661

NCR Planning Board - National Capital Regionncrpb.nic.in/NCRBP ADB-TA 7055/Toolkit-Resources/Detailed Designs... · NCR Planning Board ... As per American Standard for Vertical Turbine

  • Upload
    hahanh

  • View
    223

  • Download
    5

Embed Size (px)

Citation preview

  • NCR Planning Board Asian Development Bank

    Capacity Development of the National Capital Region Planning Board (NCRPB) Component B (TA No. 7055-IND)

    FINAL REPORT Volume I-B: Detailed Project Report for Panipat Water Supply

    Detailed Designs

    April 2010

  • Contents

    Appendix D-1 : Design Details of Raw Water Rising Main, Sump & RWPS Appendix D-2 : Pump Selection for RWPS Appendix D-3 : Suction Specific Speed (RWPS) Appendix D-4 : Attainable Efficiency & Power Loading (RWPS) Appendix D-5 : Motor Rating (RWPS) Appendix D-6 : Column Pipe Thickness & Diameter (RWPS) Appendix D-7 : Crane Capacity (RWPS) Appendix D-8 : Raw Water Sump Details Appendix D-9 : Details of CWR & CWPS Appendix D-10 : Pump Selection for CWPS Appendix D-11 : Suction Speed (CWPS) Appendix D-12 : Attainable Efficiency & Power Loading (CWPS) Appendix D-13 : Motor Rating (CWPS) Appendix D-14 : Crane Capacity (CWPS) Appendix D-15 : Design of 100 MLD WTP with 4 Clariflucculators (Option 1) Appendix D-16 : Design of 100 MLD WTP with 2 Clariflucculators (Option 2) Appendix D-17 Design of Tube Settler for 100 MLD WTP Appendix D-17 : Design of Pumping Main Appendix D-18 Design of Pumping Main- LOOP

    Appendix D-19 : Design of Pumping Main Pipe Size based on Least Cost (node to node analysis)

    Appendix D-20 : Network Hydraulic Design (Zone 1 to Zone 18); each zone design provided here included Pipe Report, Junction Report and detailed node-to-node proposals for replacement of pipe section/retainment of existing pipe/ new pipe.

  • Appendix D-1: Design Details of Raw Water Rising Main, Sump & RWPS

  • S.No. Details Value Unit1 Design Discharge 105.00 MLD2 Pumping Hours 23.00 hours3 FSL of RW Sump 236.50 m4 Bed Level of RW Sump 233.50 m

    5 FSL of Inlet Chamber 240.10 m6 Size of DI Pipeline 800.00 mm7 Length of Pipelene 50 m8 C value adopted for design purpose 1409 Minimum Static Lift (240.10 - 236.5) 3.60 m

    10 Maximum Static Lift (240.10 - 233.5) 6.60 m11 Average Static Lift (240.10 - 235) 5.10 m

    12 Total Frictional Losses (9.5*.536*0.05) 0.26 m

    13 Other Frictional Losses on account of Tees, Bends, Valves etc. @10% of normal frictional losses 0.03 m

    14 Total Frictional Losses 0.29 m15 Station Losses & Terminal Pressure 1.00 m16 Minimum Pumping Head 4.89 m17 Maximum Pumping Head 7.89 m18 Average Pumping Head 6.39 m19 Average Pumping Head : Say 7.00 m

    Appendix D-1: Design of Raw Water Pump Station

  • Appendix D-2: Pump Selection for RWPS

  • 6.0 m8.0 m7.0 m

    105.0 MLD23 hrs

    =where Q =

    H =N =

    No of Working Pumps No of Stages

    Discharge per Pump (US GPM) Pumping Head (ft)

    Pumping Head per Stage (feet)

    Motor Speed (RPM) Specific Speed

    1 1 20102.17 22.97 22.97 1500 20272.182 1 10051.09 22.97 22.97 1500 14334.602 1 10051.09 22.97 22.97 1000 9556.402 1 10051.09 22.97 22.97 750 7167.302 1 10051.09 22.97 22.97 500 4778.203 1 6700.72 22.97 22.97 1000 7802.773 1 6700.72 22.97 22.97 750 5852.073 1 6700.72 22.97 22.97 500 3901.384 1 5025.54 22.97 22.97 750 5068.054 1 5025.54 22.97 22.97 500 3378.70

    2 1 5025.54 22.97 22.97 1500 10136.093 1 3350.36 22.97 22.97 1500 8276.084 1 2512.77 22.97 22.97 1500 7167.30

    Average Pumping Head

    Discharge head in feet per stage

    It would thus be prudent to go for a combination of 3 working with 2 standby pump. As it will be evident from above calculations, most suitable pump for present requirement is a pump with 1 stage with an operating speed of 500 RPM (syncronous). We should therfore go for 3W + 2S V.T. Pumps Single stage 500 RPM (syncronous).

    Specific Speed Ns

    From above options it is clear that four turbine pumps with single stage and 500 rpm gives specific speed nearest to desirable range of 2000-3000 and as such gives best efficiency.

    N x (Q)0.5/ (H)0.75

    Discharge in US gallon/min

    All other alternatives considered above have very high specific speeds and are thus not suitable for present application.

    As per American National Standard Institute Hydraulic Institute New Jersey, the specific speed for Centrifugal Pumps should be in the range of 2000 to 3000 for attaining optimum

    Appendix D-2: Pump Selection - Calculation of Specific Speed for Different Speeds & Number of Stages

    Calculation of Specific Speed with different combinations

    Vertical Turbine pumps

    Double suction centrifugal pumps

    Minimum Pumping Head Maximum Pumping Head

    Motor Speed in rpm

    Design DischargePumping Hours

    Calculation of Specific Speed for Different Speeds & Number of Stages

  • Appendix D-3: Suction Specific Speed (RWPS)

  • =where Q =

    H =N =

    Q = 634.06 l/s = 10051.1N = 500 rpm

    Minimum Water Level in CWR = 233.50 mMinimum Submergence required as per HIS = 1.55 mBottom level of wet well = 232 mSuction Bell mouth Diameter: Design Velocity = 1.3 m/sSuction Bell mouth Diameter: = 788 mmsay 350 mmClearance Below suction Bell Mouth (C) as per HIS = 0.45 mmi) Minimum Level in wet well = 233.50 m

    = Bottom Level + Clearance= 232.4 m= 232.7 m

    = 0.8 m= 0.1 m

    vi)Vapor pressure at 320C water temperature (Vp) = 0.49 m= 10.33 m= (vii +iv - v - vi )= 10.54 m= 34.57 ft= 3515.93= 4400.00 say= 10.7 feet= 3.25 m

    eye of impeller [(i) (iii) ]

    ii) Level of suction Bell Mouth

    SuctionSpecific Speed (SS) N x (Q)0.5/ (NPSHa)0.75

    Discharge per in US gallon/min

    Motor Speed in rpm

    Net Positive Suction Head

    As per American National Standard Institute Hydraulic Institute New Jersey, the Suction Specific Speed for V.T. Pumps should be in the vicinity of 8500 for attaining optimum

    Suction Lift permissible

    Specific Speed Ns

    For present caseUS gallon/min

    NPSH available

    iii) Elevation of eye of impeller {assumed 0.3 m above (ii)}iv) Submergence above

    Appendix D-3: Suction Specific Speed

    Net Positive Suction Head Available in feet

    v)Losses at inlet Bell mouth(assumed)

    Thus for V.T. Pumps only minimum submergence is to be provided.

    Net Positive Suction Head Available (NPSHa) Required 8500 Suction Specific Speed

    = Atmospheric Pressure in m - NPSHA = 6.8 m

    vii)Atmosph. Pressure

  • Appendix D-4: Attainable Efficiency & Power Loading (RWPS)

  • =Q =H =N =Q = 422.71 l/s = 6700.7 US gallon/minH = 7.00 m per stage = 23.0 feetsN = 500 rpm

    Q 0.422705314 cum/sec= 3901.38

    275.714

    = 94.0%= 82%= 0.94 x 0.82= 77.08%= 77%

    where Discharge in US gallon/min per PumpDischarge head in feet per stageMotor speed in rpm

    Appendix D-4: Attainable Efficiency & Power LoadingSpecific SpeedSpecific Speed Ns N x (Q)0.5/ (H)0.75

    For present case

    As per American Standard for Vertical Turbine Pumps issued by Hydraulic Institute New Jersey, the specific speed for Vertical Turbine Pumps should be in the range of 2000 to 3000 for attaining optimum efficiency and in the present case the specific speed is close to the range specified above.Generally Attainable EfficiencyAs per American Standard for Centrifugal Pumps, generally attainable efficiency for Vertical Turbine Pumps having discharge Q = 6700.7 USg/min & Specific Speed Ns = 3901.38, is 85% (as per Fig 1.62A, page no. 85).

    ( Assuming energy efficient motors)Pump Efficiency

    Proposed Loading for Lower Efficiency

    Specific Speed Ns

    For discharge Q = 6700.7 usg/min, deviation from generally attainable efficiency is +3% of attainable efficiency (as per Fig 1.63 page no. 85 ) which gives efficiency range from 82% to 88%. The efficiency of pumps is greatly influenced by smoothness of impeller vanes, clearance of impeller ring, effectiveness of stuffing box / mechanical seal and suction arrangement. In view of these factors, the Generally Attainable Efficiency may be taken as 82%. Also refer CPHEEO Manual figure 11.1, which for specific speed 275.71 and discharge 422.7 LPS give efficiency of 85%. As such adopt efficiency of 82%

    No credit is proposed in the bid evaluation for efficiency offered beyond 88% (without negative tolerance). However we can levy compensation for offering pumps with efficiency less than 88% for each percentage efficiency point.

    Overall Efficiency

    Specific speed as per formula 11.1 of Manual in metrik units, 3.65*N*Q^.5/H^.75=

    i) Calculation of Overall Efficiency of Pump SetMotor Efficiency

  • =where Q =

    H =n =

    == 37.70 KW= 38 KW say

    =

    =

    =

    = 7.606

    == 0.4935 KW

    = 10266 (Rs.)== 78083 (Rs.)

    Overall Efficiency of Pump Set

    ii) Motor Power Input Required9.81QH / n

    iii) Calculation of Additional Power Charges

    Additional Annual Power charges for lower efficiency = Differential KW x Annual Working hours x Power Tariff

    Discharge head in m

    Differential KW (Prescribed Eff - Tendered Eff ) x KW input of Motor / Tendered Eff

    Capitalised Additional Power charges for lower efficiency Additional Annual Power charges x Annuity Factor

    2) Pumping hours per day = 23 hrs.

    3) Annuity FactorAnnuity Factor ((1+R)n - 1)/ (R x (1+R)n)where n = no of years =15 yrs R = discounting rate = 10%Annuity Factor4) Power Tariff = Rs. 4.75 per unitFor 1% less effieciency

    For each percentage point of less efficiency.

    Differential KW (77 -76) x 38 /77

    Additional Annual Power charges for lower efficiency = .4935x4379.35x4.75

    Capitalised Additional Power charges 10266 x 7.606

    Annual Hours of operation of each pump = 11.99 x 365.25 = 4379.35 hrs

    1) Life of Pumpsets is 15 yrs as per CPHEEO mannual.

    However as 5 units of pumps are provided (3 working + 2 standby), therefore pumping hours for single pump will be 19.98 x 3 / 5= 11.99 hrsNow as Initial Discharge = 59 MLD & Final Discharge = 80 MLD therefore Avg Discharge = 69.5 MLD Average pumping hours for each pump = 69.5x23/80=19.98 hours

    Discharge in LPS

    (422.71 x 9.81 x 7) / (0.77 x 1000)

  • Appendix D-5: Motor Rating (RWPS)

  • = 422.7 LPSDesign Head = 7.0 m

    = 82%94%77%

    = 9.81QH / nwhere Q = Discharge in LPS

    H = Discharge head in mn = Combined Efficiency

    = 37.66 KWsay 38 KW

    Margin to decide drive rating, refer table 11.4 Manual 43.31

    1. 115% of Input Power requirement at duty point.2. Maximum Power requirement in the entire working range of the pump.The Motor rating required is 43.3 KW. Thus we go for next available rating of 45KW.

    Pump Discharge

    Pump Efficiency

    Appendix D-5: Motor Rating

    The motor rating shall be higher of the following:

    Motor Power RequiredCombined EfficiencyMotor Efficiency assuming energy efficient

  • Appendix D-6: Column Pipe Thickness & Diameter (RWPS)

  • Discharge of each pump = 0.317 m3/s= 2.5 m/s= 401.8 mmsay 400 mm

    whereP =S =t =D =

    = 7.0 m= 0.069 M Pa= 14.000 m= 0.137

    == 9.450 m= 0.093 M Pa= 0.139

    P = 0.139 M Pa= 141 M Pa

    = 0.2 mmAdding 2 mm corrosion allowance as water is both inside and outside of column pipesHence t = 2.2 mm

    say 6 mm

    Diameter of Column Pipe

    Hence with D =400 mm

    P shall be higher of (a) and (b)

    Test pressureM Pa (a)

    Shutoff Head :1.35 x Design Head

    1.5 x Shutoff Head

    As per standard thickness available

    Pipe Dia (mm)

    Thickness of Column Pipe (t )

    Safe Stress (MPa) = 0.6 x 235 MpaPipe Wall Thickness (mm)

    Appendix D-6: Column Pipe Diameter & Thickness

    As per formula in IS 3589/2001 for steel pipes for water

    Safe stress for Steel Pipe (Fe:410)

    Here Design Head

    M Pa (b)

    Hydraulic Test Pressure (MPa)

    Column Pipe Diameter

    In this case P shall be equal to twice the design (working) pressure or 1.5 times shutoff pressure whichever is greater

    Design Velocity for Column Pipe

    Column Pipe Thickness:

    2 s t P DP o r tD 2 S

    = =

  • Appendix D-7: Crane Capacity (RWPS)

  • = 600 kg

    = 1000 kg

    = 400 kg

    =

    = 600 Kg

    = 750 kg

    Say = 2000 kg

    Greater of (i) & (ii)

    Provide crane of 2000 kg ( 2.0 T ) safe working load.

    Maximum weight to be handled by crane

    b) Crane Capacity

    Considering 25 % over loading

    Appendix D-7: Crane Capacity

    a) Static Load of Pump Motor Set

    i) Weight of bowl assembly (from Kirloskar cataloge approx)

    ii) Discharge Head Weight (Assumed)

    ii) Weight of 45 kW motor

  • Appendix D-8: Raw Water Sump Details

  • Total Daily Flow 105 mld

    sump Capacity(2 min) 146 cum

    Depth of water in sump 2 m

    Area of Sump reqd. 73 m

    Adopt sump size 12x6 m

    Free Board 0.5 m

    Appendix D-8: Raw Water Sump Design

  • Appendix D-9: Details of CWR & CWPS

  • S.No. Details Value Units1 Design Discharge 100 MLD2 Pumping Hours 23 hours3 FSL of CWR 236 m4 Bed Level of CWR 232 m5 Size of DI Pipeline 300 to 1000 mm6 Length of Pipeline 33,000 m7 C value adopted for design purpose 140 8 Maximum Operating Head for pumps 50 m9 Minimum Operating head for pumps 46 m10 Average Operating Head for pumps 48 m

    Appendix D-9: Details of CWR & CWPS

  • Appendix D-10: Pump Selection for CWPS

  • 46.0 m50.0 m48.0 m

    100.0 MLD23 hrs

    =where Q =

    H =N =

    No of Working Pumps No of Stages

    Discharge per Pump (US

    GPM)

    Pumping Head (ft)

    Pumping Head per

    Stage (feet)

    Motor Speed (RPM) Specific Speed

    1 1 19144.93 157.48 157.48 1500 4668.732 1 9572.46 157.48 157.48 1500 3301.292 1 9572.46 157.48 157.48 1000 2200.863 1 6381.64 157.48 157.48 1500 2695.492 2 9572.46 157.48 78.74 1500 5552.082 1 4786.23 157.48 157.48 1500 2334.362 1 4786.23 157.48 157.48 1000 1556.24

    Thus single stage VT pump with a speed of 1000 rpm and Double Suction Centrfugal pumps with 2 pumps working have the specific speed in the range of 2000-3000 rpm and are thus the ideal choice. A Single stage Vertical Turbine Pump having Motor Speed of 1500 RPM will have specific speed around 3300, which is slightly higher then upper limit of desired range 2000-3000 for attaining optimum efficiency.However,Pumps & Motors with 1000 RPM speed are more robust compared to 1500 rpm pumping sets. The CWR floor is 3m below GL and in case of Horizontal Split Casing pump, to provide positive suction, pumps have to be installed below this level. The maintenance and shut down time are less in HSC pumps. As such choice is either Single stage VT pumps 1000 rpm with 2W+1S configuration or single stage double suction HSC pump 1500 rpm with 2W+1S configuration. Other alternatives considered above are not suitable on account of very high or lower specific speeds. Morever using single pump with full discharge has 2 drawbacks:a. Starting current requirement is very high making transformer, cable, switchgear rating high.b. During initial years of operation, water demand will be less. Thus the pump shall h

    N x (Q)0.5/ (H)0.75

    Discharge in US gallon/minDischarge head in feet per stageMotor Speed in rpm

    Calculation of Specific Speed with different combinations(Items 1 to 5 are VT pumps and items 6&7 are Double Suction HSC pumps)

    Specific Speed Ns

    As per American National Standard Institute Hydraulic Institute New Jersey, the specific speed for Centrifugal Pumps should be in the range of 2000 to 3000 for attaining optimum efficiency. Therefore in the present case the duty requirements are to be fixed in such a way so that the specific speed lies in the above range.

    Appendix D-10: Pump Selection (CWPS)

    Calculation of Specific Speed for Different Speeds & Number of Stages

    DetailsMinimum Operating head for pumpsMaximum Operating Head for pumpsAverage Operating Head for pumpsDesign DischargePumping Hours

  • Appendix D-11: Suction Speed (CWPS)

  • =

    where Q =H =N =

    Q = 603.86 l/s = 9572.5 US gallon/minN = 1000 rpm

    = 26.0 feet

    = 7.92 m

    Thus provide minimum subermergence for Bowl of VT pump

    Net Positive Suction Head Available (NPSHa) Required 8500 Suction Specific Speed

    = Atmospheric Pressure in m - NPSHA = 2.1 m

    Appendix D-11: Suction Specific Speed

    Net Positive Suction Head Available in feet

    Net Positive Suction Head

    As per American National Standard Institute Hydraulic Institute New Jersey, the Suction Specific Speed for V.T. Pumps should be in the vicinity of 8500 for attaining optimum efficiency. Therefore in the present case the duty requirements are to be fixed in such a way so that the Suction Specific Speed be around 8500.

    Suction Lift permissible

    For present case

    SuctionSpecific Speed (SS) N x (Q)0.5/ (NPSHa)0.75

    Discharge per in US gallon/min

    Motor Speed in rpm

  • Appendix D-12: Attainable Efficiency & Power Loading (CWPS)

  • =

    Q =H =N =

    Q = 603.86 l/s = 9572.5 US gallon/min

    H = 48.00 m per stage = 157.5 feetsN = 1000 rpm

    = 2200.86

    = 94.0%= 88%

    = 0.94 x 0.88

    = 82.72%= 82.50%

    i) Calculation of Overall Efficiency of Pump Set

    Motor Efficiency ( Assuming energy efficient motors)Pump Efficiency

    Discharge head in feet per stage

    No credit is proposed in the bid evaluation for efficiency offered beyond 88% (without negative tolerance). However we can levy compensation for offering pumps with efficiency less than 88% for each percentage efficiency point.

    As per American Standard for DS Centrifugal Pumps issued by Hydraulic Institute New Jersey, the specific speed for Pumps should be in the range of 2000 to 3000 for attaining optimum efficiency and in the present case the specific speed is within the range specified above.

    Generally Attainable Efficiency

    As per American Standard for Centrifugal Pumps, generally attainable efficiency for DS Centrifugal Pumps having discharge Q = 9572 g/min & Specific Speed Ns = 2200, is 90% (as per Fig 1.62A, page no. 85).

    For discharge Q = 9572 g/min, deviation from generally attainable efficiency is +2% of attainable efficiency (as per Fig 1.63 page no. 85 ) which gives efficiency range from 92% to 88%. The efficiency of pumps is greatly influenced by smoothness of impeller vanes, clearance of impeller ring, effectiveness of stuffing box / mechanical seal and suction arrangement. In view of these factors, the Generally Attainable Efficiency may be taken as 88%.

    Overall Efficiency

    Specific Speed Ns

    Proposed Loading for Lower Efficiency

    Appendix D-12: Attainable Efficiency & Power LoadingSpecific Speed

    Specific Speed Ns N x (Q)0.5/ (H)0.75

    where Discharge in US gallon/min per Pump

    Motor speed in rpm

    For present case of Double suction Pump

  • =

    where Q =H =n =

    =

    = 344.66 KW= 345 KW say

    =

    =

    = FALSE

    = 7.606

    == 4.1818 KW

    = 96712 (Rs.)

    =

    = 735597 (Rs.)

    Capitalised Additional Power charges 96712 x 7.606

    4) Power Tariff = Rs. 4.75 per unit

    Annual Hours of operation of each pump = 13.33 x 365.25 = 4868.78 hrs

    Differential KW

    Capitalised Additional Power charges for lower efficiency

    For each percentage point of less efficiency.

    Differential KW (82.5 -81.5) x 345 / 82.5

    Additional Annual Power charges for lower efficiency = 4.1818x4868.78x4.75

    However as 3 units of pumps are provided (2 working + 1 standby), therefore pumping hours for single pump will be 19.98 x 2 / 3 = 13.33 hrs

    Now as Initail Discharge = 59 MLD & Final Discharge = 80 MLD therefore Avg Discharge = 69.5 MLD Average pumping hours for each pump =69.5x23/80=19.98 hours

    For 1% less effieciency

    where n = no of years =15 yrs R = discounting rate = 10%Annuity Factor

    Annuity Factor ((1+R)n - 1)/ (R x (1+R)n)

    3) Annuity Factor

    (Prescribed Eff - Tendered Eff ) x KW input of Motor / Tendered Eff

    Discharge in LPS

    (603.86 x 9.81 x 48) / (0.825x 1000)

    1) Life of Pumpsets is 15 yrs as per CPHEEO mannual.

    2) Pumping hours per day = 23 hrs.

    Additional Annual Power charges x Annuity Factor

    iii) Calculation of Additional Power Charges

    Additional Annual Power charges for lower efficiency = Differential KW x Annual Working hours x Power Tariff

    9.81QH / n

    Overall Efficiency of Pump Set

    ii) Motor Power Input Required

    Discharge head in m

  • Appendix D-13: Motor Rating (CWPS)

  • = 603.86 LPSDesign Head = 48.0 m

    94.0%= 88%= 0.94 x 0.88= 82.72%

    =where Q =

    H =n =

    = 343.74 KW= 344 KW say

    1. 110% of Input Power requirement at duty point.

    Pump Efficiency

    The motor rating shall be higher of the following:

    Motor Power Input Required9.81QH / n

    2. Maximum Power requirement in the entire working range of the pump.The Motor rating required as per first alternative is 378.11 KW. Thus we go for next available rating of 380KW.

    Appendix D-13: Motor Rating

    Motor Efficiency ( Assuming energy efficient motors)

    Discharge in LPS

    Pump Discharge

    Pump EfficiencyOverall Efficiency

    Discharge head in m

  • Appendix D-14: Crane Capacity (CWPS)

  • = 2550 kg

    = 2500 kg

    =

    = 2550 Kg

    = 3187.5 kg

    say = 5000 kg

    i) Weight of pump assembly (from Kirloskar cataloge approx)

    ii) Weight of 380 kW motor

    Appendix D-14: Crane Capacity

    a) Static Load of Pump Motor Set

    Maximum weight to be handled by crane

    Considering 25 % over loading

    b) Crane Capacity

    Greater of (i) & (ii)

    Provide crane of 5000 kg ( 5.0 T ) safe working load.

  • Appendix D-15: Design of 100 MLD WTP with 4 Clariflucculators

  • Appendix D-15: Design of 100 MLD WTP with 4 Clariflucculators (Option 1)

    Design flow (100 MLD) 4180 cum/hr On the basis of 23 hour pumping, design flow 4350 cum/hour Consider Inlet channel having flow section of 2000mm 800mm deep

    Velocity of flow for 20% overload (43501.2)/ (0.8023600) = 0.91 m/sec Length of channel 40m Consider a head loss of 16mm across manual screen Consider supply level as 240.1m

    TWL downstream of screen 240.1 - 0.16 = 239.94 m R = (0.82) / (0.82+2) = 0.444 0.91 = 66.6(0.4444)2/3. S1/2 Or S1/2 = 0.91/66.6(0.4444)2/3

    S = 0.0005 Loss in 40 m length = 0.0005540 =0.022 m

    Water Treatment Plant Design flow 4350 cum/hr Inlet chamber Provide 3.5m3.5m4.5m Chamber Volume provided

    55.13m3

    Flash Mixers No. s Flow in each Flash Mixer Volume required for 45 sec pumping (Range allowed 30 to 60 sec) Volume provided For a 2.25 m dia shaft, Depth

    4 nos. 4350/4 = 1087.5 cum/hr (1087.5/3600)45 = 13.59 m3

    13.59 m3

    3.5 m

    Clariflocculators No.s Flow of each Volume reqd. in flocculation zone (Range allowed10 to 40 min storage but adopted 30 min) Provide 14m dia 3.5 m SWD Flocculator (Range allowed for SWD from 3 to 4.5m) Volume provided Surface area reqd. (Surface loading allowed 35 to 50 but adopted 35) Provide 34 m dia Clariflocculator with launder out side Surface Area available Volume required in Clarifying zone (Range allowed - one to two hrs) Volume provided with 3m SWD Provide outlet launder of 600mm600mm deep For 50% length flow

    4 no,. 1087.5 m3/hour 1087.530/60 = 543.75 m3

    538.51 m3

    1087.524/35 = 745.71 m2

    /4(34)2 - /4(14)2 = 753.6 m2

    1087.5 2 = 2175 m3 753.6 3 = 2260.8 m3

  • Velocity of flow or design flow Total perimeter Perimeter required (Weir loading allowed 300 m3/d/m) Thus launder perimeter adopted is adequate

    1087.5/2 = 543.75 m3/hr 543.75/36000.60.6 = 0.42 m3/sec 34 = 106.76 m 1087.524/300 = 87 m

    Filters No,s Total output Input to each of 10 filters Area required for each filter (Assuming filter rate as 6m/hr) Provide 2 sections each 3.50m10.7m (10 filters) Inlet: Provide 350350mm gate Outlet: Provide 350 mm S. V. Wash in : Water rate 500 lpm/m2

    Wash water rate reqd Provide 600 mm SV Wash out; Provide gate 500600mm(deep) Air inlet Air required Air flow rate Provide 250 mm SV for each bed Wash water Pump Capacity required Provide 3 Submerssible pump sets (2W+1S) of 1090m/hr capacity with suitable head. Air blower Air capacity reqd. Provide two blowers (1W + 1S) of 3300 m3/hr capacity

    10 no,s 100 MLD in 23 hours = 4350 m3/hr 435 m3/hr 435/6 = 72.5 sq.m Velocity = 0.986 m/sec. Velocity = 1.256 m/sec 72.50.5 = 36.25 m3/min = 0.604 m3/sec Velocity = 2.14 m/sec Velocity = 2.013 m/sec 750 lpm/m2 72.50.75 = 54.375 m3/min = 0.906 m3/sec Velocity = 18.47 m/sec 36.25x60 = 2175 m/hr 54.37560 = 3262.5 m3/hr

    Chemical House Consider an average of 50 ppm dose of alum @ 10% strength solution Solution required for 8 hrs Provide 3 tanks each of 3.25m2.8m2.2m (Approx 20 m3

    each) Alum reqd for 90 days Taking alum density 1300 kg/m3 Volume of alum Taking stake height as 2 m, Area required for alum storage Taking provision for movement and putting weighing scale etc., Provide storage area = 250 m2

    43505011008/1000100010 = 17.4 m3

    4350502490/1000 = 469800 kg 469800/1300 = 361.38 m3 = 361.38/2 =180.69 ~ 185 m2

  • Appendix D-16: Design of 100 MLD WTP with 2 Clariflucculators

  • Appendix D-16: Design of 100 MLD WTP with 2 Clariflucculators (Option 2)

    Design flow (100 MLD) 4180 cum/hr On the basis of 23 hour pumping, design flow 4350 cum/hour Consider Inlet channel having flow section of 2000mm 800mm deep

    Velocity of flow for 20% overload (43501.2)/ (0.8023600) = 0.91 m/sec Length of channel 40m Consider a head loss of 16mm across manual screen Consider supply level as 240.1m

    TWL downstream of screen 240.1 - 0.16 = 239.94 m R = (0.82) / (0.82+2) = 0.444 0.91 = 66.6(0.4444)2/3. S1/2 Or S1/2 = 0.91/66.6(0.4444)2/3

    S = 0.0005 Loss in 40 m length = 0.0005540 =0.022 m

    Water Treatment Plant Design flow 4350 cum/hr Inlet chamber Provide 3.5m3.5m4.5m Chamber Volume provided

    55.13m3

    Flash Mixers No. s Flow in each Flash Mixer Volume required for 45 sec pumping (Range allowed 30 to 60 sec) Volume provided For a 3.15 m dia shaft, Depth

    2 nos. 4350/2 = 2176 cum/hr (2175/3600)45 = 27.19 m3

    27.19 m3

    3.5 m

    Clariflocculators No.s Flow of each Volume reqd. in flocculation zone (Range allowed10 to 40 min storage but adopted 30 min) Provide 20m dia 3.5 m SWD Flocculator (Range allowed for SWD from 3 to 4.5m) Volume provided Surface area reqd. (Surface loading allowed 35 to 50 but adopted 35) Provide 43.6 m dia Clariflocculator with launder out side Surface Area available Volume required in Clarifying zone (Range allowed - one to two hrs) Volume provided with 3m SWD Provide outlet launder of 800mm800mm deep For 50% length flow

    2 no, s 2175 m3/hour 217530/60 = 1087.5 m3 1099 m3

    217524/35 = 1491.43 m2

    /4(43.6)2 - /4(20)2 = 1178.25 m2

    1087.5 2 = 2175 m3 2175 2 = 4350 m3 1178.25 3 = 3534.75 m3 2175/2 = 1087.5 m3/hr

  • Velocity of flow or design flow Total perimeter Perimeter required (Weir loading allowed 300 m3/d/m) Provide weir to have inlet from both sides Thus launder perimeter required is 87 m Provided is adequate

    1087.5/36000.80.8= 0.47 m3/sec 43.6 = 135 m 217524/300 = 174 m

    Filters No,s Total output Input to each of 10 filters Area required for each filter (Assuming filter rate as 6m/hr) Provide 2 sections each 3.50m10.7m (10 filters) Inlet: Provide 350350mm gate Outlet: Provide 350 mm S. V. Wash in : Water rate 500 lpm/m2

    Wash water rate reqd Provide 600 mm SV Wash out; Provide gate 500600mm(deep) Air inlet Air required Air flow rate Provide 250 mm SV for each bed Wash water Pump Capacity required Provide 3 Submerssible pump sets (2W+1S) of 1090m/hr capacity with suitable head. Air blower Air capacity reqd. Provide two blowers (1W + 1S) of 3300 m3/hr capacity

    10 no,s 100 MLD in 23 hours = 4350 m3/hr 435 m3/hr 435/6 = 72.5 sq.m Velocity = 0.986 m/sec. Velocity = 1.256 m/sec 72.50.5 = 36.25 m3/min = 0.604 m3/sec Velocity = 2.14 m/sec Velocity = 2.013 m/sec 750 lpm/m2 72.50.75 = 54.375 m3/min = 0.906 m3/sec Velocity = 18.47 m/sec 36.25x60 = 2175 m/hr 54.37560 = 3262.5 m3/hr

    Chemical House Consider an average of 50 ppm dose of alum @ 10% strength solution Solution required for 8 hrs Provide 3 tanks each of 3.25m2.8m2.2m (Approx 20 m3

    each) Alum required for 90 days Taking alum density 1300 kg/m3 Volume of alum Taking stake height as 2 m, Area required for alum storage Taking provision for movement and putting weighing scale etc., Provide storage area = 250 m2

    43505011008/1000100010 = 17.4 m3

    4350502490/1000 = 469800 kg 469800/1300 = 361.38 m3 = 361.38/2 =180.69 ~ 185 m2

  • Appendix D-17: Design of Tube Settler for 100 MLD WTP

  • Description Value UnitsNumber of Tube Settlers 1 Design Flow 100.00 MLD

    4,347.83 m3/hr.Design Flow Each 4,350.00 m3/hr.Detention in Flocculation Zone 0.50 hrDetention in Clarification Zone 0.40 hrVolume in Flocculation Zone 2,175.00 m3

    Volume in Clarification Zone 1,740.00 m3

    OD of Central Shaft 1.10 mC/S Area of Central Shaft 0.95 m2

    SLR in Clarification Zone 156.00 m3/m2/dayArea of Clarification zone 669.23 SWD Clarification Zone - required 2,600.00 mSWD Clarification Zone - provided 3.00 mSWD Flocculation Zone - provided 3.30 mArea Flocculation Zone 659.09 m2

    Total Area Flocculation Zone 660.04 m2

    Dia Flocculation Zone 29.00 m29.00 m

    Flocculator wall thickness 0.15 mOD Flocculation Zone 29.30 mOuter Area Flocculation Zone 673.91 m2

    Total Area required in Clarification zone 1,343.15 m2

    Dia required 41.36 mConsidering wastage of space due to inclined tube settler, say 42.00 mLaunder width 0.60 mLaunder wall thickness 0.10 mApprox Launder Area 107.51 m2

    Area incl launder required 1,492.25 m2

    Dia required 43.40 msay 43.40 mFree Board 0.30 mBottom Slope 1 in 12Velocity in Inlet Pipe 1.00 m/sArea Required 1.21 m2

    Inlet Pipe Dia required 1.24 mProvide Inlet Pipe 2 no.s of 700 mm mmNotes: Inner dia of clariflocculator is 42.00 m and the outer dia of flocculation zone is 29.3 m.So the effective available area for installing tube settler is

    710.83 Sq. m

    Appendix D-17: Design of Tube Settler for 100 MLD WTP

  • Appendix D-18 Design of Pumping Main using LOOP

  • Appendix D-18: Design of Pumping Main from WTP to OHSRs using LOOP Version 4.0 Echoing Input Design Variables ------------------------------- Title of the Project : Panipat Water Supply Distribution Name of the User : Number of Pipes : 36 Number of Nodes : 36 Type of Pipe Materials Used : DI/ Number of Commercial Dia per Material : 11/ Peak Design Factor : 1 Newton-Raphson Stopping Criterion lps : .001 Minimum Pressure m : 5 Maximum Pressure m : 50 Design Hydraulic Gradient m in km : 1 Simulate or Design? (S/D) : D No. of Res. Nodes with Fixed HGL : 1 No. of Res. Nodes with Variable HGL : No. of Booster Pumps : No. of Pressure Reducing Valves : No. of Check Valves : Type of Formula : Hazen's Looped Water Distribution Network Design OutPut ------------------------------------------------- -------------------------------------- BandWidth = 1 Number of Loops = 1 Newton Raphson Iterations = 5 -------------------------------------- Pipe Details --------------- ========================================================================= Pipe From To Flow Dia HL HL/1000m Length Velocity No. Node Node (lps) (mm) (m ) (m ) (m ) (m/s ) ------------------------------------------------------------------------- 1 100 1 1316.240 900.0 3.77 3.15 1199.00 2.07 2 1 2 740.737 900.0 0.57 1.09 522.00 1.16 3 2 3 44.750 300.0 0.38 1.27 301.00 0.63 4 2 4 695.987 900.0 0.76 0.97 785.00 1.09 5 4 5 117.040 450.0 0.45 1.04 430.00 0.74 6 5 6 57.190 350.0 0.03 0.94 35.00 0.59 7 5 7 59.850 350.0 2.45 1.02 2394.00 0.62 8 4 8 578.947 800.0 0.91 1.22 744.00 1.15 9 9 8 -52.200 350.0 -0.17 -0.79 217.00 -0.54 10 8 10 526.747 800.0 1.49 1.02 1457.00 1.05 Pipe Details cont`d ---------------------- ========================================================================= Pipe From To Flow Dia HL HL/1000m Length Velocity

  • No. Node Node (lps) (mm) (m ) (m ) (m ) (m/s ) ------------------------------------------------------------------------- 11 10 11 225.800 600.0 0.85 0.87 978.00 0.80 12 11 12 107.130 450.0 0.10 0.88 110.00 0.67 13 11 13 118.670 450.0 2.19 1.07 2052.00 0.75 14 10 14 300.947 600.0 0.39 1.48 267.00 1.06 15 14 15 98.160 400.0 3.09 1.33 2316.00 0.78 16 14 16 202.787 500.0 1.41 1.73 818.00 1.03 17 17 16 -67.230 350.0 -0.34 -1.27 265.00 -0.70 18 16 18 135.557 450.0 0.73 1.37 532.00 0.85 19 18 19 79.720 400.0 1.56 0.91 1716.00 0.63 20 18 20 55.837 350.0 0.26 0.90 294.00 0.58 21 21 20 -73.220 400.0 -0.09 -0.78 110.00 -0.58 22 20 22 -17.383 250.0 -0.84 -0.53 1574.00 -0.35 23 22 23 64.540 350.0 0.64 1.18 548.00 0.67 24 22 24 -81.923 400.0 -0.57 -0.96 599.00 -0.65 25 25 24 -51.410 350.0 -0.15 -0.77 199.00 -0.53 26 24 26 247.320 600.0 0.56 1.03 545.00 0.87 27 27 26 -60.380 350.0 -0.89 -1.04 853.00 -0.63 28 28 26 -186.940 500.0 -0.73 -1.48 489.00 -0.95 29 29 28 -86.080 400.0 -1.27 -1.05 1210.00 -0.68 30 30 28 -100.860 450.0 -1.01 -0.79 1278.00 -0.63 31 24 31 -380.653 700.0 -1.37 -1.08 1278.00 -0.99 32 32 31 -57.490 350.0 -0.50 -0.95 523.00 -0.60 33 33 31 -137.360 500.0 -0.47 -0.84 560.00 -0.70 34 34 33 -66.320 350.0 -0.25 -1.24 200.00 -0.69 35 35 33 -71.040 350.0 -1.33 -1.41 945.00 -0.74 36 31 1 -575.503 800.0 -3.74 -1.21 3096.00 -1.14 Note: Negative value indicates the flow in reverse direction in that Pipe ========================================================================= Pipe Pressure Details ========================================================================== Pipe From To Dia Hazen's Pipe Max Press Allow Press Status No. Node Node (mm) Const Material (m ) (m ) (E/P) -------------------------------------------------------------------------- 1 100 1 900.0 140.00000 DI 50.00 HI 40.00 2 1 2 900.0 140.00000 DI 46.23 HI 40.00 3 2 3 300.0 140.00000 DI 45.66 HI 40.00 4 2 4 900.0 140.00000 DI 45.66 HI 40.00 5 4 5 450.0 140.00000 DI 44.90 HI 40.00 6 5 6 350.0 140.00000 DI 44.45 HI 40.00 7 5 7 350.0 140.00000 DI 44.45 HI 40.00 Pipe Pressure Details cont`d ========================================================================== Pipe From To Dia Hazen's Pipe Max Press Allow Press Status No. Node Node (mm) Const Material (m ) (m ) (E/P) -------------------------------------------------------------------------- 8 4 8 800.0 140.00000 DI 44.90 HI 40.00 9 9 8 350.0 140.00000 DI 43.99 HI 40.00 10 8 10 800.0 140.00000 DI 43.99 HI 40.00 11 10 11 600.0 140.00000 DI 42.50 HI 40.00 12 11 12 450.0 140.00000 DI 41.65 HI 40.00 13 11 13 450.0 140.00000 DI 41.65 HI 40.00 14 10 14 600.0 140.00000 DI 42.50 HI 40.00 15 14 15 400.0 140.00000 DI 42.11 HI 40.00 16 14 16 500.0 140.00000 DI 42.11 HI 40.00

  • 17 17 16 350.0 140.00000 DI 40.69 HI 40.00 18 16 18 450.0 140.00000 DI 40.69 HI 40.00 19 18 19 400.0 140.00000 DI 39.97 40.00 20 18 20 350.0 140.00000 DI 39.97 40.00 21 21 20 400.0 140.00000 DI 39.70 40.00 22 20 22 250.0 140.00000 DI 40.54 HI 40.00 23 22 23 350.0 140.00000 DI 40.54 HI 40.00 24 22 24 400.0 140.00000 DI 41.11 HI 40.00 25 25 24 350.0 140.00000 DI 41.11 HI 40.00 26 24 26 600.0 140.00000 DI 41.11 HI 40.00 27 27 26 350.0 140.00000 DI 40.55 HI 40.00 28 28 26 500.0 140.00000 DI 40.55 HI 40.00 29 29 28 400.0 140.00000 DI 39.83 40.00 30 30 28 450.0 140.00000 DI 39.83 40.00 31 24 31 700.0 140.00000 DI 42.49 HI 40.00 32 32 31 350.0 140.00000 DI 42.49 HI 40.00 33 33 31 500.0 140.00000 DI 42.49 HI 40.00 34 34 33 350.0 140.00000 DI 42.02 HI 40.00 35 35 33 350.0 140.00000 DI 42.02 HI 40.00 36 31 1 800.0 140.00000 DI 46.23 HI 40.00 ========================================================================== Node Details ======================================================= Node Flow Elev. H G L Pressure No. (lps) (m ) (m ) (m ) ------------------------------------------------------- 100 S 1316.240 235.00 285.00 50.00 1 0.000 235.00 281.23 46.23 2 0.000 235.00 280.66 45.66 3 -44.750 261.00 280.28 19.28 4 0.000 235.00 279.90 44.90 5 0.000 235.00 279.45 44.45 Node Details cont`d ======================================================= Node Flow Elev. H G L Pressure No. (lps) (m ) (m ) (m ) ------------------------------------------------------- 6 -57.190 261.00 279.42 18.42 7 -59.850 261.00 277.00 16.00 8 0.000 235.00 278.99 43.99 9 -52.200 261.00 278.82 17.82 10 0.000 235.00 277.50 42.50 11 0.000 235.00 276.65 41.65 12 -107.130 261.00 276.55 15.55 13 -118.670 261.00 274.46 13.46 14 0.000 235.00 277.11 42.11 15 -98.160 261.00 274.01 13.01 16 0.000 235.00 275.69 40.69 17 -67.230 261.00 275.36 14.36 18 0.000 235.00 274.97 39.97 19 -79.720 261.00 273.41 12.41 20 0.000 235.00 274.70 39.70 21 -73.220 261.00 274.62 13.62 22 0.000 235.00 275.54 40.54 23 -64.540 261.00 274.90 13.90 24 0.000 235.00 276.11 41.11 25 -51.410 261.00 275.96 14.96 26 0.000 235.00 275.55 40.55

  • 27 -60.380 261.00 274.67 13.67 28 0.000 235.00 274.83 39.83 29 -86.080 261.00 273.56 12.56 30 -100.860 261.00 273.82 12.82 31 0.000 235.00 277.49 42.49 32 -57.490 261.00 276.99 15.99 33 0.000 235.00 277.02 42.02 34 -66.320 261.00 276.77 15.77 35 -71.040 261.00 275.69 14.69 ======================================================= Pipe Cost Summary ========================================================= Diameter Pipe Length Cost Cum. Cost (mm) Material (m ) (1000 Rs ) (1000 Rs ) --------------------------------------------------------- 250.0 DI 1574.00 254.99 254.99 300.0 DI 301.00 61.71 316.69 350.0 DI 6473.00 1365.80 1682.50 400.0 DI 5951.00 1517.51 3200.00 450.0 DI 4402.00 1417.44 4617.44 Pipe Cost Summary cont`d ========================================================= Diameter Pipe Length Cost Cum. Cost (mm) Material (m ) (1000 Rs ) (1000 Rs ) --------------------------------------------------------- 500.0 DI 1867.00 752.40 5369.85 600.0 DI 1790.00 877.10 6246.95 700.0 DI 1278.00 775.75 7022.69 800.0 DI 5297.00 3956.86 10979.55 900.0 DI 2506.00 2320.56 13300.11 ========================================================= Pipe-wise Cost Summary =============================================================== Pipe Diameter Pipe Length Cost Cum. Cost No (mm) Material (m ) (1000 Rs ) (1000 Rs ) --------------------------------------------------------------- 1 900.0 DI 1199.00 1110.27 1110.27 2 900.0 DI 522.00 483.37 1593.65 3 300.0 DI 301.00 61.71 1655.35 4 900.0 DI 785.00 726.91 2382.26 5 450.0 DI 430.00 138.46 2520.72 6 350.0 DI 35.00 7.39 2528.11 7 350.0 DI 2394.00 505.13 3033.24 8 800.0 DI 744.00 555.77 3589.01 9 350.0 DI 217.00 45.79 3634.79 10 800.0 DI 1457.00 1088.38 4723.17 11 600.0 DI 978.00 479.22 5202.39 12 450.0 DI 110.00 35.42 5237.81 13 450.0 DI 2052.00 660.74 5898.56 14 600.0 DI 267.00 130.83 6029.39 15 400.0 DI 2316.00 590.58 6619.97 16 500.0 DI 818.00 329.65 6949.62 17 350.0 DI 265.00 55.92 7005.54 18 450.0 DI 532.00 171.30 7176.84 19 400.0 DI 1716.00 437.58 7614.42

  • 20 350.0 DI 294.00 62.03 7676.46 21 400.0 DI 110.00 28.05 7704.50 22 250.0 DI 1574.00 254.99 7959.49 23 350.0 DI 548.00 115.63 8075.12 24 400.0 DI 599.00 152.74 8227.87 25 350.0 DI 199.00 41.99 8269.86 26 600.0 DI 545.00 267.05 8536.91 27 350.0 DI 853.00 179.98 8716.89 28 500.0 DI 489.00 197.07 8913.96 29 400.0 DI 1210.00 308.55 9222.50 30 450.0 DI 1278.00 411.52 9634.02 Pipe-wise Cost Summary cont`d =============================================================== Pipe Diameter Pipe Length Cost Cum. Cost No (mm) Material (m ) (1000 Rs ) (1000 Rs ) --------------------------------------------------------------- 31 700.0 DI 1278.00 775.75 10409.77 32 350.0 DI 523.00 110.35 10520.12 33 500.0 DI 560.00 225.68 10745.80 34 350.0 DI 200.00 42.20 10788.00 35 350.0 DI 945.00 199.40 10987.39 36 800.0 DI 3096.00 2312.71 13300.11 ===============================================================

  • Appendix D-19: Design of Pumping Main Pipe Size based on Least Cost (Node to Node Analysis)

  • Design of Least Cost Pipe Size : Pumping Transmission MainFrom: J16 To: J17(Zone9)

    ECONOMACAL SIZE OF CLEAR WATER RISING MAIN MAIN I N P U T D A T A PANIPAT From : J16 ===== ========= ========== ========== ============= ================== ======== =========

    To : J17(Zone9) PANIPAT 1) Water requirement : Year Peak Discharge

    P I P E D A T AA. Initial 2011 5.02 mld -------- --------- --------- --------- --------B. Intermediate 2026 5.38 mld DIAMETER MATER- CLASS HWC RATEC. Ultimate 2041 5.81 mld MM. IAL Rs/M

    -------- --------- --------- --------- -------- 2) Pumping main LENGTH 265 M 250 DI K7 140 2005 3) Static head for pump ST.HEAD 28.00 M 300 DI K7 140 2543 4) Design period YEAR 30 yr. 350 DI K7 140 3197 5) Combined eff. of pump set EFF. % 75 % 400 DI K7 140 3833 6) Cost of pumping unit Rs./KW 25000 Rs 450 DI K7 140 4547 7) Interest rate INTEREST 10.00 % 500 DI K7 140 53258) Life of electric motor & pump set P.Yrs 15 yr. 600 DI K7 140 70159) Energy charges per kWh P/KWH 475 paise 700 DI K7 140 962210) Pumping hours for discharge PUMPING- 23 hrs 800 DI K7 140 12550

    at the end of 15 years HOURS 900 DI K7 140 153141000 DI K7 140 18354

    CALCULATIONS: 1st 15 years 2nd 15 years 1) Discharge at Start OF PERIOD 5.02 mld 5.38 mld 2) Discharge at the end of 15 yrs 5.38 mld 5.81 mld 3) Average Flow 63 lps 68 lps 4) Average Discharge 5.20 mld 5.59 mld 5) Avg.pumping hours during the period 22.23 hrs 22.15 hrs 6) KW required at combined 0.86 * H1 0.92 * H2 efficiency of pumping set 7) Avg annual charges for electrical energy Rs. 33039 * KW1 35418 * KW2

    Modified Hazen William's FormulaV= 143.534CR r0.6575 S0.5525h= [L(Q/CR)1.81 ]/[994.62D4.81]

  • Friction Head Loss (First 15 years)Dia. in mm L Q CR Q/CR (Q/CR)1.81 994.62 D D4.81 h( First 15 yrs)250mm 1000 0.063 1.000 0.063 0.007 994.620 0.250 0.001 5.279 300mm 1000 0.063 1.000 0.063 0.007 994.620 0.300 0.003 2.196 350mm 1000 0.063 1.000 0.063 0.007 994.620 0.350 0.006 1.046 400mm 1000 0.063 1.000 0.063 0.007 994.620 0.400 0.012 0.551 450mm 1000 0.063 1.000 0.063 0.007 994.620 0.450 0.021 0.312 500mm 1000 0.063 1.000 0.063 0.007 994.620 0.500 0.036 0.188 600mm 1000 0.063 1.000 0.063 0.007 994.620 0.600 0.086 0.078 700mm 1000 0.063 1.000 0.063 0.007 994.620 0.700 0.180 0.037 800mm 1000 0.063 1.000 0.063 0.007 994.620 0.800 0.342 0.020 900mm 1000 0.063 1.000 0.063 0.007 994.620 0.900 0.602 0.011 1000mm 1000 0.063 1.000 0.063 0.007 994.620 1.000 1.000 0.007 VelocityDia. in mm 143.534 CR r=A/P=D/4 r0.6575 S S0.5525 V

    250 143.534 1.000 0.063 0.162 0.005 0.055 1.279 300 143.534 1.000 0.075 0.182 0.002 0.034 0.888 350 143.534 1.000 0.088 0.202 0.001 0.023 0.653 400 143.534 1.000 0.100 0.220 0.001 0.016 0.500 450 143.534 1.000 0.113 0.238 0.000 0.012 0.395 500 143.534 1.000 0.125 0.255 0.000 0.009 0.320 600 143.534 1.000 0.150 0.287 0.000 0.005 0.222 700 143.534 1.000 0.175 0.318 0.000 0.004 0.163 800 143.534 1.000 0.200 0.347 0.000 0.003 0.125 900 143.534 1.000 0.225 0.375 0.000 0.002 0.099

    1000 143.534 1.000 0.250 0.402 0.000 0.001 0.080 Friction Head Loss (Second 15 years)Dia. in mm L Q CR Q/CR (Q/CR)1.81 994.62 D D4.81 h( Second 15 yrs)250mm 1000 0.068 1.000 0.068 0.008 994.620 0.250 0.001 6.026 300mm 1000 0.068 1.000 0.068 0.008 994.620 0.300 0.003 2.507 350mm 1000 0.068 1.000 0.068 0.008 994.620 0.350 0.006 1.195 400mm 1000 0.068 1.000 0.068 0.008 994.620 0.400 0.012 0.628 450mm 1000 0.068 1.000 0.068 0.008 994.620 0.450 0.021 0.357 500mm 1000 0.068 1.000 0.068 0.008 994.620 0.500 0.036 0.215 600mm 1000 0.068 1.000 0.068 0.008 994.620 0.600 0.086 0.089 700mm 1000 0.068 1.000 0.068 0.008 994.620 0.700 0.180 0.043 800mm 1000 0.068 1.000 0.068 0.008 994.620 0.800 0.342 0.022 900mm 1000 0.068 1.000 0.068 0.008 994.620 0.900 0.602 0.013 1000mm 1000 0.068 1.000 0.068 0.008 994.620 1.000 1.000 0.008

  • VelocityDia. in mm 143.534 CR r=A/P=D/4 r0.6575 S S0.5525 V

    250 143.534 1.000 0.063 0.162 0.006 0.059 1.376 300 143.534 1.000 0.075 0.182 0.003 0.037 0.956 350 143.534 1.000 0.088 0.202 0.001 0.024 0.702 400 143.534 1.000 0.100 0.220 0.001 0.017 0.538 450 143.534 1.000 0.113 0.238 0.000 0.012 0.425 500 143.534 1.000 0.125 0.255 0.000 0.009 0.344 600 143.534 1.000 0.150 0.287 0.000 0.006 0.239 700 143.534 1.000 0.175 0.318 0.000 0.004 0.176 800 143.534 1.000 0.200 0.347 0.000 0.003 0.134 900 143.534 1.000 0.225 0.375 0.000 0.002 0.106

    1000 143.534 1.000 0.250 0.402 0.000 0.001 0.086 ======== =========== ========= ======== ========== ========= ========== ========== ============= ================== ======== =========TABLE 1 - VELOCITY AND HEADLOSSES FOR DIFFERENT PIPE SIZES--------------- ------------------- ---------------- -------------- ----------------- --------------- ----------------- ----------------- ----------------------- ------------------------------- -------------- ---------------

    Total head(m) for 265.00 m lengthSl. Pipe Frictional Head Velocity in including 28.00 m static head

    No. Size loss per m/s ------ --------- --------- --------- --------- --------- in 1000 m 1st stage flow 2nd stage flow mm ---------------- -------------- ------- --------- -------- ------- --------- ---------

    1st 2nd 1st 2nd Frict- Total Frict- Total stage stage stage stage ional Other* losses ional Other* losses flow flow flow flow loss losses H1 loss losses H2

    --------------- ------------------- ---------------- -------------- ----------------- --------------- ----------------- ----------------- ----------------------- ------------------------------- -------------- ---------------1 250 5.279 6.026 1.279 1.376 1.399 0.140 29.539 1.597 0.160 29.757 2 300 2.196 2.507 0.888 0.956 0.582 0.058 28.640 0.664 0.066 28.731 3 350 1.046 1.195 0.653 0.702 0.277 0.028 28.305 0.317 0.032 28.348 4 400 0.551 0.628 0.500 0.538 0.146 0.015 28.160 0.167 0.017 28.183 5 450 0.312 0.357 0.395 0.425 0.083 0.008 28.091 0.095 0.009 28.104 6 500 0.188 0.215 0.320 0.344 0.050 0.005 28.055 0.057 0.006 28.063 7 600 0.078 0.089 0.222 0.239 0.021 0.002 28.023 0.024 0.002 28.026 8 700 0.037 0.043 0.163 0.176 0.010 0.001 28.011 0.011 0.001 28.012 9 800 0.020 0.022 0.125 0.134 0.005 0.001 28.006 0.006 0.001 28.007

    10 900 0.011 0.013 0.099 0.106 0.003 0.000 28.003 0.003 0.000 28.004 11 1000 0.007 0.008 0.080 0.086 0.002 0.000 28.002 0.002 0.000 28.002

    --------------- >>> * Other losses = 10% of frictional loss

  • ======== =========== ========= ======== ========== ========= ========== ========== ============= ================== ======== =========TABLE 2 - KILOWATTS & COST OF PUMP SETS REQUIRED FOR DIFFERENT PIPE SIZES AND PIPE COST--------------- ------------------- ---------------- -------------- ----------------- --------------- ----------------- ----------------- ----------------------- ------------------------------- -------------- ---------------

    1st stage flow of 2nd stage flow of Cost Cost5.20 million liters/day 5.59 million liters/day of of

    -------- --------- --------- -------- --------- --------- pipe 265Sl. PIPE Class H1 Kw Pump H2 Kw Pump per meter

    No. Size of Total req'd Cost @ Rs Total req'd Cost @ Rs unit pipe in PIPE head 25000.00 head plus % 25000.00 length line mm in per kw in 50 per kw THS

    meters standby Rs THS meters standby Rs THS ( Rs ) ( Rs )--------------- ------------------- ---------------- -------------- ----------------- --------------- ----------------- ----------------- ----------------------- ------------------------------- -------------- ---------------

    1 250 K7 29.54 38 949 29.76 41 1,028 2,005 531 2 300 K7 28.64 37 920 28.73 40 993 2,543 674 3 350 K7 28.31 36 909 28.35 39 980 3,197 847 4 400 K7 28.16 36 905 28.18 39 974 3,833 847 5 450 K7 28.09 36 902 28.10 39 971 4,547 1,205 6 500 K7 28.05 36 901 28.06 39 970 5,325 1,411 7 600 K7 28.02 36 900 28.03 39 969 7,015 1,859 8 700 K7 28.01 36 900 28.01 39 968 9,622 2,550 9 800 K7 28.01 36 900 28.01 39 968 12,550 3,326

    10 900 K7 28.00 36 900 28.00 39 968 15,314 4,058 11 1000 K7 28.00 36 900 28.00 39 968 18,354 4,864

    plus 50%

  • TABLE 3 - COMPARATIVE STATEMENT OF OVERALL COST OF PUMPING MAIN FOR DIFFERENT PIPE SIZES--------------- ------------------- ---------------- -------------- ----------------- --------------- ----------------- ----------------- ----------------------- ------------------------------- -------------- ---------------

    1st stage flow 5.20 mld 2nd stage flow 5.59 mld ------ --------- --------- --------- ------ --------- --------- --------- GRAND

    TOTAL of

    Cost Annual Capital- Capital- Cost Annual Capital- Capital- Initial PIPE Capital- of Energy ised ised of Energy ised ised Capital SIZE ised

    Sl. pump Charges Energy Total pump Charges Energy Total Investment in costNo. sets Charges Cost sets Charges Cost for pumpsets (mm) for

    & annual ele ct. Charges 30 yrs THS THS THS THS THS THS THS THS THS THS ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs )

    ---------- ------------------- ---------------- -------------- ----------------- --------------- ----------------- ----------------- ----------------------- -------------- ---------------1 949 976 7,423 8,372 1,028 1,054 8,016 9,045 2,165 250 11,069 2 920 946 7,197 8,117 993 1,018 7,740 8,733 2,091 300 11,802 3 909 935 7,113 8,022 980 1,004 7,637 8,616 2,063 350 11,841 4 905 930 7,077 7,981 974 998 7,592 8,566 2,051 400 11,784 5 902 928 7,059 7,962 971 995 7,571 8,542 2,045 450 12,114 6 901 927 7,050 7,951 970 994 7,560 8,530 2,042 500 12,306 7 900 926 7,042 7,942 969 993 7,550 8,519 2,039 600 12,741 8 900 925 7,039 7,939 968 992 7,546 8,514 2,038 700 13,427 9 900 925 7,038 7,937 968 992 7,545 8,513 2,038 800 14,201

    10 900 925 7,037 7,937 968 992 7,544 8,512 2,038 900 14,932 11 900 925 7,037 7,936 968 992 7,544 8,511 2,038 1,000 15,737 *** TABLE 3 shows that the most economical size of MAIN J16 - J17(Zone9) is :

    250 mm costing : CAPITALISED 11,069 thousands

  • Design of Least Cost Pipe Size : Pumping Transmission MainFrom: J16 To: J18

    ECONOMACAL SIZE OF CLEAR WATER RISING MAIN MAIN I N P U T D A T A PANIPAT From : J16 ===== ========= =========== ========== ============== ============== ======= ========

    To : J18 PANIPAT 1) Water requirement : Year Peak Discharge

    P I P E D A T AA. Initial 2011 3.37 mld -------- --------- --------- --------- --------B. Intermediate 2026 4.27 mld DIAMETER MATER- CLASS HWC RATEC. Ultimate 2041 6.89 mld MM. IAL Rs/M

    -------- --------- --------- --------- -------- 2) Pumping main LENGTH 532 M 250 DI K7 140 2005 3) Static head for pump ST.HEAD 28.00 M 300 DI K7 140 2543 4) Design period YEAR 30 yr. 350 DI K7 140 3197 5) Combined eff. of pump set EFF. % 75 % 400 DI K7 140 3833 6) Cost of pumping unit Rs./KW 25000 Rs 450 DI K7 140 4547 7) Interest rate INTEREST 10.00 % 500 DI K7 140 53258) Life of electric motor & pump set P.Yrs 15 yr. 600 DI K7 140 70159) Energy charges per kWh P/KWH 475 paise 700 DI K7 140 962210) Pumping hours for discharge PUMPING- 23 hrs 800 DI K7 140 12550

    at the end of 15 years HOURS 900 DI K7 140 153141000 DI K7 140 18354

    CALCULATIONS: 1st 15 years 2nd 15 years 1) Discharge at Start OF PERIOD 3.37 mld 4.27 mld 2) Discharge at the end of 15 yrs 4.27 mld 6.89 mld 3) Average Flow 46 lps 67 lps 4) Average Discharge 3.82 mld 5.58 mld 5) Avg.pumping hours during the period 20.58 hrs 18.63 hrs 6) KW required at combined 0.63 * H1 0.92 * H2 efficiency of pumping set 7) Avg annual charges for electrical energy Rs. 22465 * KW1 29705 * KW2

    Modified Hazen William's FormulaV= 143.534CR r0.6575 S0.5525h= [L(Q/CR)1.81 ]/[994.62D4.81]

  • Friction Head Loss (First 15 years)Dia. in mm L Q CR Q/CR (Q/CR)1.81 994.62 D D4.81 h( First 15 yrs)250mm 1000 0.046 1.000 0.046 0.004 994.620 0.250 0.001 3.021 300mm 1000 0.046 1.000 0.046 0.004 994.620 0.300 0.003 1.257 350mm 1000 0.046 1.000 0.046 0.004 994.620 0.350 0.006 0.599 400mm 1000 0.046 1.000 0.046 0.004 994.620 0.400 0.012 0.315 450mm 1000 0.046 1.000 0.046 0.004 994.620 0.450 0.021 0.179 500mm 1000 0.046 1.000 0.046 0.004 994.620 0.500 0.036 0.108 600mm 1000 0.046 1.000 0.046 0.004 994.620 0.600 0.086 0.045 700mm 1000 0.046 1.000 0.046 0.004 994.620 0.700 0.180 0.021 800mm 1000 0.046 1.000 0.046 0.004 994.620 0.800 0.342 0.011 900mm 1000 0.046 1.000 0.046 0.004 994.620 0.900 0.602 0.006 1000mm 1000 0.046 1.000 0.046 0.004 994.620 1.000 1.000 0.004 VelocityDia. in mm 143.534 CR r=A/P=D/4 r0.6575 S S0.5525 V

    250 143.534 1.000 0.063 0.162 0.003 0.041 0.940 300 143.534 1.000 0.075 0.182 0.001 0.025 0.653 350 143.534 1.000 0.088 0.202 0.001 0.017 0.479 400 143.534 1.000 0.100 0.220 0.000 0.012 0.367 450 143.534 1.000 0.113 0.238 0.000 0.008 0.290 500 143.534 1.000 0.125 0.255 0.000 0.006 0.235 600 143.534 1.000 0.150 0.287 0.000 0.004 0.163 700 143.534 1.000 0.175 0.318 0.000 0.003 0.120 800 143.534 1.000 0.200 0.347 0.000 0.002 0.092 900 143.534 1.000 0.225 0.375 0.000 0.001 0.073

    1000 143.534 1.000 0.250 0.402 0.000 0.001 0.059 Friction Head Loss (Second 15 years)Dia. in mm L Q CR Q/CR (Q/CR)1.81 994.62 D D4.81 h( Second 15 yrs)250mm 1000 0.067 1.000 0.067 0.008 994.620 0.250 0.001 5.996 300mm 1000 0.067 1.000 0.067 0.008 994.620 0.300 0.003 2.495 350mm 1000 0.067 1.000 0.067 0.008 994.620 0.350 0.006 1.189 400mm 1000 0.067 1.000 0.067 0.008 994.620 0.400 0.012 0.625 450mm 1000 0.067 1.000 0.067 0.008 994.620 0.450 0.021 0.355 500mm 1000 0.067 1.000 0.067 0.008 994.620 0.500 0.036 0.214 600mm 1000 0.067 1.000 0.067 0.008 994.620 0.600 0.086 0.089 700mm 1000 0.067 1.000 0.067 0.008 994.620 0.700 0.180 0.042 800mm 1000 0.067 1.000 0.067 0.008 994.620 0.800 0.342 0.022 900mm 1000 0.067 1.000 0.067 0.008 994.620 0.900 0.602 0.013 1000mm 1000 0.067 1.000 0.067 0.008 994.620 1.000 1.000 0.008

  • VelocityDia. in mm 143.534 CR r=A/P=D/4 r0.6575 S S0.5525 V

    250 143.534 1.000 0.063 0.162 0.006 0.059 1.373 300 143.534 1.000 0.075 0.182 0.002 0.036 0.953 350 143.534 1.000 0.088 0.202 0.001 0.024 0.700 400 143.534 1.000 0.100 0.220 0.001 0.017 0.536 450 143.534 1.000 0.113 0.238 0.000 0.012 0.424 500 143.534 1.000 0.125 0.255 0.000 0.009 0.343 600 143.534 1.000 0.150 0.287 0.000 0.006 0.238 700 143.534 1.000 0.175 0.318 0.000 0.004 0.175 800 143.534 1.000 0.200 0.347 0.000 0.003 0.134 900 143.534 1.000 0.225 0.375 0.000 0.002 0.106

    1000 143.534 1.000 0.250 0.402 0.000 0.001 0.086 ========== ========== ========== ========= ========== ========= =========== ========== ============== ============== ======= ========TABLE 1 - VELOCITY AND HEADLOSSES FOR DIFFERENT PIPE SIZES----------------- ------------------ ----------------- ---------------- ------------------ ---------------- ------------------- ------------------ ------------------------ ------------------------ ------------- --------------

    Total head(m) for 532.00 m lengthSl. Pipe Frictional Head Velocity in including 28.00 m static head

    No. Size loss per m/s ------ --------- --------- --------- --------- --------- in 1000 m 1st stage flow 2nd stage flow mm ---------------- -------------- ------- --------- -------- ------- --------- ---------

    1st 2nd 1st 2nd Frict- Total Frict- Total stage stage stage stage ional Other* losses ional Other* losses flow flow flow flow loss losses H1 loss losses H2

    ----------------- ------------------ ----------------- ---------------- ------------------ ---------------- ------------------- ------------------ ------------------------ ------------------------ ------------- --------------1 250 3.021 5.996 0.940 1.373 1.607 0.161 29.768 3.190 0.319 31.509 2 300 1.257 2.495 0.653 0.953 0.669 0.067 28.736 1.327 0.133 29.460 3 350 0.599 1.189 0.479 0.700 0.319 0.032 28.350 0.632 0.063 28.696 4 400 0.315 0.625 0.367 0.536 0.168 0.017 28.184 0.333 0.033 28.366 5 450 0.179 0.355 0.290 0.424 0.095 0.010 28.105 0.189 0.019 28.208 6 500 0.108 0.214 0.235 0.343 0.057 0.006 28.063 0.114 0.011 28.125 7 600 0.045 0.089 0.163 0.238 0.024 0.002 28.026 0.047 0.005 28.052 8 700 0.021 0.042 0.120 0.175 0.011 0.001 28.012 0.023 0.002 28.025 9 800 0.011 0.022 0.092 0.134 0.006 0.001 28.007 0.012 0.001 28.013

    10 900 0.006 0.013 0.073 0.106 0.003 0.000 28.004 0.007 0.001 28.007 11 1000 0.004 0.008 0.059 0.086 0.002 0.000 28.002 0.004 0.000 28.004

    ----------------- >>> * Other losses = 10% of frictional loss

  • ========== ========== ========== ========= ========== ========= =========== ========== ============== ============== ======= ========TABLE 2 - KILOWATTS & COST OF PUMP SETS REQUIRED FOR DIFFERENT PIPE SIZES AND PIPE COST----------------- ------------------ ----------------- ---------------- ------------------ ---------------- ------------------- ------------------ ------------------------ ------------------------ ------------- --------------

    1st stage flow of 2nd stage flow of Cost Cost3.82 million liters/day 5.58 million liters/day of of

    -------- --------- --------- -------- --------- --------- pipe 532Sl. PIPE Class H1 Kw Pump H2 Kw Pump per meter

    No. Size of Total req'd Cost @ Rs Total req'd Cost @ Rs unit pipe in PIPE head 25000.00 head plus % 25000.00 length line mm in per kw in 50 per kw THS

    meters standby Rs THS meters standby Rs THS ( Rs ) ( Rs )----------------- ------------------ ----------------- ---------------- ------------------ ---------------- ------------------- ------------------ ------------------------ ------------------------ ------------- --------------

    1 250 K7 29.77 28 702 31.51 43 1,086 2,005 1,067 2 300 K7 28.74 27 678 29.46 41 1,015 2,543 1,353 3 350 K7 28.35 27 669 28.70 40 989 3,197 1,701 4 400 K7 28.18 27 665 28.37 39 978 3,833 1,701 5 450 K7 28.10 27 663 28.21 39 972 4,547 2,419 6 500 K7 28.06 26 662 28.13 39 969 5,325 2,833 7 600 K7 28.03 26 661 28.05 39 967 7,015 3,732 8 700 K7 28.01 26 661 28.02 39 966 9,622 5,119 9 800 K7 28.01 26 661 28.01 39 965 12,550 6,677

    10 900 K7 28.00 26 661 28.01 39 965 15,314 8,147 11 1000 K7 28.00 26 661 28.00 39 965 18,354 9,764

    plus 50%

  • TABLE 3 - COMPARATIVE STATEMENT OF OVERALL COST OF PUMPING MAIN FOR DIFFERENT PIPE SIZES----------------- ------------------ ----------------- ---------------- ------------------ ---------------- ------------------- ------------------ ------------------------ ------------------------ ------------- --------------

    1st stage flow 3.82 mld 2nd stage flow 5.58 mld ------ --------- --------- --------- ------ --------- --------- --------- GRAND

    TOTAL of

    Cost Annual Capital- Capital- Cost Annual Capital- Capital- Initial PIPE Capital- of Energy ised ised of Energy ised ised Capital SIZE ised

    Sl. pump Charges Energy Total pump Charges Energy Total Investment in costNo. sets Charges Cost sets Charges Cost for pumpsets (mm) for

    & annual ele ct. Charges 30 yrs THS THS THS THS THS THS THS THS THS THS ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs ) ( Rs )

    ---------- ------------------ ----------------- ---------------- ------------------ ---------------- ------------------- ------------------ ------------------------ ------------- --------------1 702 669 5086 5789 1086 936 7119 8205 1964 250 88202 678 646 4910 5588 1015 875 6656 7671 1837 300 87783 669 637 4844 5513 989 852 6483 7472 1789 350 90034 665 633 4816 5481 978 843 6409 7386 1768 400 89505 663 631 4802 5465 972 838 6373 7345 1758 450 96436 662 630 4795 5457 969 835 6354 7324 1753 500 100447 661 630 4789 5450 967 833 6338 7305 1749 600 109318 661 629 4786 5447 966 832 6332 7298 1747 700 123139 661 629 4785 5446 965 832 6329 7295 1746 800 13869

    10 661 629 4785 5446 965 832 6328 7293 1746 900 1533911 661 629 4785 5445 965 832 6327 7292 1746 1000 16956*** TABLE 3 shows that the most economical size of MAIN J16 - J18 is :

    300 mm costing : CAPITALISED Rs. 8,778 thousands ==== ========== ========= =============================

  • Design of Least Cost Pipe Size : Pumping Transmission MainFrom: J18 To: J19 (Zone16)

    ECONOMACAL SIZE OF CLEAR WATER RISING MAIN MAIN I N P U T D A T A PANIPAT From : J18 ===== ========= =========== ========== ============= =============== ======= =======

    To : J19 (Zone16) PANIPAT 1) Water requirement : Year Peak Discharge

    P I P E D A T AA. Initial 2011 3.37 mld -------- --------- --------- --------- --------B. Intermediate 2026 4.27 mld DIAMETER MATER- CLASS HWC RATEC. Ultimate 2041 6.89 mld MM. IAL Rs/M

    -------- --------- --------- --------- -------- 2) Pumping main LENGTH 1716 M 250 DI K7 140 2005 3) Static head for pump ST.HEAD 28.00 M 300 DI K7 140 2543 4) Design period YEAR 30 yr. 350 DI K7 140 3197 5) Combined eff. of pump set EFF. % 75 % 400 DI K7 140 3833 6) Cost of pumping unit Rs./KW 25000 Rs 450 DI K7 140 4547 7) Interest rate INTEREST 10.00 % 500 DI K7 140 53258) Life of electric motor & pump set P.Yrs 15 yr. 600 DI K7 140 70159) Energy charges per kWh P/KWH 475 paise 700 DI K7 140 962210) Pumping hours for discharge PUMPING- 23 hrs 800 DI K7 140 12550

    at the end of 15 years HOURS 900 DI K7 140 153141000 DI K7 140 18354

    CALCULATIONS: 1st 15 years 2nd 15 years 1) Discharge at Start OF PERIOD 3.37 mld 4.27 mld 2) Average flow 4.27 mld 6.89 mld 3) Discharge at the end of 15 yrs 46 lps 67 lps4) Average Discharge 3.82 mld 5.58 mld5) Ave.pumping hours during the period 20.58 hrs 18.63 hrs6) KW required at combined 0.63 * H1 0.92 * H2 efficiency of pumping set7) Ave.annual charges for electrical energy Rs. 22465 * KW1 29705 * KW2

    Modified Hazen William's FormulaV= 143.534CR r0.6575 S0.5525h= [L(Q/CR)1.81 ]/[994.62D4.81]

  • Friction Head Loss (First 15 years)Dia. in mm L Q CR Q/CR (Q/CR)1.81 994.62 D D4.81 h( First 15 yrs)250mm 1000 0.046 1.000 0.046 0.004 994.620 0.250 0.001 3.021 300mm 1000 0.046 1.000 0.046 0.004 994.620 0.300 0.003 1.257 350mm 1000 0.046 1.000 0.046 0.004 994.620 0.350 0.006 0.599 400mm 1000 0.046 1.000 0.046 0.004 994.620 0.400 0.012 0.315 450mm 1000 0.046 1.000 0.046 0.004 994.620 0.450 0.021 0.179 500mm 1000 0.046 1.000 0.046 0.004 994.620 0.500 0.036 0.108 600mm 1000 0.046 1.000 0.046 0.004 994.620 0.600 0.086 0.045 700mm 1000 0.046 1.000 0.046 0.004 994.620 0.700 0.180 0.021 800mm 1000 0.046 1.000 0.046 0.004 994.620 0.800 0.342 0.011 900mm 1000 0.046 1.000 0.046 0.004 994.620 0.900 0.602 0.006 1000mm 1000 0.046 1.000 0.046 0.004 994.620 1.000 1.000 0.004 VelocityDia. in mm 143.534 CR r=A/P=D/4 r0.6575 S S0.5525 V

    250 143.534 1 0.063 0.162 0.003 0.041 0.940 300 143.534 1 0.075 0.182 0.001 0.025 0.653 350 143.534 1 0.088 0.202 0.001 0.017 0.479 400 143.534 1 0.100 0.220 0.000 0.012 0.367 450 143.534 1 0.113 0.238 0.000 0.008 0.290 500 143.534 1 0.125 0.255 0.000 0.006 0.235 600 143.534 1 0.150 0.287 0.000 0.004 0.163 700 143.534 1 0.175 0.318 0.000 0.003 0.120 800 143.534 1 0.200 0.347 0.000 0.002 0.092 900 143.534 1 0.225 0.375 0.000 0.001 0.073

    1000 143.534 1 0.250 0.402 0.000 0.001 0.059 Friction Head Loss (Second 15 years)Dia. in mm L Q CR Q/CR (Q/CR)1.81 994.62 D D4.81 h( Second 15 yrs)250mm 1000 0.067 1.000 0.067 0.008 994.620 0.250 0.001 5.996 300mm 1000 0.067 1.000 0.067 0.008 994.620 0.300 0.003 2.495 350mm 1000 0.067 1.000 0.067 0.008 994.620 0.350 0.006 1.189 400mm 1000 0.067 1.000 0.067 0.008 994.620 0.400 0.012 0.625 450mm 1000 0.067 1.000 0.067 0.008 994.620 0.450 0.021 0.355 500mm 1000 0.067 1.000 0.067 0.008 994.620 0.500 0.036 0.214 600mm 1000 0.067 1.000 0.067 0.008 994.620 0.600 0.086 0.089 700mm 1000 0.067 1.000 0.067 0.008 994.620 0.700 0.180 0.042 800mm 1000 0.067 1.000 0.067 0.008 994.620 0.800 0.342 0.022 900mm 1000 0.067 1.000 0.067 0.008 994.620 0.900 0.602 0.013 1000mm 1000 0.067 1.000 0.067 0.008 994.620 1.000 1.000 0.008

  • VelocityDia. in mm 143.534 CR r=A/P=D/4 r0.6575 S S0.5525 V

    250 143.534 1 0.063 0.162 0.006 0.059 1.373 300 143.534 1 0.075 0.182