Nematology 00 (2016) 1-18

Embed Size (px)

Citation preview

  • 8/18/2019 Nematology 00 (2016) 1-18

    1/18

     Nematology 00 (2016) 1-18   brill.com/nemy

    Description and molecular characterisation of two new species

    of Dorylaimidae (Dorylaimida: Nematoda) from Iran,with a compendium of all the nominal species

    of  Dorylaimus Dujardin, 1845

    Maria Teresa VINCIGUERRA 1, Ali ESKANDARI 2,∗, Mirella CLAUSI 1,Ramezan ASGHARI 2 and Giancarlo RAPPAZZO 1

    1 Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81,

    95124 Catania, Italy2 Department of Plant Protection, Faculty of Agriculture, University of Zanjan, 45371-38791 Zanjan, Iran

    Received: 7 April 2015; revised: 9 December 2015

    Accepted for publication: 9 December 2015; available online: ???

    Summary – Two new species of Dorylaimidae from Iran are described using morphology and molecular data.  Dorylaimus eleganssp. n. is characterised by 4.41-5.92 mm body length, lip region truncate, distinct from adjoining body by a depression, cuticle with50-55 longitudinal ridges, odontostyle 42-51  µm long, thicker than cuticle at its level, didelphic female reproductive apparatus, vulvaa small sub-equatorial pore, a variable number of advulval papillae (0-6), both pre- and post-vulval, present in most specimens, femaletail elongate, 5.6-7.6 anal body diam. long, with ventrally hooked terminus. Male with 26-30 ventromedian supplements arrangedvery close to each other, copulatory hump weakly developed, and a convex-conoid tail with blunt terminus.  Prodorylaimus reyesi sp.n. is characterised by 2.78-3.33 mm body length, lip region slightly angular and well set off from adjoining body by a depression,odontostyle 26-31  µm long, thicker than cuticle at its level, didelphic female reproductive apparatus, vulva longitudinal, a variablenumber of advulval papillae (0-3), both pre- and post-vulval, present in most specimens, tail in both sexes convex-conoid in its anteriorpart, then narrowing abruptly to a filiform hyaline appendix, longer in female (c = 11.7-15.5) than in male (c = 7-7.7), and 19-21

    contiguous ventromedian supplements. A compendium of the main morphometric characters of  Dorylaimus and a key to species arealso provided.

    Keywords – Dorylaimus elegans sp. n., key, morphology, morphometrics, Prodorylaimus reyesi sp. n., taxonomy.

    During a recent nematological survey carried out inthe Jangal-e Abr (Cloud Forest), Iran, two undescribedspecies of the family Dorylaimidae de Man, 1876 wereisolated from the rhizosphere of hornbeam (Carpinusbetulus   L.). This forest is located 45 km north-eastof Shahrood county, Semnan province, Iran, and is acontinuum of the northern forests found in the south of the Alborz mountain range. The Abr forest area is overcastand foggy in most seasons. It is one of the oldest forestsin Iran, a remnant of the third geological age.

    The objectives of the present study were to describethe two new species of Dorylaimidae found, which aredescribed and figured herein as  Dorylaimus elegans sp. n.and Prodorylaimus reyesi sp. n., and to prepare a new key

    ∗ Corresponding author, e-mail: [email protected]

    and a compendium containing morphometric and relateddetails to facilitate the identification of the  Dorylaimusspecies presently considered valid.

    Members of  Dorylaimus  Dujardin, 1845 and  Prodor- ylaimus Andrássy, 1959 are interesting free-living dory-laims occurring throughout the world. Nematodes belong-ing to  Dorylaimus live in limnic habitats or in moist soiland moss (Andrássy, 1959, 1988). Andrássy (1969) re-vised the taxonomy of the genus and gave a key to 16valid species. Mulvey & Anderson (1979) also reviewedthe genus, provided a comprehensive key, and tabulateddiagnostic characters for 22 known species. In the latestrevision of the genus, Andrássy (1988) provided a key forthe identification of the 24 valid species of  Dorylaimus

    © Koninklijke Brill NV, Leiden, 2016 DOI 10.1163/15685411-00002960

  • 8/18/2019 Nematology 00 (2016) 1-18

    2/18

     M.T. Vinciguerra et al.

    known at that time. Andrássy (2009) gave an updated listof the  Dorylaimus  species, although since then, a num-ber of new species have been described, the genus cur-

    rently containing 33 species considered valid. Therefore,and also because of the large morphological diversity of the species and of new data provided for some species,we decided to produce a new key and a diagnostic com-pendium to all the nominal species of this genus. In thecase of   Prodorylaimus, a revised key is not currently re-quired since recently Vinciguerra & Orselli (2011) pro-vided one together with a table of the main morphometriccharacters of each species.

    The Iranian nematode fauna belonging to the Dorylaim-idae is poorly known and as far as we know, this is the firstreport of species of the aforementioned genera from Iran.

    Materials and methods

    Nematodes were extracted from soil samples by the traymethod (Whitehead & Hemming, 1965), then killed bygentle heat and fixed in a FGA (formaldehyde, glycerinand acetic acid = 4:1:1) solution and finally processed toanhydrous glycerin (De Grisse, 1969). Permanent slideswere made and examined using a Leica model DMRBlight microscope. Drawings and measurements were madeusing a drawing tube attached to the microscope andwith the aid of Adobe Photoshop CS5; microphotographs

    were taken with a Leica EC3 camera. The positionsof pharyngeal gland nuclei were calculated followingAndrássy’s (1998) formula.

    MOLECULAR CHARACTERISATION

     DNA extraction and PCR

    For the molecular study, a single specimen was hand-picked into distilled water, its identity confirmed underthe light microscope, and then placed into a small drop of AE buffer (10 mM Tris-Cl, 0.5 mM EDTA; pH 9.0) andcrushed into multiple pieces on a microscope slide witha pipette tip (Zeng   et al., 2012). The suspension (DNAsamples) of microscope slide was collected by pipette andstored at  −20°C until used as a PCR template. The for-ward D2A (5-ACAAGTACCGTGAGGGAAAGTTG-3)and reverse D3B (5-TCGGAAGGAACCAGCTACTA-3) primers were used for amplification and sequencingof the fragment of the 28S rDNA gene (Nunn, 1992).

    Twenty-fiveµl of the PCR mixture contained 0.4 U TaqDNA polymerase (CinnaGen), 1  µl MgCl2, 1  µl dNTPs,3 µl of each primer (10 pmol µl−1), 2.5 µl of 10× buffer,

    3   µl of template DNA and 11.1   µl ddH2O. The PCRamplification profile consisted of 5 min at 95°C; 35 cyclesof 30 s at 94°C, 45 s at 55°C and 2 min at 72°C, followed

    by a final step of 10 min at 72°C. Four  µl of the PCRproduct was run on a 1% TBE buffered agarose gel (80 V,40 min) and stained with ethidium bromide. Gels werephotographed under UV light.

    Sequence analysis

    Sequences from the 28S rDNA locus, also known asLSU (Large Sub-Unit), were obtained from   D. eleganssp. n. and   P. reyesi  sp. n. by sequencing PCR-amplifiedfragments in both directions (Bioneer). For each species,the consensus sequence was obtained by aligning forwardand reverse reads. The consensus span 793 bp for  P. reyesi

    sp. n. and 805 bp for D. elegans sp. n. Data were depositedin GenBank under accession numbers KP954677 for  D.elegans sp. n. and KP954678 for P. reyesi sp. n.

    Phylogenetic analysis

    Homologous sequences were retrieved by Taxonomybrowser at NCBI (www.ncbi.nlm.nih.gov/Taxonomy) us-ing the keyword  Dorylaimoidea. This choice allowed theinclusion of data from both   Dorylaimus   and   Prodory-laimus. However, a large cohort of genera was also in-cluded, many of which are not very close to either of theformer two genera. It should be noted that the NCBI tax-

    onomy database is not an authoritative source for nomen-clature or classification. Data obtained included mostlySSU (Small Sub-Unit,   i.e., 18S rDNA) and a reducednumber of LSU (Large Sub-Unit,   i.e., 28S rDNA) se-quences.

    In order to keep data consistency without including datafrom relatively distant genera, we adopted a two stepsapproach. In a first step, a reference tree was constructedusing only 28S sequences already available in taxonomydatabases. The resulting tree allowed us to recognise asmall cluster of genera, such as  Dorylaimus,   LabronemaThorne, 1939, Prodorylaimus, Ecumenicus Thorne, 1974and, in an adjacent group,   Paraxonchium  Krall, 1958,

     Eudorylaimus   Andrássy, 1959 and   OpisthodorylaimusAhmad & Jairajpuri, 1982 (data not shown). More distantentries were then excluded from the comparison, with theexception of Sectonema Thorne, 1930, which was retainedas outgroup.

    A total of ten sequences was selected for comparativeanalysis. They included LSU sequences, ca 1100 bp long,from the following species: Calcaridorylaimus castaneaeNedelchev, Elshishka, Lazarova, Radoslavov, Hristov &

    2   Nematology

  • 8/18/2019 Nematology 00 (2016) 1-18

    3/18

    Two new species of dorylaim from Iran

    Peneva, 2014 (KF717498.1),   Dorylaimus stagnalis  Du- jardin, 1845 (AY592994.1), Ecumenicus monohystera (deMan, 1880) Thorne, 1974 (AY593013.1), Ecumenicus sp.

    JH-2004 (AY593014.1),  Eudorylaimus centrocercus (deMan, 1880) Andrássy, 1959 (AY593007.1),   Labronemavulvapapillatum   (Meyl, 1954) Loof & Grootaert, 1981(AY592996.1),  Opisthodorylaimus sylphoides (Williams,1959) Carbonell & Coomans, 1986 (AY593008.1), Parax-onchium laetificans   (Andrássy, 1956) Altherr & Loof,1969 (AY593001.1),  Prodorylaimus   sp. HHBM-2007a(EF207241.1), and   Sectonema barbatoides  Heyns, 1965(AY593030.1). In a second phase, the sequences of   D.elegans   sp. n. and of   P. reyesi   sp. n. were introducedinto the multi-alignment, with duplicated entries fromthe same species being omitted. Multi-alignments weredone with ClustalW, giving a total of 790 sites includ-ing gaps, or with MUSCLE, which yielded 796 sites. Forphylogenetic analysis, the software pRANK was adoptedsince its algorithm includes an evaluation of conservedand variable sites on the basis of structural conserva-tion (Löytynoja & Goldman, 2005). It was used onlineat EBI (www.ebi.ac.uk/Tools/webservices/services/msa).The package MEGA6 (Tamura   et al., 2013) was exten-sively used on site. Genetic distances were inferred byusing the Maximum Likelihood method based on theKimura 2-parameter model (Kimura, 1980) and they wereexpressed in the units of the number of base substitutionsper site. The rate variation among sites was modelled with

    a gamma distribution (shape parameter  = 2). Phylogenyreconstruction was done with Maximum Likelihood, andtested with 1000 bootstrap iterations (Felsenstein, 1985).

    Results

     Dorylaimus elegans* sp. n.(Figs 1, 2)

    MEASUREMENTS

    See Table 1.

    DESCRIPTION

     Adults

    Large body appearing more or less straight, sometimesC-shaped, after fixation. Cuticle two-layered, with very

    * The specific epithet refers to the elegance and beauty of theseanimals.

    thin outer layer and thick inner one, 4.5-6.0   µm thickat level of odontostyle fixed ring and 6-8   µm at mid-body, bearing 50-55 longitudinal ridges (counted in cross

    section). Lip region anteriorly truncate, 2.3-3.2 times asbroad as high, slightly set off from adjacent body by a de-pression, lips amalgamated. Two circles of six inner andsix outer prominent papillae present. Amphids stirrup-shaped with a slit-like opening at base of lip region, oc-cupying 50-58% of lip region diam. Odontostyle massive,clearly thicker than cuticle, 1.7-1.9 lip region diam. long,its aperture 27-33% of its length, its width 1/6-1/7 of itslength. Odontophore rod-like, simple. Guiding ring dou-ble, fixed ring distant from anterior end   ca  one lip re-gion diam. One or two body pores present both dorsallyand ventrally at odontostyle level. Pharynx very graduallyexpanding without a clear transition from a slender to awider part, apparently in two steps, second step formingposterior 15% of pharynx, glandularium generally occu-pying  >50% of neck length. Positions of nuclei as fol-lows (n = 6): D: 47-52.5%, AS1: 49.4-56.3%, AS2: 54.4-56.7%, PS: 72.5-76.4%. Nerve ring located at 21-24% of neck length. Cardia conoid. Prerectum 2.6-5.0 and rectum1.1-2.0 anal body diam. long.

    Female

    Reproductive system didelphic-amphidelphic, well de-veloped, with anterior and posterior branch of similarlength, anterior 582-762   µm or 11.5-13.0% of body

    length, posterior 603-814  µm or 12-13% of body length.Ovaries large, reaching sphincter level, anterior 196-374   µm, posterior 222-357   µm long, oocytes arrangedfirst in two or more rows, then in a single row. Oviduct197-298  µm long, consisting of a slender part with pris-matic cells and a weakly developed but rather long  parsdilatata, often containing sperm cells, followed by asphincter at its junction with uterus. Uterus 803-943  µmlong, with a complex morphology consisting of a dis-tal slender part, with narrow lumen, and a proximal partwith wide lumen, distal part, in some specimens, particu-larly full of sperm, proximally enlarging to form a shortswollen part containing sperm followed by a weak con-striction, proximal part of uterus much wider, composedof two parts: distal part of variable length, full of spermcells densely packed in all specimens, proximal part of-ten containing one or two eggs per side or empty, no con-striction present between these parts which appear con-tinuous. Uterus sperm cells 7-9 µm long, spindle-shaped.Uterine eggs thick-walled, ovoid, 52-58  ×  109-118  µmin size. Vagina occupying 50-56% of corresponding bodydiam., composed of three parts: pars distalis 3-6µm long;

    Vol. 00(0), 2016 3

  • 8/18/2019 Nematology 00 (2016) 1-18

    4/18

     M.T. Vinciguerra et al.

    Fig. 1. Dorylaimus elegans sp. n. A: Female body; B: Female genital apparatus; C: Female posterior region; D: Anterior end; E: Neck;F: Male body; G: Male posterior end. (Scale bars: A, F = 400 µm; B, C, E, G = 100 µm; D = 20 µm.)

    4   Nematology

  • 8/18/2019 Nematology 00 (2016) 1-18

    5/18

    Two new species of dorylaim from Iran

    Fig. 2. Dorylaimus elegans sp. n. A, D: Anterior end; B: Neck; C: Female posterior genital branch; E: Cardia region; F: Vulval region;G, H: Male posterior end; I: Female posterior end. (Scale bars: A, E, F, G = 20 µm; B = 200 µm; C, H, I = 50 µm; D = 5 µm.) Thisfigure is published in colour in the online edition of this journal, which can be accessed  via  http://booksandjournals.brillonline.com/ content/journals/15685411.

    Vol. 00(0), 2016 5

  • 8/18/2019 Nematology 00 (2016) 1-18

    6/18

     M.T. Vinciguerra et al.

    Table 1. Morphometrics of  Dorylaimus elegans sp. n. All measurements are in µm, except for L in mm, and in the form: mean ± s.d.(range).

    Character Female Male

    Holotype Paratypes Paratypes

    n – 7 13L (mm) 5.48 5.50 ± 0.41 4.80 ± 0.28

    (4.76-5.92) (4.41-5.09)a 57.0 50.0 ± 5.2 50.5 ± 8.5

    (39.0-56.0) (44.0-69.0)b 4.9 5.0 ± 0.2 4.6 ± 0.3

    (4.9-5.2) (4.3-5.0)c 15.6 15.0 ± 1.2 123.5 ± 23.7

    (13.0-17.0) (96-166)c 6.7 7.0 ± 0.9 0.6 ± 0.1

    (5.6-7.6) (0.5-0.7)

    V/T 48.7 48.0±

    2.4 54.1±

    3.6(44.0-50.3) (49.0-60.5)Mid-body diam. 95 109 ± 6.1 104 ± 5.6

    (103-122) (93-111)Anal/cloacal body diam. 52 54 ± 2.2 65 ± 4.5

    (51-56) (59-71)Lip region diam. 27 26 ± 1.3 26 ± 1.2

    (25-28) (25-28.5)Lip region height 9 10.0 ± 1.3 9.5 ± 0.8

    (8.0-12.0) (8.5-11.0)Odontostyle length 46 47 ± 1.7 47 ± 2.6

    (46-50) (42-51)Odontostyle width 7.0 7.0 ± 0.5 7.0 ± 0.7

    (6.5-8.0) (6.0-9.0)

    Odontophore length 47 52 ± 5.4 66 ± 12(47-64) (40-68)

    Fixed ring from anterior end 30 26 ± 1.6 29 ± 1.2(24-29) (27-31)

    Neck length 1122 1110 ± 87.3 1073 ± 37.2(971-1273) (1026-1135)

    Glandularium length 571 608 ± 51.8 553 ± 55.7(542-691) (425-620)

    Nerve ring from anterior end 264 288 ± 69.5 245 ± 11.1(235-399) (224-263)

    Excretory pore from anterior end 168 150 ± 34.3 159 ± 14.9(81-178) (130-180)

    Pre-rectum length 203 207 ± 70.8 258 ± 53.5(170-261) (184-348)

    Rectum length 79 71 ± 9.3 98 ± 11.6(61-87) (79-118)

    Tail length 352 376 ± 29.8 41 ± 5.2(312-417) (33-48)

    Spicule length – – 100 ± 5.4(92-107)

    Lateral guiding pieces – – 45 ± 3(40-51)

    6   Nematology

  • 8/18/2019 Nematology 00 (2016) 1-18

    7/18

  • 8/18/2019 Nematology 00 (2016) 1-18

    8/18

     M.T. Vinciguerra et al.

    species list of  Dorylaimus has been updated several timesbut no comparative compendium of its species has beenpublished since the key provided by Andrássy (1988).

    Therefore, we provide an updated list, a compendium of all the described species of  Dorylaimus  with their mainmorphometric characters and related bibliography (Ta-ble 2) and a key to their identification.

    List of  Dorylaimus species

    TYPE SPECIES

     Dorylaimus stagnalis Dujardin, 1845

    OTHER SPECIES

     D. afghanicus Andrássy, 1960 D. alaeus Thorne, 1939 D. asymphydorus Andrássy, 1969 D. baylyi Nicholas & Hodda, 2000 D. bengalensis Sen, Chatterjee & Manna, 2011 D. carinatus Thorne & Swanger, 1936 D. conicus Andrássy, 1981 D. crassus de Man, 1884 D. deaconi Botha & Heyns, 1991 D. elegans sp. n. D. fodori Andrássy, 1988

     D. geraerti Baqri & Jana, 1986 D. gigas Kleynhans, 1970 D. helveticus Steiner, 1919 D. lineatus Altherr in Altherr & Delamare-Deboutteville,

    1972 D. macroproctus Altherr, 1963 D. macrosoma Jiménez-Guirado, 1988 D. montanus Stefański, 1923 D. murlii Bohra & Sultana, 2008 D. neominimus Gantait, Bhattacharya & Chatterjee, 2009 D. numidicus Andrássy, 1988 D. pachys Andrássy, 1970 D. parvus Gagarin & Vu Than, 2003 D. popus Gagarin, 1981 D. siddiqii Ahmad & Jairajpuri, 1982 D. specialis Andrássy, 2003 D. stekhoveni Baqri & Coomans, 1973 D. stenus Andrássy, 1970 D. stephani Andrássy, 1969 D. tepidus Andrássy, 1959 D. thornei Andrássy, 1969 D. unicus Andrássy, 1970

    Key to Dorylaimus species(updated from Andrássy, 1988)

    1 Number of longitudinal ridges >5 0 . . . . . . . . . . . . . . 2– Number of longitudinal ridges 60 µm . . . . . . . . . . . . . . . . . . . . . . . . . . pachys

    – Cuticle not so thick, odontostyle 6.4 mm long . . . . . . . . . . . . . . . . . . . .  specialis– Body 4 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5 Tail relatively short (c = 4); ventromedian supple-ments 50-54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . alaeus

    – Tail longer, c

    =

     5 or more; ventromedian supple-m e n t s 2 8 - 3 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    6 Prerectum 5.7-6 anal body diam. long; female tailgradually tapering . . . . . . . . . . . . . . . . . . . . . . . . . stenus

    – Prerectum   4 . . . . . . . . . 9

    8 Body length 3.6-5.2 mm; supplements 26-36. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  conicus

    – Body length 5.45-9.10 mm; supplements 72-86 . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . macrosoma

    9 Body very slender (mean a = 55 or more) . . . . . . . 10– Body not so slender (mean a = up to 52) . . . . . . . . 12

    10 Body length   ca  4 mm, ventromedian supplements2 2 - 2 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . baylyi

    – Body length 5 mm, ventromedian supplements 33-3 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1

    11 Body length ca 5 mm . . . . . . . . . . . . . . . . . . . . . tepidus– Body length 6.5-7.5 mm . . . . . . . . . . . . . . . . . . . . gigas

    12 Odontostyle

  • 8/18/2019 Nematology 00 (2016) 1-18

    9/18

    Two new species of dorylaim from Iran

          T    a      b      l    e      2  .    M   a    i   n   m   o   r   p    h   o   m   e    t   r    i   c   c    h   a   r   a   c    t   e   r   s   o    f    D   o   r   y     l   a    i   m   u   s   s   p   e   c    i   e   s    (      ∗   m   e   a   s   u

       r   e   m   e   n    t   s   o    b    t   a    i   n   e    d    f   r   o   m   o   r    i   g    i   n   a    l    d   r   a   w    i   n   g   s    ) .

        S   p   e   c    i   e   s

        S   e   x

        R    i    d   g   e   s

        L    (   m   m    )

       a

       c

       c      

        V

        O    d   o   n    t   o   s    t   y    l   e

        (    µ   m    )

        P   r   e    /   p   o   s    t   v   u    l   v   a    l

       p   a

       p    i    l    l   a   e

        S   p    i   c   u    l   e   s

        (    µ   m    )

        S   u   p   p    l .

        R   e    f   e   r   e   n   c   e

        D .   a    f   g     h   a   n    i   c   u   s

        F   e   m   a    l   e

        3    2  -    3    4

        3 .    4  -    4 .    0

        3    8  -    4    2

        1    2  -    1    5

        5  -    6

        3    7  -    3    9

        4    6  -    5    0

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    6    0    )

        M   a    l   e

      –

        3 .    6

        4    4

        5    5

        0 .    9

          ∗

      –

        4    6  -    5    0

      –

        1    0    0

        5    2

        D .   a     l   a   e   u   s

        F   e   m   a    l   e

        5    6  -    6    0

        4 .    4

        3    3

        3    1

        4

        4    8

        5    0      ∗

        0    /    0

      –

      –

        T    h   o   r   n   e    (    1    9    3    9    )

        M   a    l   e

      –

        4 .    2

        3    6

        7    1

        0 .    9

          ∗

      –

      –

      –

        1    0    0      ∗

        5    0  -    5    4

        D .   a   s   y   m   p     h   y     d   o   r   u   s

        F   e   m   a    l   e

        3    2  -    3    4

        4 .    7  -    5 .    7

        4    1  -    4    5

        1    5  -    1    8

        5  -    6

        3    4  -    4    0

        5    0  -    5    3

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    6    9    )

        M   a    l   e

        5 .    1

        4    4

        5    5

      –

        5    0  -    5    3

      –

        8    0

        2    8

        D .

         b   a   y     l   y    i

        F   e   m   a    l   e

        2    8  -    3    2

        3 .    4

        2  -    4 .    3

        5

        4    8  -    6    1

        1    5  -    2    0

        6  -    7

        4    2  -    5    3

        4    3  -    4    6

        0    /    0

      –

      –

        N    i   c    h   o    l   a   s    &    H   o    d    d   a

        (    2    0    0    0    )

        M   a    l   e

      –

        3 .    7

        5  -    3 .    8

        7

        4    6  -    6    6

        7    7  -    9    9

        0 .    8  -    1 .    3

      –

        4    3  -    4    6

      –

        5    3  -    6    1

        3    5  -    4    2

        D .

         b   e   n   g   a     l   e   n   s    i   s

        F   e   m   a    l   e

        ?

        2 .    6  -    3 .    5

        2    9  -    3    4

        1    3  -    1    5

        4 .    2  -    4 .    7

        4    0  -    4    3

        4    4  -    4    6

        0    /    0

      –

      –

        S   e   n   e    t   a     l .    (    2    0    1    1    )

        M   a    l   e

      –

        2 .    4  -    3 .    0

        3    0  -    3    1

        7    1  -    8    2

        0 .    7  -    0 .    8

      –

        4    1  -    4    7

      –

        7    3

        3    2  -    3    6

        D .   c   a   r    i   n   a    t   u   s

        F   e   m   a    l   e

        3    4  -    5    0

        2 .    3

        3    9

        8 .    3

        8 .    6

        4    5

        4    0      ∗

        0    /    0

      –

      –

        T    h   o   r   n   e    &    S   w   a   n   g   e   r

        (    1    9    3    6    )

        M   a    l   e

      –

        2 .    2

        2    8

        5    0

        1 .    0

      –

        4    0      ∗

      –

        ?

        5    5

        D .   c   o   n    i   c   u   s

        F   e   m   a    l   e

        3    3  -    3    4

        4 .    5  -    5 .    2

        4    4  -    5    0

        3    7  -    4    4

        2 .    3  -    3

        4    7  -    5    1

        5    3  -    5    5

        1    /    1

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    8    1    )

        M   a    l   e

      –

        3 .    6  -    4 .    6

        4    4  -    4    8

        8    5  -    9    4

        0 .    7

          ∗

      –

        5    3  -    5    5

      –

        9    2  -    9    8

        2    6  -    3    6

        D .   c   r   a   s   s   u   s

        F   e   m   a    l   e

        3    5  -    4    0

        4 .    2  -    4 .    8

        2    4  -    2    7

        1    4

        5  -    6

        4    4  -    4    5

        4    8

        0    /    0

      –

      –

        d   e    M   a   n

        (    1    8    8    4    )

        M   a    l   e

      –

        3 .    6  -    4 .    2

        2    5  -    2    6

        6    2  -    7    0

      –

      –

        4    8

      –

        1    4    0

        4    4

        D .

         d   e   a   c   o   n    i

        F   e   m   a    l   e

        3    3

        2 .    8

        0  -    3 .    9

        2

        3    9  -    4    7

        1    1  -    1    9

        5 .    3  -    7 .    6

        3    5  -    4    2

        3    9  -    4    8

        0    /    0

      –

      –

        B   o    t    h   a    &

        H   e   y   n   s

        (    1    9    9    1    )

        M   a    l   e

      –

        2 .    6

        7  -    3 .    7

        8

        3    1  -    4    7

        8    7  -    1    4    0

        0 .    6  -    1 .    5

      –

        4    0  -    4    8

      –

        7    1  -    8    6

        3    5  -    4    2

        D .   e     l   e   g   a   n   s   s   p .   n .

        F   e   m   a    l   e

        5    0  -    5    5

        4 .    7

        6  -    5 .    9

        2

        3    9  -    5    6

        1    3  -    1    7

        5  -    8

        4    6  -    5    0

        4    4  -    5    0

        0  -

        5    /    0  -    5

      –

      –

        T    h    i   s   p   a   p   e   r

        M   a    l   e

      –

        4 .    4

        1  -    5 .    0

        9

        4    4  -    6    9

        9    6  -    1    6    6

        0 .    5  -    0 .    7

      –

        4    2  -    5    1

      –

        9    2  -    1    0    7

        2    6  -    3    0

        D .

        f   o     d   o   r    i

        F   e   m   a    l   e

        3    2  -    3    4

        3 .    6  -    4 .    2

        3    7  -    4    1

        1    5  -    1    6

        5 .    0  -    5 .    3

        3    8  -    4    1

        4    0  -    4    2

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    8    8    )

        M   a    l   e

      –

        3 .    3

        4

        3    9

        7    6

        0 .    9

          ∗

      –

        4    0  -    4    2

      –

        8    8

        4    6

        D .   g   e   r   a   e   r    t    i

        F   e   m   a    l   e

        3    2  -    3    4

        2 .    8  -    3 .    5

        3    2  -    3    9

        1    2  -    1    3

        6  -    1    1

        4    0  -    4    3

        4    3  -    4    7

        0    /    0

      –

      –

        B   a   q   r    i    &

        J   a   n   a

        (    1    9    8    6    )

        M   a    l   e

      –

        2 .    5  -    2 .    9

        3    2  -    3    3

        6    8  -    8    3

      –

      –

      –

      –

        8    1  -    8    4

        3    5  -    3    8

        D .   g    i   g   a   s

        F   e   m   a    l   e

        3    6

        6 .    5  -    7 .    5

        5    8  -    6    2

        1    3  -    1    6

        1    0

        3    6  -    4    0

        5    0  -    5    2

        0    /    0

      –

      –

        K    l   e   y   n    h   a

       n   s    (    1    9    7    0    )

        M   a    l   e

      –

        5 .    2

        5    2

        1    2    2

        0 .    8

          ∗

      –

        5    0  -    5    2

      –

        1    2    8

        3    3

        D .

         h   e     l   v   e    t    i   c   u   s

        F   e   m   a    l   e

        3    2  -    3    5

        4 .    2

        2    8

        2    4

        3 .    7  -    6 .    7

          ∗

        4    6

        4    8

        0    /    0

      –

      –

        S    t   e    i   n   e   r    (    1    9    1    9    )

        M   a    l   e

      –

        3 .    6

        2    8

        6    7

      –

      –

        4    8

      –

        1    0    0

        3    6  -    5    5

        D .

         l    i   n   e   a    t   u   s

        F   e   m   a    l   e

        4    0  -    5    0

        2 .    4  -    4 .    3

        2    8  -    4    3

        1    1  -    1    5

        5  -    6

        4    5  -    5    1

        4    0  -    4    2

        2    /    3

      –

      –

        A    l    t    h   e   r   r    &

        D   e    l   a   m   a   r   e  -

        D   e    b   o   u    t    t

       e   v    i    l    l   e

        (    1    9    7    2    )

        M   a    l   e

        4    0  -    6    0

        2 .    6  -    4 .    0

        2    6  -    4    2

        5    6  -    8    6

        0 .    9

          ∗

      –

        4    0  -    4    2

      –

        8    5

        3    5  -    4    0

        D .   m   a   c   r   o   p   r   o   c    t   u   s

        F   e   m   a    l   e

        3    2    ?

        4 .    4  -    5 .    1

        4    8

        1    4  -    1    7

        5  -    7

        3    9  -    4    1

        5    7  -    6    0

        0    /    1

      –

      –

        A    l    t    h   e   r   r    (    1    9    6    3    )

    Vol. 00(0), 2016 9

  • 8/18/2019 Nematology 00 (2016) 1-18

    10/18

     M.T. Vinciguerra et al.

          T    a      b      l    e      2  .    (    C   o   n    t    i   n   u   e    d .    )

        S   p   e   c    i   e   s

        S   e   x

        R

        i    d   g   e   s

        L    (   m   m    )

       a

       c

       c      

        V

        O    d   o   n    t   o   s    t   y    l   e

        (    µ   m    )

        P   r   e    /   p   o

       s    t   v   u    l   v   a    l

       p   a   p    i    l    l   a   e

        S   p    i   c   u    l   e   s

        (    µ   m    )

        S   u   p   p    l .

        R   e    f   e   r   e   n   c   e

        D .   m   a   c   r   o   s   o   m   a

        F   e   m   a    l   e    2

        3  -    3    2

        6 .    6

        3  -    9 .    1

        0

        2    9  -    3    2

        2    9  -    2    9

        2 .    0  -    3 .    9

        3    9  -    4    3

        7    1  -    8    9

        1    /    1

      –

      –

        J    i   m    é   n   e   z

        G   u    i   r   a    d   o

        (    1    9    8    8    )

        M   a    l   e

      –

        5 .    4

        5  -    8 .    1

        1

        2    8  -    3    3

        8    2  -    1    3    5

        0 .    6  -    0 .    9

      –

        8    0

      –

        1    4    8  -    1    7    0

        7    2  -    8    6

        D .   m   o   n    t   a   n   u   s

        F   e   m   a    l   e

        4    4

        3 .    4  -    3 .    7

        4    6  -    5    0

        1    2  -    1    3

        6  -    7

        4    1  -    4    2

        5    0      ∗

        0    /    0

      –

      –

        S    t   e    f   a   n   s    k

        i    (    1    9    2    3    )

        M   a    l   e

      –

        3 .    3  -    3 .    4

        4    3  -    4    7

        9    0  -    9    4

        0 .    8

          ∗

      –

      –

        ?

        3    9  -    4    1

        D .   m   u   r     l    i    i

        F   e   m   a    l   e    3

        2  -    3    4

        2 .    3

        0  -    2 .    3

        7

        3    3  -    4    5

        1    5  -    1    6

        4 .    1  -    6 .    4

        4    4  -    4    6

        2    9  -    3    0

        0    /    0

      –

      –

        B   o    h   r   a    &

        S   u    l    t   a   n   a

        (    2    0    0    8    )

        M   a    l   e

      –

        2 .    4

        0  -    2 .    8

        1

        3    5

        1    0    9  -    1    2    2

        0 .    4

      –

        3    2

      –

        5    4  -    5    8

        2    4  -    2    8

        D .   n   e   o   m    i   n    i   m   u   s

        F   e   m   a    l   e    5

        4  -    5    6

        1 .    7

        5  -    2 .    1

        6

        3    7  -    4    3

        1    2  -    1    4

        6 .    9  -    7 .    3

        4    4

        2    8  -    3    0

        0    /    0

      –

      –

        G   a   n    t   a    i    t   e    t   a     l .

        (    2    0    0    9    )

        M   a    l   e

      –

        1 .    4

        7  -    1 .    5

        3

        3    3  -    3    4

        4    7

        1 .    3

      –

        2    5  -    2    7

      –

        4    0  -    4    2

        2    1  -    2    2

        D .   n   u   m    i     d    i   c   u   s

        F   e   m   a    l   e    3

        2  -    3    4

        3 .    1

        2  -    3 .    2

        5

        4    0  -    4    7

        1    3  -    1    5

        6  -    7

        3    6  -    3    9

        4    3  -    4    5

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    8    8    )

        M   a    l   e

      –

        2 .    6

        3  -    2 .    8

        0

        4    0  -    4    2

        9    1  -    9    6

        0 .    7

          ∗

      –

        4    3  -    4    5

      –

        8    2  -    9    0

        2    2  -    2    7

        D .   p   a   c     h   y   s

        F   e   m   a    l   e    5

        2  -    5    6

        3 .    9  -    4 .    9

        2    6  -    3    0

        1    1  -    1    4

        5  -    6

        3    9  -    4    4

        6    0  -    6    3

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    7    0    )

        M   a    l   e

      –

        4 .    4

        3    2

        8    0

        0 .    7

      –

        6    0  -    6    3

      –

        1    2    0

        3    3

        D .   p   a   r   v   u   s

        F   e   m   a    l   e    3

        0  -    3    5

        2 .    5

        4  -    2 .    8

        3

        2    6  -    2    8

        1    5  -    1    7

        3 .    6  -    4 .    8

        3    9  -    4    3

        4    5  -    5    0

        0    /    0

      –

      –

        G   a   g   a   r    i   n

        &    V   u

        T    h   a   n    (    2    0    0    3    )

        M   a    l   e

      –

        2 .    1

        3  -    2 .    3

        9

        2    3  -    2    7

        5    3  -    5    6

        0 .    8  -    1 .    0

      –

        4    5  -    4    8

      –

        7    6  -    7    7

        4    7  -    4    9

        D .   p   o   p   u   s

        F   e   m   a    l   e    3

        1  -    3    3

        3 .    3  -    4 .    1

        3    0  -    3    6

        1    4  -    1    7

        4 .    5  -    6

        4    4  -    4    9

        4    0  -    4    3

        0    /    0

      –

      –

        G   a   g   a   r    i   n

        (    1    9    8    1    )

        M   a    l   e

      –

        3 .    5  -    4 .    0

        3    6  -    4    3

        7    2  -    8    4

        0 .    8

          ∗

      –

        4    0  -    4    3

      –

        7    8  -    8    2

        2    6  -    2    7

        D .   s    i     d     d    i   q    i    i

        F   e   m   a    l   e

        3    4

        2 .    2

        3    5  -    3    8

        1    4

        5  -    6

        4    9

        3    7

        0    /    0

      –

      –

        A    h   m   a    d    &

        J   a    i   r   a    j   p   u   r    i    (    1    9    8    2    )

        M   a    l   e

      –

        1 .    6  -    1 .    9

        2    8  -    3    5

        5    3  -    6    4

        0 .    8

          ∗

      –

        3    5  -    3    6

      –

        5    0

        3    1  -    3    4

        D .   s   p   e   c    i   a     l    i   s

        F   e   m   a    l   e    5

        0  -    6    0

        6 .    4

        0  -    6 .    8

        9

        4    5  -    4    6

        1    5

        6 .    4  -    6 .    7

        4    1  -    4    4

        5    4  -    5    8

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    2    0    0    3    )

        M   a    l   e

      –

        5 .    5

        8

        4    2

        9    0

        0 .    8

      –

        5    2

      –

        1    1    5

        4    4

        D .   s    t   a   g   n   a     l    i   s

        F   e   m   a    l   e    3

        2  -    3    5

        4 .    3  -    5 .    2

        3    0  -    3    8

        1    4  -    2    0

        5  -    6

        4    2  -    4    7

        4    7  -    5    1

        0    /    0

      –

      –

        T    h   o   r   n   e    &    S   w   a   n   g   e   r

        (    1    9    3    6    )   ;    M   u    l   v   e   y    &

        A   n    d   e   r   s   o

       n    (    1    9    7    9    )

        M   a    l   e

      –

        3 .    9  -    5 .    0

        3    0  -    3    5

        7    0  -    1    1    0

        0 .    8

          ∗

      –

        4    7  -    5    1

      –

        1    0    0

        3    0  -    4    0

        D .   s    t   e     k     h   o   v   e   n    i

        F   e   m   a    l   e

        4    1

        4 .    0  -    6 .    4

        4    7  -    5    7

        1    2  -    2    1

        5  -    6

        3    6  -    4    0

        5    3  -    5    7

        0    /    0

      –

      –

        B   a   q   r    i    &

        C   o   o   m   a   n   s

        (    1    9    7    3    )

        M   a    l   e

      –

        4 .    5  -    5 .    4

        4    9  -    6    1

        1    0    2  -    1    4    9

        0 .    7

          ∗

      –

        5    3  -    5    8

      –

        1    1    6  -    1    2    7

        5    5  -    6    2

        D .   s    t   e   n   u   s

        F   e   m   a    l   e    5

        6  -    5    8

        4 .    1  -    5 .    1

        4    0  -    4    6

        1    6  -    1    8

        6  -    7

        4    2  -    4    5

        4    8  -    5    0

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    7    0    )

        D .   s    t   e   p     h   a   n    i

        F   e   m   a    l   e

        4    0

        3 .    4  -    3 .    7

        4    6  -    5    0

        1    2  -    1    3

        6  -    7

        4    1  -    4    2

        4    6  -    5    0

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    6    9    )

        M   a    l   e

        3    6

        3 .    3  -    3 .    4

        4    3  -    4    7

        9    0  -    9    4

        0 .    7

          ∗

      –

        4    6  -    5    0

      –

        9    0

        3    9  -    4    1

        D .

        t   e   p    i     d   u   s

        F   e   m   a    l   e

        3    2

        5 .    0  -    5 .    6

        6    6  -    7    6

        1    7  -    2    0

        5  -    6

        3    6  -    4    3

        5    0  -    5    3

      –

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    5    9    )

        M   a    l   e

      –

        4 .    3  -    4 .    5

        5    5  -    6    0

        9    7  -    1    0    8

        0 .    8

          ∗

      –

        5    0  -    5    3

      –

        1    0    0

        3    5  -    3    9

        D .

        t     h   o   r   n   e    i

        F   e   m   a    l   e

        3    2

        2 .    7  -    2 .    8

        2    7  -    2    8

        1    2  -    1    3

        5 .    0  -    5 .    5

        4    4  -    4    5

        4    0

        1    /    1

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    6    9    )

        D .   u   n    i   c   u   s

        F   e   m   a    l   e    2

        8  -    2    9

        3 .    5  -    4 .    2

        3    3  -    4    0

        1    4  -    1    5

        6  -    7

        3    7  -    3    8

        5    5  -    5    7

        0    /    0

      –

      –

        A   n    d   r    á   s   s

       y    (    1    9    7    0    )

        M   a    l   e

      –

        3 .    9

        3    3

        8    5

        0 .    8

          ∗

      –

        5    5  -    5    7

      –

        1    2    0

        4    6

    10   Nematology

  • 8/18/2019 Nematology 00 (2016) 1-18

    11/18

    Two new species of dorylaim from Iran

    17 Spicule 80-90 µm long; supplements 55 . . carinatus– Spicule 54-58 µm long; supplements 24-28 . . murlii

    18 Ventromedian supplements 46 . . . . . . . . . . . . . . fodori

    – Ventromedian supplements

  • 8/18/2019 Nematology 00 (2016) 1-18

    12/18

     M.T. Vinciguerra et al.

    Fig. 3.  Prodorylaimus reyesi sp. n. A: Anterior end; B: Female posterior genital branch; C: Neck; D: Male body; E: Female tail; F:Female body; G: Male posterior end. (Scale bars: A = 20 µm; B, C, E, G = 100 µm; D, F = 400 µm.)

    12   Nematology

  • 8/18/2019 Nematology 00 (2016) 1-18

    13/18

    Two new species of dorylaim from Iran

    Fig. 4.  Prodorylaimus reyesi  sp. n. A, C: Anterior end; B: Neck; D: Cardia region; E: Vulval region; F: Female posterior genitalbranch; G: Male posterior end; H: Female posterior end. (Scale bars: A, D, E  = 20  µm; B, F-H  = 50  µm; C  = 5  µm.) This figureis published in colour in the online edition of this journal, which can be accessed  via  http://booksandjournals.brillonline.com/content/  journals/15685411.

    Vol. 00(0), 2016 13

  • 8/18/2019 Nematology 00 (2016) 1-18

    14/18

     M.T. Vinciguerra et al.

    Table 3. Morphometrics of  Prodorylaimus reyesi sp. n. All measurements are in µm, except for L in mm, and in the form: mean ± s.d.(range).

    Character Female Male

    Holotype Paratypes Paratypes

    n – 8 3L (mm) 3.33 3.07 ± 0.25 3.18 ± 0.10

    (2.78-3.33) (3.13-3.23)a 37.4 36.9 ± 1.3 32.5 ± 2.1

    (34.8-38.9) (32-35)b 5.5 5.3 ± 0.1 5.3 ± 0.3

    (5.1-5.5) (5.1-5.6)c 5.4 5.7 ± 0.6 8.5 ± 0.3

    (4.6-6.8) (8.3-8.7)c 14.6 13.2 ± 1.6 7.3 ± 0.5

    (11.7-15.5) (7.0-7.7)

    V/T 55.0 46.4±

    5.4 49.1±

    1.4(42.3-58.4) (47.7-50.4)Mid-body diam. 89 83 ± 7.2 90 ± 7.7

    (76-92) (79-98)Anal/cloacal body diam. 42 41 ± 1.2 46 ± 4.0

    (38-42) (40-49)Lip region diam. 21 20 ± 0.8 20 ± 0.9

    (19-21) (19-21)Lip region height 7.5 7.6 ± 0.7 8.2 ± 0.2

    (7.0-8.5) (8.0-8.5)Odontostyle length 29 28 ± 1.3 30 ± 1.0

    (26-30) (29-31)Odontostyle width 5.0 4.2 ± 0.4 4.5 ± 0.9

    (4.0-5.0) (4.0-5.5)

    Odontophore length 44 40 ± 2.5 43 ± 4.9(36-42) (40-49)

    Fixed ring from anterior end 22 19 ± 0.7 18 ± 0.9(18-20) (17-19)

    Neck length 604 571 ± 41 572 ± 41(499-622) (530-612)

    Glandularium length 289 283 ± 22.3 260 ± 24(252-318) (236-284)

    Glandularium (% of neck) 47.8 49.3 ± 1.9 45.4 ± 0.9(46.3-52.5) (44.4-46.4)

    Nerve ring from anterior end 231 178 ± 26.8 215 ± 15(140-220) (198-227)

    Excretory pore from anterior end 144 88 ± 23.9 127 ± 15(60-130) (117-138)

    Pre-rectum length 93 88 ± 10.7 208 ± 13(70-107) (199-217)

    Rectum length 67 65 ± 4.5 72 ± 11(58-71) (64-85)

    Tail length 615 546 ± 68 373 ± 3.0(450-634) (370-376)

    Spicule length – – 75 ± 1.6(73-77)

    14   Nematology

  • 8/18/2019 Nematology 00 (2016) 1-18

    15/18

    Two new species of dorylaim from Iran

    one 99-169 µm long and posterior one 113-159 µm long,oocytes arranged in a single row except near ovary tipwhere forming two or more rows, oviduct 109-190  µm

    long, ending with a  pars dilatata, in some specimens ap-pearing as a true spermatheca full of sperm, followed by asphincter at its junction with uterus. Uterus 241-328  µmlong, bipartite, with a narrow distal part and a wider proxi-mal part which in some specimens contains sperm massed

     just after its enlargement. True spermatheca not differ-entiated. No uterine eggs observed. Vagina extending in-wards for 33-43 µm, or less than half corresponding bodydiam., with   pars proximalis  anchor-shaped, 21-30   µmlong,  pars refringens  with weakly sclerotised pieces ap-pearing as a continuous ring, 8-11 µm long and  pars dis-talis 2-5  µm long. Vulva longitudinal. Advulval papillaepresent in some specimens, 0-2 anterior and 0-3 posteriorto vulva. Prerectum 2-2.5 anal body diam. long. Tail 12-15 anal body diam. long, caudal pores generally hardlyvisible, two subdorsal pairs in one specimen.

     Male

    Reproductive apparatus diorchic, testes opposed. Sperm5-8  µm long. Spicules stout, regularly narrowing at bothends, with ventral hump poorly developed, 1.5-1.8 analbody diam. long. In addition to adcloacal pair, a seriesof 19-21 contiguous ventromedian supplements present,sometimes not clearly distinguishable, starting well ante-rior to range of spicules. Prerectum 4-5 anal body diam.

    long, twice as long as in female, its junction with intestineanterior to supplement series or at level with two anteri-ormost supplements. Tail 7-8 anal body diam. long, muchshorter than in female, caudal pores well developed, onepair subventral and one or two pairs subdorsal.

    TYPE HABITAT AND LOCALITY

    The new species was extracted from the rhizosphere of hornbeam in Jangal-e Abr (Cloud Forest), Shahrood, Iran(GPS coordinates: 36°45.342N, 55°02.004E, altitude2120 m a.s.l.).

    TYPE MATERIAL

    Holotype female, one female paratype and two maleparatypes deposited in the collection of the Sectionof Animal Biology of the Department of Biological,Geological and Environmental Sciences, University of Catania, Catania, Italy; one female paratype and onemale paratype deposited in USDA Nematode Collection,Beltsville, MD, USA. Six female paratypes and two male

    paratypes housed in the Department of Plant Protection,Faculty of Agriculture, University of Zanjan, Zanjan, Iran.

    DIAGNOSIS AND RELATIONSHIPS

    Prodorylaimus reyesi   sp. n. is characterised by 3.1(2.8-3.3) mm body length, lip region well set off fromadjoining body by a depression, lips amalgamated withprominent labial and cephalic papillae, odontostyle 29(26-31) µm long, thicker than cuticle at its level, pharynxmuscular enlarging very gradually, female reproductiveapparatus didelphic, vulva longitudinal, a variable numberof advulval papillae (0-3), both pre- and post-vulval,present in most specimens, tail in both sexes convex-conoid in its anterior part, then narrowing abruptly to afiliform hyaline appendix, longer in female (c =   13.2

    (11.7-15.5)) than in male (c = 7.3 (7.0-7.7)), and 19-21contiguous ventromedian supplements.

    If compared to all the other species of   Prodorylaimus,this species resembles   P. longicaudatoides Altherr, 1968,particularly in the tail length, which is greater in thefemale than the male. However, if compared to thetype specimens as re-described by Loof (1985) and tothe populations from Andalusia thoroughly describedby Abolafia   et al. (1998), it differs in some importantcharacters: larger body (L = 3.1 (2.8-3.3)  vs  2.2-2.8 mmin the Spanish populations and 2.4-2.5 mm in the typespecimens); shorter odontostyle (29 (26-31)  vs 32-34 µm

    in the type specimens and 32-38 µm in the Spanish ones),particularly when related to the animal size and lip breadth(1.4 lip diam. in the new species   vs  1.6 in the Spanishpopulations); the prerectum length of the new speciesis different in the two sexes, being longer in the male,where it joins the intestine just anterior to the supplementsseries or at the level of the two anterior supplements,whereas in  P. longicaudatoides  it is of the same size inboth sexes and in the male joins the intestine halfwayalong the supplement series.  P. longicaudatoides  is notthe only species with a different tail length between thesexes, since this is also true for   P. irminii   Vinciguerra& Orselli, 2011 and  P. paralongicaudatus  (Micoletzky,1925) Andrássy, 1959. From the former species,  P. reyesisp. n. differs in its larger body (L = 3.1 (2.8-3.3) vs  2.23(2.02-2.50 mm)), longer tail (c =   13.2 (11.7-15.5) infemale and 7.3 (7.0-7.7) in male vs 3.5 (3.1-4.2) in femaleand 2.2 (1.9-2.6) in male), longer odontostyle (29 (26-31)  vs  22.4 (19.5-25)  µm); and from the latter it mainlydiffers by having a rather larger body (L = 3.1 (2.8-3.3) vs1.83-2.57 mm) while the odontostyle is definitely shorter(29 (26-31) vs 29-39 µm) and by having lips distinct and

    Vol. 00(0), 2016 15

  • 8/18/2019 Nematology 00 (2016) 1-18

    16/18

     M.T. Vinciguerra et al.

    Fig. 5. Phylogenetic tree obtained by the Maximum Likelihoodmethod. Bootstrap values more than 50% are indicated at branchnodes. Newly obtained sequences are in bold.

    well set off from neck   vs  lips partly amalgamated andonly slightly set off from neck. From all the other speciesof the genus, the new species differs greatly in the mainmorphometric characters.

    PHYLOGENETIC ANALYSIS

    Since sequence data for most species belonging to Dorylaimus and Prodorylaimus are lacking, as well as forother genera that appear to be close to them, molecularanalyses devoted to find the best phylogenetic placementfor both new taxa species may be expected to giveunsatisfactory or even misleading results. Basically, eitherSSU or LSU data (or both) are available. We discardedSSU data, since it has been shown that this locus was notable to give reliable support to phylogenetic studies of those groups (Holterman  et al., 2008). Our analysis wasthus limited to the LSU (i.e., 28S rDNA) locus for which,however, comparatively few sequences are available.

    The optimal tree obtained using the Maximum Like-lihood method (Tamura & Nei, 1993) is shown in Fig-ure 5. This analysis involved a total of 12 nucleotide se-quences (those of the new species, of the nine closesttaxa and of the outgroup). As can be seen,  D. eleganssp. n. was placed close to   D. stagnalis (interspecific se-quence variation 0.029) and their genetic differentiationis well supported by a bootstrap value of 100; while   P.reyesi  sp. n. was placed rather close to   L. vulvapapilla-

    tum (interspecific sequence variation 0.075) and  Prodor- ylaimus   HHBM-2007a (interspecific sequence variation0.078), even though bootstrap values are lower than 70%

    and therefore not so appropriate. Similar results were ob-tained with the Minimum Evolution method (Rzhetsky &Nei, 1992), which follows an approach not based on anexplicit model of evolution (data not shown). The reasonwhy the bootstrap replicas gave overall unsatisfactory re-sults in our analysis may reside in the fact that our se-quences were somewhat shorter (700-800 bp) than the ref-erence ones (ca 1100 bp).

    Recently, Peña-Santiago & Alvarez-Ortega (2014),based on molecular, morphological and embryologicaldata, transferred   Labronema, together with other round-tailed genera previously attributed to the Qudsianemati-

    dae, to the Dorylaimidae, the latter formerly consistingof only long-tailed dorylaims. Their action is supportedby the present analysis, although itself based on insuf-ficient data, confirming the genetic relatedness between

     Labronema   on one side and   Dorylaimus   and   Prodory-laimus on the other.

    References

    Abolafia, J., Peña-Santiago, R. & Jiménez Guirado, D. (1998).Nematodes of the order Dorylaimida from Andalucia Orien-tal, Spain. The genus  Prodorylaimus Andrássy, 1959. II. Bi-sexual species. Russian Journal of Nematology 6, 147-159.

    Ahmad, W. & Jairajpuri, M.S. (1982). Some new and knownspecies of Dorylaimoidea. Nematologica 28, 39-61.

    Altherr, E. (1963). Contribution à la connaissance de la faunedes sables submergés en Lorraine. Annales de Spéléologie 18,53-98.

    Altherr, E. (1968). Nématodes de la nappe phréatique du réseaufluvial de la Saale (Thuringe) et psammique du Lac Stechlin(Brandenbourg du nord). Limnologica 6, 247-320.

    Altherr, E. & Delamare-Deboutteville, C. (1972). Nématodes in-terstitiels des eaux douces des États-Unis d’Amérique (Étatsde Washington, du Colorado et du Massachusetts) récoltés parCl. Delamare Deboutteville.  Annales de Spéléologie 27, 683-

    760.Altherr, E. & Loof, P.A.A. (1969). Paraxonchium Krall, 1958, a

    valid generic name. Nematologica 15, 431-432.Andrássy, I. (1956). Eine interessante Nematodenfauna der

    Gerste. Nematologische Notizen 4. Acta Zoologia AcademiaeScientiarum Hungaricae 2, 307-317.

    Andrássy, I. (1959). Taxonomische Übersicht der Dorylaimen(Nematoda), I. Acta Zoologica Hungarica 5, 191-240.

    Andrássy, I. (1960). Einige Nematoden aus Afghanistan.  Opus-cula Zoologica Budapest  4, 3-14.

    16   Nematology

  • 8/18/2019 Nematology 00 (2016) 1-18

    17/18

    Two new species of dorylaim from Iran

    Andrássy, I. (1969). Taxonomische Übersicht der familienProdorylaimidae n. fam. und Dorylaimidae de Man, 1876.Opuscula Zoologica Budapest  9, 187-233.

    Andrássy, I. (1970). Nematoden aus einigen Fluss-SystemenSüdafrikas. Opuscula Zoologica Budapest  10, 179-219.Andrássy, I. (1981). Nematological notices.  Opuscula Zoologica

     Budapest  17/18, 185-189.Andrássy, I. (1988). The superfamily Dorylaimoidea (Nema-

    toda) – a review. Family Dorylaimidae.  Opuscula Zoologica Budapest  23, 3-63.

    Andrássy, I. (1998). Once more: the oesophageal gland nucleiin the dorylaimoid nematodes.  Opuscula Zoologica Budapest 31, 165-170.

    Andrássy, I. (2003). New and rare nematodes from Alaska. III.Five species of the order Dorylaimida.  Journal of Nematode Morphology and Systematics 5, 163-181.

    Andrássy, I. (2009).  Free-living nematodes of Hungary (Nema-toda errantia), III .   Pedozoologica Hungarica No. 5  (Serieseditors: Csuzdi, C. & Mahunka, S.). Budapest, Hungary, Hun-garian Natural History Museum and Systematic Zoology Re-search Group of the Hungarian Academy of Sciences.

    Baqri, Q.H. & Coomans, A. (1973). A taxonomic revision of the nematode species described by S. Stekhoven & Teunissen(1938) and S. Stekhoven (1944) from National VirungaPark (Zaïre Republic). I. Dorylaimidae, Aporcelaimidae andLongidoridae.   Exploration du Parc National de Virunga, Missions G.F. De Witte (1933-1935) et H. Damas (1935-

    1936) 1, 3-57.Baqri, Q.H. & Jana, A. (1986). Nematodes from West Ben-

    gal (India), IX. Three new species of the superfamily Dory-

    laimoidea (de Man, 1876) Thorne, 1934.  Indian Journal of  Helminthology 3, 11-20.Bohra, P. & Sultana, R. (2008). Four new species of nematodes

    (Nematoda: Dorylaimida and Isolaimida) from Rajasthan,India. Records of the Zoological Survey of India  108, 67-79.

    Botha, A. & Heyns, J. (1991). Dorylaimoidea (Nematoda) fromrivers in the Kruger National Park.  Koedoe 34, 1-24.

    Carbonell, E. & Coomans, A. (1986). Observations onOpisthodorylaimus, with descriptions of three new species(Nematoda: Dorylaimoidea). Nematologica 31, 379-409.

    De Grisse, A.T. (1969). Redescription ou modifications dequelques techniques utilisées dans l’étude des nématodesphytoparasitaires.   Mededelingen Faculteit Landbouwweten-schappen Rijksuniversiteit Gent  34, 351-369.

    de Man, J.G. (1876). Onderzoekingen over vrij in de aarde lev-ende Nematoden. Tijdschrift der Nederlandsche DierkundigeVereeniging 5, 78-196.

    de Man, J.G. (1880). Die einheimischen, frei in der reinen Erdeund im süssen Wasser lebenden Nematoden.  Tijdschrift der  Nederlandsche Dierkundige Vereeiniging 5, 1-104.

    de Man, J.G. (1884).  Die, frei in der reinen Erde und im süssenWasser lebenden Nematoden der Niederländischen Fauna.

     Eine systematische-faunistische Monographie. Leiden, TheNetherlands, E.J. Brill.

    Dujardin, F. (1845).   Histoire naturelle des Helminthes ouvers intestinaux . Paris, France, Librairie Encyclopédique deRoret.

    Felsenstein, J. (1985). Confidence limits on phylogenies: anapproach using the bootstrap. Evolution 39, 783-791.Gagarin, V.G. (1981). [Two new species of free-living nema-

    todes of the order Dorylaimida from the Kairakkumsky WaterReservoir.]  Zoologichesky Zhurnal 60, 453-455.

    Gagarin, V.G. & Vu-Than, N. (2003). [Three new speciesof free-living nematodes from Vietnamese water bodies.] Zoologichesky Zhurnal 82, 1393-1401.

    Gantait, V.V., Bhattacharya, T. & Chatterjee, A. (2009).   Do-rylaimus neominimus  sp. n. (Nematoda: Dorylaimida) fromWest Bengal, India. International Journal of Nematology 19,173-176.

    Heyns, J. (1965). On the morphology and taxonomy of theAporcelaimidae, a new family of dorylaimid nematodes. Entomology Memoirs, South Africa  10, 1-51.

    Holterman, M., Rybarczyk, K., van den Elsen, S., van Megen,H., Mooyman, P., Peña-Santiago, R., Bongers, T., Bakker, J.& Helder, J. (2008). A ribosomal DNA-based framework forthe detection and quantification of stress-sensitive nematodefamilies in terrestrial habitats.  Molecular Ecology Resources8, 23-34.

    Jiménez Guirado, D. (1988). Especies de  Dorylaimus Dujardin,1845 (Nematoda) del sur de España.   Miscellània Zoològica12, 33-39.

    Kimura, M. (1980). A simple method for estimating evolution-ary rate of base substitutions through comparative studiesof nucleotide sequences.  Journal of Molecular Evolution 16,

    111-120.Kleynhans, K.P. (1970). New records and species of Dory-laimoidea (Nematoda) from South Africa.  Phytophylactica 2,251-262.

    Krall, E. (1958). [Paraxonchium striatum gen. n., sp. n. (Ne-matoda, Belondiridae) – a new free-living soil nematodefrom Estonia.] Eesti NSV Teaduste Akadeemia Toimetised, Bi-oloogiline Seeria 7, 272-276.

    Loof, P.A.A. (1985). Taxonomic studies on the genus   Prodory-laimus Andrássy, 1959 (Nematoda: Dorylaimina).  Revue de Nématologie 8, 193-213.

    Loof, P.A.A. & Grootaert, P. (1981). Redescription of  Labronema vulvapapillatum (Meyl, 1954) nov. comb. (Dory-laimoidea). Nematologica 27, 139-145.

    Löytynoja, A. & Goldman, N. (2005). An algorithm for progres-sive multiple alignment of sequences with insertions.   Pro-ceedings of the National Academy of Sciencesof the United 

    States of America 102/30, 10557-10562.Meyl, A.H. (1954). Die bisher in Italien gefundenen freileben-

    den Erd- und Süsswassernematoden. Archivio Zoologico Ital-iano 39, 161-264.

    Micoletzky, H. (1925). Zur Kenntnis tropischer, freilebendenNematoden aus Surinam, Trinidad und Ostafrikas.  Zoologis-cher Anzeiger  64, 1-28.

    Vol. 00(0), 2016 17

  • 8/18/2019 Nematology 00 (2016) 1-18

    18/18

     M.T. Vinciguerra et al.

    Mulvey, R.H. & Anderson, R.V. (1979). Benthic species of  Dorylaimus  Dujardin 1845 (Nematoda: Dorylaimidae) and Arctidorylaimus n. gen. (Arctidorylaimidae n. fam.) from the

    Mackenzie and Porcupine river systems, northwest territories,Canada. Canadian Journal of Zoology 57, 743-755.Nedelchev, S., Elshishka, M., Lazarova, S., Radoslavov, G.,

    Hristov, P. & Peneva, V. (2014). Calcaridorylaimus castaneaesp. n. (Nematoda, Dorylaimidae) from Bulgaria with anidentification key to the species of the genus.   ZooKeys 410,41-61.

    Nicholas, W.L. & Hodda, M. (2000).  Dorylaimus baylyi  sp.n. (Dorylaimidae, Dorylaimida) a nematode collected fromsediment in a freshwater rock-hole in the northern territory.Transactions of the Royal Society of South Australia 124, 163-168.

    Nunn, G. (1992). Nematode molecular evolution. Ph.D. Thesis,University of Nottingham, Nottingham, UK.

    Peña-Santiago, R. & Álvarez-Ortega, S. (2014). An integrativeapproach to assess the phylogeny and the systematics of rounded-tailed genera of the subfamily Qudsianematinae(Nematoda, Dorylaimida). Zoologica Scripta 43, 418-428.

    Rzhetsky, A. & Nei, M. (1992). A simple method for estimatingand testing minimum evolution trees.  Molecular Biology and  Evolution 9, 945-967.

    Sen, D., Chatterjee, A. & Manna, B. (2011). A new species of  Dorylaimus Dujardin, 1845 (Nematoda: Dorylaimidae) fromWest Bengal, India. Nematologia Mediterranea 39, 3-8.

    Stefański, W. (1923). Étude sur les nématodes muscicoles desenvirons de Zakopane (Massif du Tatra polonais). Bulletin In-ternational de l’Académie Polonaise des Sciences et Lettres.

    Classe des Sciences Mathématiques et Naturelles. Série Bi-

    ologie Sciences Naturelles (Zoologie), 21-60.Steiner, G. (1919). Die von A. Monard gesammelten Nematoden

    der Tiefenfauna des Neuenburgersees.  Bulletin de la Société des Sciences Naturelles (1917-18) 43, 142-240.

    Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrialDNA in humans and chimpanzees.  Molecular Biology and 

     Evolution 10, 512-526.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S.(2013). MEGA6: Molecular Evolutionary Genetics Analysisversion 6.0. Molecular Biology and Evolution 30, 2725-2729.

    Thorne, G. (1930). Predacious nemas of the genus Nygolaimusand a new genus,   Sectonema.   Journal of Agricultural Re-search of USDA 41, 445-466.

    Thorne, G. (1939). A monograph of the superfamily Dory-laimoidea. Capita Zoologica 8, 1-261.

    Thorne, G. (1974). Nematodes of the Northern Great Plains.Part II. Dorylaimoidea in part (Nemata: Adenophorea).  Tech-nical Bulletin of Agricultural Experiment Station, South

     Dakota State University 41, 1-120.Thorne, G. & Swanger, H.H. (1936). A monograph of the

    nematode genera  Dorylaimus Dujardin,  Aporcelaimus n. g., Dorylaimoides n. g. and Pungentus n. g.  Capita Zoologica 6,1-223.

    Vinciguerra, M.T. & Orselli, L. (2011). Description of  Prodor- ylaimus irminii sp. n. (Dorylaimida: Nematoda) and a key tothe species of the genus.  Nematology 13, 277-285.

    Whitehead, A.G. & Hemming, J.R. (1965). A comparison of some quantitative methods of extracting small vermiformnematodes from soil.  Annals of Applied Biology 55, 25-38.

    Williams, J.R. (1959). Studies on the nematode soil faunaof sugar cane fields in Mauritius. 2. Belondiridae (Dory-laimoidea, Enoplida). Mauritius Sugar Industry Research In-stitute, Occasional Paper  1, 1-13.

    Zeng, Y., Ye, W., Tredway, L., Martin, S. & Martin, M. (2012).Description of   Hemicaloosia graminis   n. sp. (Nematoda:Caloosiidae) associated with turfgrasses in North and SouthCarolina, USA. Journal of Nematology 44, 134-141.

    18   Nematology