pairs of 

=>The variables are V1,I1,V2,I2.

Two-Port

Network  V2

I2

V1

I1

voltage-current relationships

=>Two dependent variablesTwo independent variables

Depende

1. V1,V2

2. I1,I2

3. V1,I2

4. V1,I1

z par

y par

h (hy

A,B,

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 65/87

Network Functions

Mathematical description using dependent and indepe

V1=z11*I1+z12*I2V2=z21*I1 + z22*I2

z11 =V1

I1I2=0

z12 =V1

I2I1=0

Definition of z parameters:

z21 =V2

I1I2=0

z22 =V2

I2I1=0

I1=y11*V1+I2=y21*V1

Definition of y pa

z21 =V2

I1I2=0

z22 =V2

I2I1=0

Open-Circuit Parameters

y11 =I1

V1V2=0

y21 =I2

V1V2=0

Short- Circuit P

Short-Ckt. AdmittOpen-Ckt. Impedance

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 66/87

Network Functions

Mathematical description using dependent and indepe

V1=h11*I1+h12*V2I2= h21*I1 + h22*V2

h11 =V1

I1V2=0

h12 =V1

V2I1=0

Definition of h (hybrid) parameters:

h21 =I2

I1V2=0

h22 =I2

V2I1=0

 I1

I1=0

Short-Ckt Open_Ckt

A =V1

V2I2=0

V1=A*V2 +I1= C*V2 +

Definition of A,B

C =I1

V2I2=0

Open-Ckt

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 67/87

Network Functions

V1=z11*I1+z12*I2V2=z21*I1 + z22*I2

z11 =V1

I1I2=0

z12 =V1

I2I1=0

Definition of z parameters:

z21 =V2

I1I2=0

z22 =V2

I2I1=0

z21 =V2

I1I2=0

z22 =V2

I2I1=0

Find the open-circ

for the T- circuit

1

1

V1I1

2

z11= Ra+Rb=12

Ra

Rb

z12=I2*Rb

I2

= 1

z22 = Rb+Rc = 1

z21 =I1*Rb

I1=

Example:

Driving PointTransfer

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 68/87

 

How do we obtain the z parameters of any two port (active or pa

I1 = b11V1 + b12V2 + b13V3 +.........+ b1nVnI2 = b21V1 + b22V2 + b23V3 + ........+ b2nVn0 = b31V1 + b32V2 + b33V3 + ........+ b3nVn................................................................................................................................................0 = bn1V1 + bn2V2 + bn3V3 + ....... + bnnVn

V3,....,Vn : N: depen

I1,I2, .... : C

A set of Node Equations:

: independe

bjk : operatVector Equation:

Solution:

 I= GV 

V=G-1

 I=ZI 

G-1

=

11

21

n1

12

1n

2n

nn-----------------------------------

----------------------------

 Z=

z12z11

For passive network:

12= 21

z12 = z21

22

z21

z22

V1,V2 : term

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 69/87

Example: Open-circuit (Z parameters) of

I2

1

1

2

2

V1 V2

I1 GA

GC

GB

I1=(GA+GCI2=-GCV1+

= GA*GB+

11= GB+G

21= GC

z11=G

GA*GB

z12=

z22=

z21=

Delta-star(wye) Transformation:

z12 = Rb = GC/ 

G

GA*GBG

GA*GB

z22 = Rb+Rc = (GA+GC)/ 

=> Rc = GA/ 

z11 = Ra+Rb = (GB+GC)/ 

=> Ra = GB/ 

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 70/87

 

How do we obtain the y parameters of any two port (active or pa

V1 = a11I1 + a12I2 + a13I3 +.........+ a1nInV2 = a21I1 + a22I2 + a23I3 + ........+ a2nIn0 = a31I1 + a32I2 + a33V3 + ........+ a3nIn................................................................................................................................................0 = an1I1 + an2I2 + In3I3 + ....... + annIn

I1,I2,I3,....,In: depen

V1,V2, .... :

A set of Loop Equations:

: independe

ajk : operatoVector Equation:

Solution:

V= RI 

 I=R-1

V=YI 

 R-1

=

11

21

n1

12

1n

2n

nn-----------------------------------

----------------------------Y=

y12

For passive network:

12= 21

y12 = y21

I1,I2 : Port in

22

y21

y11 y22

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 71/87

Network Functions

Find the short-circuit parameters for the bridgExample:

1

1 2

V1 V2I1 I2

2

10

7

2

I3

5

V1 = (10+2)I1 +10I2 - 2I3V2 = 10I1 +(10+7)I2 +7I3

0 = -2I1+7I2 +(5+7+2)I3

 R =12 10 -210 17 7-2 7 14

11

= 12(17*14 - -(10)(10*14+(-2)(10*7

11=17*14 - 7

y11= =

15

21y12= =

-5

22y22= =

15

When y11=y22 or z11=z12,

is s mmetrical

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 72/87

 

V1=h11*I1+h12*V2I2= h21*I1 + h22*V2

Definition of h (hybrid) parameters:

h11 = V1I1

V2=0

h12 = V1V2

I1=0

h21 =I2

I1V2=0

h22 =I2

V2 I1=0

 I1

I1=0

Short-Ckt Open_Ckt

The h parameters : comparison

y11 =I1

V1 V2=0

=>

Extremely useful for describing bipolar junction trans

V1= Vbe = Base to em

I2 = Ic= Collector curI1= Ib = Base current

V2 = Vce = Collector

z22 =V2

I2I1=0

=> h

z12 =V1

I2 I1=0

=> h

=> h2y21 =I2

V1V2=0

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 73/87

Example: h parameters of the Pi Circuit

1

1

2

2

V1

V2I1

I2

GA

GC

GB

h11 =V1

I1V2=0

h12 =V1

V2I1=0

h21 =I2

I1V2=0

h22 =I2

V2I1=0

 I1

I1=0

Short-Ckt Open_Ckt

h11 = 1/(G

h21 = -GC

h12 = GC/

h22 = GB + G

Note: h12=-h21 =

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 74/87

The A,B,C,D parameters : comparisonExtremely useful for describing transmission net

A =V1

V2I2=0

B =-V1

I2V2=0

V1=A*V2 + B*-I2I1= C*V2 + D*-I2

Definition of A,B,C,D parameters:

C = I1V2

I2=0

D = -I1I2

V2=0

Short-CktOpen-Ckt

V1, I1 are sendiand current variaV2, I2 are receivand current varia

A BC D

<= TransmissionMatrix

Transmission engineers

z11 =V1

I1I2=0

z21 =V2

I1 I2=0

z21 =V2

I1 I2=0

=

=

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 75/87

The A,B,C,D parameters : comparisonExtremely useful for describing transmission net

V1=A*V2 + B*-I2I1= C*V2 + D*-I2

A =V1

V2I2=0

B =-V1

I2V2=0

Definition of A,B,C,D parameters:

C = I1V2

I2=0

D = -I1I2

V2=0

Short-CktOpen-Ckt

V1, I1 are sendiand current variaV2, I2 are receivand current varia

A BC D

<= Transmission (T)Matrix

Transmission engineers

y11 =I1

V1V2=0

y21 =

I2

V1V2=0

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 76/87

Example: T parameters of the Pi Circuit

1

1

2

2

V1 V2

I1 I2

GA

GC

GB

 

A =V1

V2I2=0

B =-V1

I2V2=0

C =I1

V2I2=0

D =-I1

I2V2=0

Short-CktOpen-Ckt

A =1/GB

1/G

1

1

V1

I1

GA

G

Ix = I *1/

1/GA +

GA*GB +GGC

C=GA*GB+G

G

V2 = Ix*1/GB

=

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 77/87

Example: T parameters of the Pi Circuit

1

1

2

2

V1 V2

I1 I2

GA

GC

GB

 

A =V1

V2I2=0

B =-V1

I2V2=0

C =I1

V2I2=0

D =-I1

I2V2=0

Short-CktOpen-Ckt

1

1

V1

I1

GA

GC

I2 = - V1*

B =1

GC

I2 = - 1/G

1/GA+

D = GC+G

Note : AD-BC =Equivalent cond

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 78/87

Relationship Between Two Port Paramete

 

The z and y relationships can be obtained by using m

 Z =z11 z12

z21 z22Y =

y11 y12

y21 y22

V = ZI = ZYV 

 ; V = ZI   ; I

Therefore, Y = Z 1

y11 = z22/ z y22 = z11/ z

y12 = -z12/ z y21 = -z21/ z

z = z11*z22-z12*z21

z11 = y22/ y

z12 = -y12/ y

y = y11*y2

h and ABCD parameters can be expressed in terms of

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 79/87

Interconnection of Two Port Parameters

 

Na NbV2a V2bV1

I1 I2a I2b

Cascade connection of Two Ports

Ab Bb

Cb Db

Aa Ba

Ca Da

Aa Ba

Ca Da

A B

C D

A=

The transmission matrix of overall two port networkproduct of the transmission matrices of the individua

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 80/87

Interconnection of Two Port Parameters

 

Na V2aV1a

I1a I2a

Nb V2bV1b

I2bI1b

1:1

Parallel Connection of two ports

I1 I2 V1aV2aI1 =

I2 =

I =

I1

I2Ia

V =V1

V2

Va

I = Ia + Ib = YaVa + YbVb = (Ya+Yb)V

Y = (Ya+Yb)

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 81/87

Interconnection of Two Port Parameters

 

Na V2aV1a

I1a I2a

Nb V2bV1b

I2bI1b

1:1

Series Connection of two ports

I1 I2 V1aV2aI1 =

I2 =

I =

I1

I2Ia

V =V1

V2

Va

V = Va + Vb = ZaIa + ZbIb = (Za+Zb)I

Z = (Za+Zb)

V1V2

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 82/87

Interconnection of Two Port Parameters

 

1. When the two ports are connected in parallel, fiparameters first, and, from the y parameters deriv

two-port parameters

2. When two-ports are connected in series, it is us

easiest to find the z parameters

3. When two ports are connected in tandem, it is geasiest to find the transmission matrix.

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 83/87

Q5.

=> Ideal Transformer (2) I 2

b = I 1 / a

=> Circuit connection (2)V in = V 1 − bV 2

=> Ideal Transformer (2) I in = − I 1 / a

=> Definition Input Impedance (2) Z =V in I in

=V 1−bV 2

− I 1 / a

=> Definition Z parameters (2)−

V 1a

V 2=

z11 z12

 z21 z22

 I 1

 I 2

=> Eq. of the 1st row (2)V 1 = −a( z11 +ba z12) I 1

=> Eq. of the 2nd. row (2)V 2 = ( z21 +

b

a z22) I 1

(4) Z =−a( z11+

ba z12) I 1−b( z21+

ba z22) I 1

− I 1 / a= a2 z11 + abz12 + abz21 + b2 z22

6

z z11 12

z z21 22

T1 T2

a:1 1:b1

1

2

2

Ideal

Transformer

Ideal

Transformer

Z

Fig. A

V1 -(V1/a) V2-(bV2)

VinIin

I1 I2

I1/a

I2/b

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 84/87

Q6.

=> Definition of Z parameters (1)V 1

V 2=

z11 z12

 z21 z22

 I 1

 I 2

Let us set => 2-2’ open circuited I 2 = 0

=> (1) I 1 =2V 1

( Z a+ Z b) z11 =Z a+ Z b

2

and (1)V 21∏ =Z b

 Z a+ Z bV 1 V 2∏1 ∏ =

Z a Z a+ Z b

V 1

Therefore (1)V 22∏ = V 21∏ − V 2 ∏1∏ =Z b− Z a

 Z a+ Z bV 1 = V 2

(1) z21 =V 2 I 1

=

 Z b− Z a

 Z b+ Z aV 1

 I 1=

Z b− Z a

 Z b+ Z a

 Z a+ Z b2 =

Z b− Z a

2

Since this is a passive network, (1) z12

= z21

Since this is a symmetric network, (1) z22 = z11

(1) z = z11 z22 − z12 z21 =( Z a+ Z b)2−( Z b− Z a)2

4 = Z a Z b

(2) y11 =12 (

1 Z b

+1 Z a

) =14 (1 − j) = y22

(2) y12 = −12 (

1 Z a

−1

 Z b) = −

14 (1 + j) = y21

7

Za

Za

1

1

2

2

Zb

Zb

Fig.B

V1V2

I1I2

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 85/87

Q7.

(2)V 3 = I  xr d 

 I  x =V  x−V 3r d  + (−gmV 3) =

V  xr d  − I  x − gmr d  I  x

(2)

(2) Rth =V  x I  x

= r d (2 + gmr d )

(2)V 3 = −r d gmV 1

(2)V th = −(−gmV 3)r d  + V 3

(2)V th = (1 + gmr d )(−r d gm)V 1

8

V1 gmV1

-gmV3

rd

rd

RL RL

Rth

Vth

(i) (ii)

Fig. C

V3

gmV1

-gmV3

rd

rd

(i)

Fig. C

V3V1=0

=0

Vx

Ix

Determination of Rth

V1 gmV1

-gmV3

rd

rd

(i)

Fig. C

V3

Determination of Vth

Vth

-gmV3

gmV1

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 86/87

Q8.

Introduce two new variables , that is the current through and , that is the current through I 1 V 1 I k , so that KCL at every node (1,2,3,4,5,6 and k) can be written. (V 1 − V k )

KCL at node 1:

=> (since is known and is unknown)−V 1 R1

+V 2 R1

= I 1 − I 1 +V 2 R1

=V 1 R1

V 1 I 1

KCL at node 2:

=>V 1 R1

−V 2 R2

−V 2 R1

− C 1dV 2

dt  = 0 −V 2 R2

−V 2 R1

− C 1dV 2

dt  = −V 1 R1

KCL at node 3:

=> => (since is known and isV 4 R3

−V 3 R3

= I k  −V k + (V 1−V k )

 R3− I k  = 0 −

(1− )V k  R3

− I k  =V 1

 R3V 1 I k 

unknown)

KCL at node 4:

=>V 3 R3

−V 4 R3

−V 4 R5

−V 4 R +

V 5 R +

V 6 R5

= 0(1− )V k 

 R3−

V 4 R3

−V 4 R5

−V 4 R +

V 5 R +

V 6 R5

= − V 1

 R3

KCL at node 5:

 V 4 R −

1 L ¶ V 5dt  −

V 5 R = 0

KCL at node 6:

=>V 4 R5

−V 6 R6

−V 6 R5

+ i2 = 0V 4 R5

−V 6 R6

−V 6 R5

+ V 6 R6

= 0

KCL at node k:

 −V k  R4

+ I k  = 0

9

V1

R1

C1 R2

R3 R5

R

L

R6

i2

R4

 (V1-Vk)

k  i2

Fig. D

Vk 

12

3 4

5

6

I1

Ik 

8/4/2019 Network Notes IMP

http://slidepdf.com/reader/full/network-notes-imp 87/87

The unknown variables are . Therefore we can organize the KCLs as I 1,V 2, I k ,V 4,V 5,V 6,V k  Bp = q

= p

 I 1

V 2 I k 

V 4

V 5

V 6

V k 

= B −11

 R10 0 0 0 0

  0 (−1

 R1−

1 R2

− C 1d 

dt ) 0 0 0 0 0

  0 0 − 11

 R30 0 −

(1− )

 R3

 

0 0 0 − (1

 R3+

1 R5

+1 R )

1 R

1 R5

(1− )

 R3

  0 0 01 R − (

1 R +

1 L ¶ dt ) 0 0

  0 0 01

 R50 − (

1 R5

+1

 R6−

 R6

) 0

  0 0 1 0 0 0 − 1 R4

 

=q

V 1 R1

−V 1 R1

 V 1

 R3

− V 1

 R3

00