24
PERFORMANCE CHARACTERISTIC OF THERMOELECTRIC MODULE NAZRI BIN MD DAUD UNIVERSITI TEKNOLOGI MALAYSIA

NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

PERFORMANCE CHARACTERISTIC OF THERMOELECTRIC MODULE

NAZRI BIN MD DAUD

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

PERFORMANCE CHARACTERISTIC OF THERMOELECTRIC MODULE

NAZRI BIN MD DAUD

A report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Mechanical)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

NOV 2007

Page 3: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

iii

ACKNOWLEDGEMENT Firstly, I would like to express my appreciation to Dr. Mazlan Bin Abdul

Wahid as my supervisor for giving a lot of guidance, advice and support. Thank you

also to Mr. Hanafi, Mr. Syukri, Mr. Hafiz and Mr. Faizal for your assistance in

providing some apparatus for experimental works

To my fellow postgraduate students thank you for your motivation and

advices. Lastly special thanks to my beloved wife and daughters in giving such as

tremendous encouragement and efforts.

Page 4: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

iv

ABSTRACT The purpose of this study is to determine the physical properties and

performance curves of the thermoelectric module. In order to do that a test rig has

been fabricated and 2 thermoelectric modules are tested which are TEC1-12705 and

CP1.4-71-06L. The voltage generated by the thermoelectric module and the

temperature difference are measured and by using some equations, physical

properties such as Seebeck coefficient α, Electrical resistance R and Thermal

conductivity Kt are obtained. These experiments data are then compared with the

manufacturer data. Performance curves are determined by testing the thermoelectric

module with 3 different heat sinks which are water cooling jacket, cooling fan with

fin and fin itself as a heat sink. Then by using some calculations, the values of P, QH

and COP are determined. Optimizations have been done to improve the performance

of thermoelectric module by studying the effect of different water flow rate in water

cooling jacket, different power supply of cooling fan and the different number of fin

and ratio between the fin area contacts to the thermoelectric module surface.

Page 5: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

v

ABSTRAK

Tujuan kajian ini ialah untuk mencari sifat fizikal dan lengkung prestasi bagi

modul termoelektrik. Untuk itu satu kelengkapan ujian telah difabrikasi dan 2 buah

modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang

dihasilkan oleh modul termoelektrik dan perbezaan suhu akan diukur dan dengan

menggunakan beberapa persamaan, pekali Seebeck α, Rintangan elektrik R dan

Konduktiviti terma Kt, telah diperolehi. Semua data eksperimen akan dibandingkan

dengan data daripada pihak pembuatan. Lengkung prestasi telah ditentukan dengan

melakukan ujian ke atas modul termoelektrik pada 3 pembuang haba yang berbeza

iaitu jaket air penyejuk, kipas penyejuk bersama sirip penyejuk dan pembuang haba

sirip penyejuk sahaja. Melalui pengiraan, nilai P, QH dan COP ditentukan. Prestasi

modul termoelektrik boleh diperbaiki dengan melakukan kajian terhadap kesan aliran

air dalam jaket air penyejuk, kesan perbezaan kuasa yang dibekalkan ke atas kipas

penyejuk dan bilangan sirip penyejuk dan nisbah luas sentuhan antara permukaan

sirip penyejuk dengan permukaan modul termoelektrik.

Page 6: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

vi

LIST OF CONTENTS

CHAPTER TITLE PAGE DECLARATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xiv

LIST OF SYMBOLS xvi

1 INTRODUCTION

1.1 Background 1

1.2 Objectives 4

1.3 Scopes 4

1.4 Problem statement 5

2 LITERATURE REVIEW

2.1 Thermoelectric Laws 6

2.2 Thermoelectric module 8

2.3 Thermoelectric effects 8

2.3.1 Seebeck Effect 8

2.3.2 Peltier Effect 9

2.3.3 Thomson Effect 10

Page 7: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

vii

2.4 Thermoelectric refrigeration 10

2.4.1 Description of a thermoelectric refrigeration 11

module

2.5 Thermoelectric generator 14

2.6 Thermoelectric cooling 16

2.7 Thermoelectric Materials 16

2.8 Figure of merit 18

2.9 Determination of physical properties of thermoelectric 18

module

3 RESEARCH METHODOLOGY

3.1 General Descriptions 19

3.2 Experiment 1: Determination of physical properties 20

which are Seebeck coefficient α, electric resistance R

and thermal conductivity, Kt.

3.2.1 Description of experiment 1 21

3.2.2 Experimental Procedure 21

3.3 Experiment 2a: Determination of performance curve 22

of the thermoelectric module by using water cooling jacket

in a vacuum chamber.

3.3.1 Description of experiment 2a 23

3.3.2 Experimental Procedure 24

3.4 Experiment 2b: Determination of performance curve 25

of the thermoelectric module by using cooling fan

as a heat sink.

3.4.1 Description of experiment 2b 26

3.4.2 Experimental Procedure 26

Page 8: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

viii

3.5 Experiment 2c: Determination of performance curve 27

of the thermoelectric module by using fin as a heat sink.

3.5.1 Experimental Procedure 28

3.6 Experiment 3a: Optimization of the performance of 29

thermoelectric module by studying the effect of

different water flow rate in water cooling jacket.

3.6.1 Experimental Procedure 29

3.7 Experiment 3b: Optimization of the performance of 30

thermoelectric module by studying the effect of different

power supply for cooling fan as a heat sink.

3.7.1 Experimental Procedure 30

3.8 Experiment 3c: Optimization of the performance of 31

thermoelectric module by studying the effect of different

number of fin and ratio between the fin area contacts to

the thermoelectric module surface

3.8.1 Experimental Procedure 31

4 RESULTS AND DISCUSSIONS

4.1 Result experiment 1 for thermoelectric module 32

model TEC1-12705

4.1.1 Determination of Seebeck coefficient, α 33

for TEC1-12705

4.1.2 Determination of Electrical resistance, R 34

for TEC1-12705

4.1.3 Determination of Thermal conductivity, Kt 34

for TEC1-12705

4.2 Result experiment 1 for thermoelectric module model 36

CP1.4-71-06L

4.2.1 Determination of Seebeck coefficient, α for 37

CP1.4-71-06L

Page 9: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

ix

4.2.2 Determination of Electric resistance, R 38

for CP1.4-71-06L

4.2.3 Determination of Thermal conductivity, Kt 38

for CP1.4-71-06L

4.3 Result experiment 2a: Performance curve of TEC1-12705 40

by using water cooling jacket in a vacuum chamber

4.4 Experiment 2a: Performance curve of CP1.4-71-06L 46

by using water cooling jacket in a vacuum chamber

4.5 Comparison performance between TEC1-12705 52

and CP1.4 71-06L in experiment 2a

4.6 Result experiment 2b:Performance curve of TEC1-12705 54

by using cooling fan as a heat sink.

4.7 Experiment 2b: Performance curve of CP1.4-71-06L 60

by using cooling fan as a heat sink.

4.8 Comparison performance between TEC1-12705 66

and CP1.4 71-06L in experiment 2b

4.9 Result experiment 2c:Performance curve of TEC1-12705 68

by using fin as a heat sink.

4.10 Experiment 2c: Performance curve of CP1.4 71-06L 74

by using fin as a heat sink.

4.11 Comparison performance between TEC1-12705 and 80

CP1.4 71-06L in experiment 2c

4.12 Result experiment 3a: Optimization of the performance of 82

thermoelectric module at different water flow rate

4.13 Result experiment 3b: Optimization the performance of 84

thermoelectric module at different power supply for

cooling fan

4.14 Result experiment 3c: Optimization the performance of 86

thermoelectric module at different number of fin

and the different ratio between the fin area contacts to

the thermoelectric module surface

Page 10: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

x

4.15 Comparison of COP for 3 different heat sinks which are 88

water cooling jacket, cooling fan and fin itself

for TE model : TEC1-12705

4.16 Discussions 90

5 CONCLUSIONS 98

REFERENCES

Page 11: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

xi

LIST OF TABLES

TABLE NO. TITLE PAGE 1 The values of TH-TL and the voltages generated by TEC1-12705 32

2 Specifications of TEC1-12705 [21] 35

3 Percentage error between experiment data and manufacturer data 35

4 The values of TH-TL and the voltages generated by CP1.4-71-06L 36

5 Specifications of CP1.4-71-06L [22] 39

6 Percentage error between experiment data and manufacturer data 39

7 Result experiment 2a for TEC1-12705 at QL=0W 40

8 Result experiment 2a for TEC1-12705 at QL=1.5W 40

9 Result experiment 2a for TEC1-12705 at QL=2.5W 41

10 Result experiment 2a for TEC1-12705 at QL=3.5W 41

11 Result experiment 2a for TEC1-12705 at QL=4.5W 41

12 Calculated P, QH and COP : TEC1-12705 at QL=0W (Experiment 2a) 42

13 Calculated P, QH and COP : TEC1-12705 at QL=1.5W (Experiment 2a) 42

14 Calculated P, QH and COP : TEC1-12705 at QL=2.5W (Experiment 2a) 42

15 Calculated P, QH and COP : TEC1-12705 at QL=3.5W (Experiment 2a) 43

16 Calculated P, QH and COP : TEC1-12705 at QL=4.5W (Experiment 2a) 43

17 Result experiment 2a for CP1.4-71-06L at QL=0W 46

18 Result experiment 2a for CP1.4-71-06L at QL=1.5W 46

19 Result experiment 2a for CP1.4-71-06L at QL=2.5W 47

20 Result experiment 2a for CP1.4-71-06L at QL=3.5W 47

21 Result experiment 2a for CP1.4-71-06L at QL=4.5W 47

22 Calculated P,QH and COP: CP1.4-71-06L at QL= 0W (Experiment 2a) 48

23 Calculated P,QH and COP: CP1.4-71-06L at QL= 1.5W (Experiment 2a) 48

24 Calculated P,QH and COP: CP1.4-71-06L at QL= 2.5W (Experiment 2a) 48

25 Calculated P,QH and COP: CP1.4-71-06L at QL= 3.5W (Experiment 2a) 49

Page 12: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

xii

26 Calculated P,QH and COP: CP1.4-71-06L at QL= 4.5W (Experiment 2a) 49

27 Result experiment 2b for TEC1-12705 at QL=0W 54

28 Result experiment 2b for TEC1-12705 at QL=1.5W 54

29 Result experiment 2b for TEC1-12705 at QL=2.5W 55

30 Result experiment 2b for TEC1-12705 at QL=3.5W 55

31 Result experiment 2b for TEC1-12705 at QL=4.5W 55

32 Calculated P,QH, and COP: TEC1-12705 at QL= 0W (Experiment 2b) 56

33 Calculated P,QH, and COP: TEC1-12705 at QL= 1.5W (Experiment 2b) 56

34 Calculated P,QH, and COP: TEC1-12705 at QL= 2.5W (Experiment 2b) 56

35 Calculated P,QH, and COP: TEC1-12705 at QL= 3.5W (Experiment 2b) 57

36 Calculated P,QH, and COP: TEC1-12705 at QL= 4.5W (Experiment 2b) 57

37 Result experiment 2b for CP1.4-71-06L at QL=0W 60

38 Result experiment 2b for CP1.4-71-06L at QL=1.5W 60

39 Result experiment 2b for CP1.4-71-06L at QL=2.5W 60

40 Result experiment 2b for CP1.4-71-06L at QL=3.5W 61

41 Result experiment 2b for CP1.4-71-06L at QL=4.5W 61

42 Calculated P,QH and COP: CP1.4-71-06L at QL= 0W (Experiment 2b) 62

43 Calculated P,QH and COP: CP1.4-71-06L at QL= 1.5W (Experiment 2b) 62

44 Calculated P,QH and COP: CP1.4-71-06L at QL= 2.5W (Experiment 2b) 62

45 Calculated P,QH and COP: CP1.4-71-06L at QL= 3.5W (Experiment 2b) 63

46 Calculated P,QH and COP: CP1.4-71-06L at QL= 4.5W (Experiment 2b) 63

47 Result experiment 2c for TEC1-12705 at QL=0W 68

48 Result experiment 2c for TEC1-12705 at QL=1.5W 68

Page 13: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

xiii

49 Result experiment 2c for TEC1-12705 at QL=2.5W 69

50 Result experiment 2c for TEC1-12705 at QL=3.5W 69

51 Result experiment 2c for TEC1-12705 at QL=4.5W 69

52 Calculated P,QH, and COP: TEC1-12705 at QL= 0W (Experiment 2c) 70

53 Calculated P,QH, and COP: TEC1-12705 at QL= 1.5W (Experiment 2c) 70

54 Calculated P,QH, and COP: TEC1-12705 at QL= 2.5W (Experiment 2c) 70

55 Calculated P,QH, and COP: TEC1-12705 at QL= 3.5W (Experiment 2c) 71

56 Calculated P,QH, and COP: TEC1-12705 at QL= 4.5W (Experiment 2c) 71

57 Result experiment 2c for CP1.4-71-06L at QL=0W 74

58 Result experiment 2c for CP1.4-71-06L at QL=1.5W 74

59 Result experiment 2c for CP1.4-71-06L at QL=2.5W 74

60 Result experiment 2c for CP1.4-71-06L at QL=3.5W 75

61 Result experiment 2c for CP1.4-71-06L at QL=4.5W 75

62 Calculated P,QH and COP: CP1.4-71-06L at QL= 0W (Experiment 2c) 76

63 Calculated P,QH and COP: CP1.4-71-06L at QL= 1.5W (Experiment 2c) 76

64 Calculated P,QH and COP: CP1.4-71-06L at QL= 2.5W (Experiment 2c) 76

65 Calculated P,QH and COP: CP1.4-71-06L at QL= 3.5W (Experiment 2c) 77

66 Calculated P,QH and COP: CP1.4-71-06L at QL= 4.5W (Experiment 2c) 77

67 Result experiment 3a : TEC1-12705 for flow rate = 6.62cm3/s 82

68 Calculated P, QH and COP: TEC1-12705 for flow rate =6.62cm3/s 82

69 Result experiment 3a: TEC1-12705 for flow rate =2.32cm3/s 83

70 Calculated P, QH and COP: TEC1-12705 for flow rate=2.32cm3/s 83

71 Result experiment 3b: TEC1-12705 for cooling fan power = 2.28W 84

72 Calculated P, QH and COP: TEC1-12705 for cooling fan power =2.28W 84

73 Result experiment 3b: TEC1-12705 for cooling fan power = 1.92W 85

74 Calculated P, QH and COP: TEC1-12705 for cooling fan power =1.92W 85

75 Result experiment 3c: TEC1-12705 for fin size = 130x110x15 86

76 Calculated P, QH and COP: TEC1-12705 for fin size = 130x110x15 86

77 Result experiment 3c: TEC1-12705 for fin size = 110x100x15 87

78 Calculated P, QH and COP:TEC1-12705 for fin size = 110x100x15 87

79 Physical properties for TEC1-12705 and CP1.4-71-06L 91

Page 14: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1 Schematic diagram of the thermoelectric properties of a thermocouple 7

in terms of its component thermo elements

2 Simple thermocouples circuit to illustrate Seebeck effect 8

3 Thermocouples circuit after modification to illustrate Peltier effect 10

4 Typical thermoelectric module designs : (a) single-stage module, (b) 12

multistage module

5 Schematic diagram of thermoelectric generator 15

6 Typical figure of merit Z for several TE materials at various 17

temperatures[13]

7 Schematic diagram for experiment 1 20

8 Schematic diagram for experiment 2a 22

9 Schematic diagram for experiment 2b 25

10 Schematic diagram for experiment 2c 27

11 Graph voltage vs TH-TL for TEC1-12705 33

12 Graph voltage vs TH-TL for CP1.4-71-06L 37

13 Graph TH-TL vs I at different QL for TEC1-12705 (Experiment 2a) 44

14 Graph COP vs I at different QL for TEC1-12705 (Experiment 2a) 44

15 Graph QH vs I at different QL for TEC1-12705 (Experiment 2a) 45

16 Graph TH-TL vs I at different QL for CP1.4-71-06L (Experiment 2a) 50

17 Graph COP vs I at different QL for CP1.4-71-06L (Experiment 2a) 50

18 Graph QH vs I at different QL for CP1.4-71-06L (Experiment 2a) 51

19 Graph COP vs I for 2 TE Modules at QL=4.5W (Experiment 2a) 52

20 Graph COP vs I for 2 TE Modules at QL=3.5W (Experiment 2a) 52

21 Graph COP vs I for 2 TE Modules at QL=2.5W (Experiment 2a) 53

22 Graph COP vs I for 2 TE Modules at QL=1.5W (Experiment 2a) 53

Page 15: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

xv

23 Graph TH-TL vs I at different QL for TEC1-12705 (Experiment 2b) 58

24 Graph COP vs I at different QL for TEC1-12705 (Experiment 2b) 58

25 Graph QH vs I at different QL for TEC1-12705 (Experiment 2b) 59

26 Graph TH-TL vs I at different QL for CP1.4-71-06L (Experiment 2b) 64

27 Graph COP vs I at different QL for CP1.4-71-06L (Experiment 2b) 64

28 Graph QH vs I at different QL for CP1.4-71-06L (Experiment 2b) 65

29 Graph COP vs I for 2 TE Modules at QL=1.5W (Experiment 2b) 66

30 Graph COP vs I for 2 TE Modules at QL=2.5W (Experiment 2b) 66

31 Graph COP vs I for 2 TE Modules at QL=3.5W (Experiment 2b 67

32 Graph COP vs I for 2 TE Modules at QL=4.5W (Experiment 2b) 67

33 Graph TH-TL vs I at different QL for TEC1-12705 (Experiment 2c) 72

34 Graph COP vs I at different QL for TEC1-12705 (Experiment 2c) 72

35 Graph QH vs I at different QL for TEC1-12705 (Experiment 2c) 73

36 Graph TH-TL vs I at different QL for CP1.4-71-06L (Experiment 2c) 78

37 Graph COP vs I at different QL for CP1.4-71-06L (Experiment 2c) 78

38 Graph QH vs I at different QL for CP1.4-71-06L (Experiment 2c) 79

39 Graph COP vs I for 2 TE Modules at QL=1.5W (Experiment 2c) 80

40 Graph COP vs I for 2 TE Modules at QL=2.5W (Experiment 2c) 80

41 Graph COP vs I for 2 TE Modules at QL=3.5W (Experiment 2c) 81

42 Graph COP vs I for 2 TE Modules at QL=4.5W (Experiment 2c) 81

43 Graph COP vs I at different flow rate for TEC1-12705 83

44 Graph COP vs I for TEC1-12705 at different cooling fan power 85

45 Graph COP vs I for TEC1-12705 at different size of fin 87

46 Graph COP vs I for TEC1-12705 at different heat sink (QL=4.5W) 88

47 Graph COP vs I for TEC1-12705 at different heat sink (QL=3.5W) 88

48 Graph COP vs I for TEC1-12705 at different heat sink (QL=2.5W) 89

49 Graph COP vs I for TEC1-12705 at different heat sink (QL=1.5W) 89

50 Graph voltage versus the temperature difference [1] 90

51 Simulation measured performance curves of the thermoelectric 92

module DT [3]

52 Simulation result for COP vs I for thermoelectric module DT [3] 93

Page 16: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

xvi

LIST OF SYMBOLS

COP - Coefficient of performance

I - current through the thermoelectric module ( A )

P - electric power supplied to the thermoelectric module ( W )

R - total electrical resistance of thermoelectric module ( Ω )

V - voltage to the thermoelectric module ( V )

Z - figure of merit of thermoelectric module (°C -1 )

ΔT - temperature difference (°C)

dT

dEAB - relative Seebeck coefficient of thermo element A and B

α - Seebeck coefficient of the thermoelectric module ( V°C-1 )

π - Peltier coefficient (V)

Kt - total thermal conductivity of thermoelectric module ( W°C-1 )

QL - cooling capacity (W)

QH - heating capacity (W)

TH - hot-end temperature of the thermoelectric module (°C )

TL - cold-end temperature of the thermoelectric module (°C )

ρ - electrical resistivity ( Ω-m )

PA - cross section area of p type (m2)

nA - cross section area of n type (m2)

ABE - emf along conductor thermo element AB

0T - temperature reference (°C)

1T - temperature at point 1 (°C)

2T - temperature at point 2 (°C)

3T - temperature at point 3 (°C)

Aα - Seebeck coefficient at thermo element A ( V°C-1 )

Page 17: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

xvii

Bα - Seebeck coefficient at thermo element B ( V°C-1 )

Cα - Seebeck coefficient at thermo element C ( V°C-1 )

pα - Seebeck coefficient of p type ( V°C-1 )

nα - Seebeck coefficient of n type ( V°C-1 )

Pρ - electrical resistivity of p type ( Ω-m )

nρ - electrical resistivity of n type ( Ω-m )

nλ - thermal conductivity of n type ( W°C-1 )

pλ - thermal conductivity of p type ( W°C-1 )

Page 18: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

1

CHAPTER 1

INTRODUCTION 1.1 Background Basically thermoelectric module is a simple and unique device that converts

electrical energy into thermal energy or reverse. It has been used in various

applications such as to cool infrared detectors and to stabilize the temperature of

solid-state lasers. Furthermore thermoelectric is also one of the famous field in the

university courses and many researchers have been studied about it.

Yaakov [1] studied the Seebeck and Peltier effects in simple experiment with

thermoelectric module and data acquisition system. The experiment has a simple

method in order to determine the Seebeck coefficient, Peltier coefficient, efficiency

of thermoelectric generator and maximum temperature difference provided by Peltier

cooler.

Xu Xu et al [2] studied the performance of thermoelectric modules in active

building envelopes (ABE). Thermoelectric modules are tested as single

thermoelectric unit and in an assembly of eight thermoelectric units. For single unit

tests, two types of commercial thermoelectric modules are used which are CP1.4-

127-045L and PT4-12-40. Then each type is tested separately in a cooling and

heating mode at 3, 5 and 7V. The changes in current and temperature are measured

over a period of 2 until 12 hours.

Page 19: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

2

The thermal performance of thermoelectric module depends on physical

properties such as the Seebeck coefficient α, the electric resistance R and the thermal

conductivity, Kt.. B.J. Huang et al [3] reported that the manufacturer of thermoelectric

module usually does not provide the correct physical properties of thermoelectric

module to their customer. An automatic test apparatus has been designed to find the

correct physical properties. From that experiment data and by using several

equations, then the performance curves of thermoelectric module are obtained.

Y.J.Dai et al [4] studied on the thermoelectric refrigerator that driven by a

solar cells. The experiment is conducted by making a prototype which consist a solar

cell driven, thermoelectric refrigerator, controller, storage battery and rectifier. In the

end it focused on testing the performance of the daytime used solar driven

thermoelectric refrigerator without the need of battery.

S.Maneewan et al [5] reported about the investigation of the thermoelectric

roof solar collector (TE-RSC) for power generation using solar energy. Ten

thermoelectric cooling modules (model: TEC1-12708) are used in that experiment.

A optimization of heat and cold sink extenders has been studied by Paul G.

Lau et al [6] in thermoelectric cooling assemblies. The thermoelectric module is

tested by using heat sink extender and cold sink extender.

Instead of experimental investigations, several numerical studies also have

been conducted by other researchers such as L.N Vikhor et al [7], A Chakraborty et

al [8] and Lingen Chen et al [9].

L.N Vikhor et al [7] used the methods of optimal control theory to determine

the optimal parameter values for thermoelectric coolers BiTe-based with single,

double and three-segmented legs.

Meanwhile, A Chakraborty et al [8] studied the temperature-entropy analysis

starting from the principle of thermodynamics of thermoelectricity, differential

governing equations that describing the entropy and energy flows in the

thermoelectric element.

Page 20: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

3

The effects of heat transfer on the performance of thermoelectric generators

are analyzed by Lingen Chen et al [9]. The paper reported that the heat transfer

irreversibility does affect the performance of thermoelectric generator.

In U.K and Lebanon, R.Y. Nuwayhid et al [10] designed a low cost stove-top

thermoelectric generator with unreliable electric supply to be used especially during

the winter. The current generator that using peltier module has been re-designed in

order to produce the maximum power.

K.A. Moores, Y.K. Joshi and G. Miller [11] examined the performance of

thermoelectric coolers for used in electronic system and applications in high

temperature conditions. A commercially available thermoelectric cooling has been

used and the experiment it shows that the differential temperature decline slowly and

steadily due to test durations. The type is similar for module voltage as well.

Gao Min and D.M. Rowe [12] conducted the experiment to evaluate the

prototype thermoelectric refrigerators in terms of heat-pumping capacity, cooling-

down rate and coefficient of performance. The results indicate that the COP increases

if the module contact resistance, thermal interfaces and heat exchangers are effective

and in the good conditions.

Page 21: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

4

1.2 Objectives The objectives of this project are 1. To determine the physical properties and performance curves of

thermoelectric module

2. To optimize the operation of thermoelectric module experimentally

1.3 Scopes This is an experimental study where the test rig has to be fabricated in order

to achieve the objectives of the project. The scopes are covered by 3 parts

and listed as follows:

1. Study on the thermoelectric module principle theory.

2. Determination of performance curve and physical properties of the

thermoelectric module by using some related equations. Comparison between

the experimental data and manufacturer data will be made.

3. Optimize experimentally some parameters that important to increase the

performance of thermoelectric module such as power applied, size, cooling

system that involved in the experiment or thermoelectric material itself.

Page 22: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

5

1.4 Problem statement Theoretically thermal performance of thermoelectric module depends on the

physical properties such as the Seebeck coefficient α, the electric resistance R and

the thermal conductivity, Kt But usually the manufacturer of thermoelectric module

does not provide this kind of data for their customer or the given data are not

accurate because of the variation of manufacturing process. So in order to determine

the physical properties of thermoelectric module, an experimental apparatus has been

fabricated. Finally by knowing that data we can measure the thermal performance of

the thermoelectric module by using some equations that related. Optimization need

to be done experimentally to increase the performance of thermoelectric module.

Page 23: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

100

REFERENCES

[1] Yaakov Kraftmakher, Simple experiment with a thermoelectric module, Eur.

J. Phys. 26 (2005) 959-967

[2] Xu Xu, Steven Van Dessel and Achille Messac, Study of the performance of

thermoelectric modules for use in active building envelopes (2005)

[3] B. J. Huang, C.J Chin and C.L Duang, A design method of thermoelectric

cooler, International Journal of Refrigeration 23 (2000) 208-218

[4] Y.J.Dai, R.Z.Wang and L.Ni, Experimental investigation on a thermoelectric

refrigerator driven by solar cells, Renewable energy 28 (2003) 949-959

[5] S.Maneewan, J. Khedari, B. Zeghmati, J. Hirunlabh and J. Eakburanawat,

Investagation on generated power of thermoelectric roof solar collector,

Renewable energy 29 (2004) 743-752

[6] Paul G. Lau, Todd M.Ritzer and Richard J. Buist, Thermodynamic

optimization of heat and cold sink extenders in thermoelectric cooling

assemblies, TE Technology Inc.

[7] L.N.Vikhor and L.I.Anatychuk, Theoretical evaluation of maximum

temperature difference in segmented thermoelectric coolers, Applied Thermal

Engineering 26 (2006) 1692-1696

[8] A.Chakraborty, B.B.Saha, S.Koyama and K.C.Ng, Thermodynamic modeling

of a solid state thermoelectric cooling device: Temperature-entropy analysis,

International Journal of Heat and Mass Transfer 49 (2006) 3547-3554

[9] Lingen Chen, Jianzheng Gong, Fengrui Sun and Chih Wu, Effect of heat

transfer on the performance of the thermoelectric generators, Int. J. Therm.

Sci. 41 (2002) 95-99

[10] R.Y. Nuwayhid, D.M. Rowe and G.Min, Low cost stove-top thermoelectric

generator for regions with unreliable electricity supply, Renewable energy 28

(2003) 205-222

[11] K.A. Moores, Y.K. Joshi and G.Miller, Performance assessment of

thermoelectric coolers for use in high temperature electronic application,

International Conference on thermoelectric, Baltimore, MD, September 1999.

[12] Gao Min, D.M. Rowe, Experimental evaluation of prototype thermoelectric

domestic-refrigerators, Applied energy 83 (2006) 133-152

[13] D.M. Rowe, CRC Handbook of thermoelectrics, 1995

Page 24: NAZRI BIN MD DAUDeprints.utm.my/id/eprint/17953/1/NazriMdDaudMFKM2007.pdf · modul termoelektrik iaitu TEC1-12705 dan CP1.4-71-06L telah diuji. Voltan yang dihasilkan oleh modul termoelektrik

101

[14] www.ferrotec.com

[15] Goldsmid, H.J., Electronic Refrigeration, Pion, London, 1986

[16] Ioffe, A.F, Semiconductor Thermo elements and the Thermoelectric Cooling,

Infosearch, London, 1957

[17] www.melcor.com

[18] H.J. Goldsmid, Thermoelectric refrigeration, 1964

[19] Drabble, J.R. and Goodman, C.H.L., J. Phys. Chem. Solids 5, 142 (1958)

[20] Harman, T.C., Logan, M.J., and Goering, H.L., J. Phys. Chem. Solids 7, 228

(1958)

[21] Specifications of TE Module Model TEC1-12705

[22] Specifications of CP1.4-71-06L

[23] S.B. Riffat and Xiaoli Ma, Improving the coefficient of performance of

thermoelectric cooling systems: a review, Int. J. Energy Res. 2004; 28:753-

768

[24] S.B. Riffat and Xiaoli Ma, Optimum selection (design) of thermoelectric

modules for large capacity heat pump applications, Int. J. Energy Res. 2004;

28:1231-1242