23
Supplementary Figure 1 HyCoSuL synthesis and quality control exemplified with the P2 sublibrary. P2 HyCoSuL sublibrary contains amino acids mixtures at P3 and P4 positions. To test whether the coupling of isokinetic mixture provided the equal distribution of amino acids in P3 (and P4) position an Edman degradation can be utilized. After coupling and de- protection of P3 position (steps 38-44) several beads are subjected for the analysis in order to determine the molar distribution of amino acids at the N-terminal end of a peptide. The same procedure can be applied to test the equimolar coupling of amino acids mixture to the P4 position. Nature Protocols: doi:10.1038/nprot.2017.091

Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

Supplementary Figure 1

HyCoSuL synthesis and quality control exemplified with the P2 sublibrary.

P2 HyCoSuL sublibrary contains amino acids mixtures at P3 and P4 positions. To test whether the coupling of isokinetic mixture provided the equal distribution of amino acids in P3 (and P4) position an Edman degradation can be utilized. After coupling and de-protection of P3 position (steps 38-44) several beads are subjected for the analysis in order to determine the molar distribution of amino acids at the N-terminal end of a peptide. The same procedure can be applied to test the equimolar coupling of amino acids mixture to the P4 position.

Nature Protocols: doi:10.1038/nprot.2017.091

Page 2: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

Supplementary Figure 2

HR-MS and RP-HPLC analysis of ACC-labeled legumain substrate containing unnatural amino acids.

Substrate was synthesized according to standard solid phase Fmoc/Boc strategy, and purified using reverse phase high performance (pressure) liquid chromatography (RP-HPLC) Waters system with semi-preparative C18 column. The purity of the substrate was confirmed using the analytical HPLC with C18 analytical column (UV detector, 220nm). The molecular mass of the substrate was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module.

Nature Protocols: doi:10.1038/nprot.2017.091

Page 3: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

Supplementary Figure 3

HR-MS and RP-HPLC analysis of biotin-6-ahx-DTyr(tBu)-Tic-Ser(tBu)-COOH.

Peptide was synthesized according to the strategy presented in the main protocol (Block A, steps 100-124), and used without further purification. The purity of the peptide was confirmed using analytical HPLC (UV detector, C8 column, 220nm). The molecular mass of the peptide was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module.

Nature Protocols: doi:10.1038/nprot.2017.091

Page 4: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

Supplementary Figure 4

HR-MS and RP-HPLC analysis of Boc-Asp(Bzl)-AOMK.

AOMK warhead was synthesized according to the strategy presented in the main protocol (Block B, steps 125-137), and purified via extraction. The purity of the product warhead was confirmed using analytical HPLC (UV detector, C8 column, 220nm). The molecular mass of the compound was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module.

Nature Protocols: doi:10.1038/nprot.2017.091

Page 5: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

Supplementary Figure 5

HR-MS and RP-HPLC analysis of biotin-labeled legumain activity containing unnatural amino acids.

Probe was synthesized according to the strategy presented in the main protocol (Block C, steps 138-151), and purified using reverse phase high performance (pressure) liquid chromatography (RP-HPLC) Waters system with semi-preparative C8 column. The purity of the probe was confirmed using analytical HPLC with C8 column (UV detector, 220nm). The molecular mass of the substrate was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module. Since the probe is more hydrophobic than the substrate, we used C8 (instead of C18) column to purify and analyze.

Nature Protocols: doi:10.1038/nprot.2017.091

Page 6: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

No Name and code Structure before synthesis Structure after

de-protection

1 L-alanine

L-Ala

2 L-arginine

L-Arg

3 L-asparagine

L-Asn

4 L-aspartic acid

L-Asp

5 L-glutamine

L-Gln

6 L-glutamic acid

L-Glu

7 glycine

Gly

Nature Protocols: doi:10.1038/nprot.2017.091

Page 7: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

8 L-histidine

L-His

9 L-isoleucine

L-Ile

10 L-leucine

L-Leu

11 L-lysine

L-Lys

12 L-norleucine

L-Nle

13 L-phenylalanine

L-Phe

14 L-proline

L-Pro

15 L-serine

L-Ser

16 L-threonine

L-Thr

Nature Protocols: doi:10.1038/nprot.2017.091

Page 8: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

17 L-tryptophan

L-Trp

18 L-tyrosine

L-Tyr

19 L-valine

L-Val

20 L-methionine

L-Met

21 D-alanine

D-Ala

22 D-arginine

D-Arg

23 D-asparagine

D-Asn

24 D-aspartic acid

D-Asp

Nature Protocols: doi:10.1038/nprot.2017.091

Page 9: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

25 D-glutamine

D-Gln

26 D-glutamic acid

D-Glu

27 D-histidine

D-His

28 D-leucine

D-Leu

29 D-lysine

D-Lys

30 D-phenylalanine

D-Phe

31 D-proline

D-Pro

Nature Protocols: doi:10.1038/nprot.2017.091

Page 10: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

32 D-serine

D-Ser

33 D-phenylglycine

D-Phg

34 D-threonine

D-Thr

35 D-tryptophan

D-Trp

36 D-tyrosine

D-Tyr

37 D-valine

D-Val

38 D-homophenylalanine

D-hPhe

39 beta-alanine

-Ala

Nature Protocols: doi:10.1038/nprot.2017.091

Page 11: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

40 L-azetidine

L-Aze

41 L-4-hydroxyproline

L-Hyp

42

O-benzyl-L-4-

hydroxyproline

L-Hyp(Bzl)

43 L-thiazolidine

L-Thz

44 L-octahydroindole

L-Oic

45 L-indoline

L-Idc

46 L-piperidine

L-Pip

47

L-1,2,3,4-

tetrahydroisoquinoline

L-Tic

48 dehydrohomoalanine

dhAbu

49 dehydroleucine

dhLeu

Nature Protocols: doi:10.1038/nprot.2017.091

Page 12: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

50 amino-L-alanine

L-Dap

51 amino-L-homoalanine

L-Dab

52

N--

(benzyloxycarbonyl)amino-

L-homoalanine

L-Dab(Z) or L-Dab(Cbz)

53 L-citrulline

L-Cit

54 L-homocitrulline

L-hCit

55 L-ornithine

L-Orn

56 N,N-dimethyl-L-lysine

L-Lys(Me)2

Nature Protocols: doi:10.1038/nprot.2017.091

Page 13: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

57 N-trifluoroacetyl-L-lysine

L-Lys(TFA)

58 N-acetyl-L-lysine

L-Lys(Ac)

59

N-2-chloro-

benzyloxycarbonyl-L-lysine

L-Lys(2-Cl-Z)

60 guanidino-L-alanine

L-Agp

61 guanidino-L-homoalanine

L-Agb

62 N-nitro-L-arginine

L-Arg(NO2)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 14: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

63

N,N-

di(benzyloxycarbonyl)-L-

arginine

L-Arg(Cbz)2

64 L-homoarginine

L-hArg

65 N(im)-benzyl-L-histidine

L-His(Bzl)

66

N(im)-benzyloxymethyl-L-

histidine

L-His(3-Bom)

67 4-amino-L-phenylalanine

L-Phe(4-NH2)

68

4-guanidino-L-

phenylalanine

L-Phe(4-guan)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 15: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

69 2-methyl-L-tryptophan

L-Trp(Me)

70 L-dihydrotryptophan

L-Dht

71

L-aspartic acid methyl

ester

L-Asp(Me)

72

L-aspartic acid cyclohexyl

ester

L-Asp(Chx)

73 L-aspartic acid benzyl ester

L-Asp(Bzl)

74

L-glutamic acid methyl

ester

L-Glu(Me)

75

L-glutamic acid cyclohexyl

ester

L-Glu(Chx)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 16: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

76

L-glutamic acid benzyl

ester

L-Glu(Bzl)

77 L-homoglutamic acid

L-Aad or L-hGlu

78 2-fluoro-L-phenylalanine

L-Phe(2-F)

79 3-fluoro-L-phenylalanine

L-Phe(3-F)

80 4-fluoro-L-phenylalanine

L-Phe(4-F)

81

3,4-difluoro-L-

phenylalanine

L-Phe(3,4-F2)

82

2,3,4,5,6-pentafluoro-L-

phenylalanine

L-Phe(F5)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 17: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

83 2-chloro-L-phenylalanine

L-Phe(2-Cl)

84 3-chloro-L-phenylalanine

L-Phe(3-Cl)

85 4-chloro-L-phenylalanine

L-Phe(4-Cl)

86

3,4-dichloro-L-

phenylalanine

L-Phe(3,4-Cl2)

87 4-bromo-L-phenylalanie

L-Phe(4-Br)

88 4-iodo-L-phenylalanine

L-Phe(4-I)

89 4-methyl-L-phenylalanine

L-Phe(4-Me)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 18: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

90 3-pyridyl-L-alanine

L-3-Pal

91 4-pyridyl-L-alanine

L-4-Pal

92 2-thienyl-L-alanine

L-Ala(2-thienyl)

93

3-(benzothiazol-2-yl)-L-

alanine

L-Ala(Bth)

94 3-benzothienyl-L-alanine

L-Bta

95 L-homoalanine

L-Abu

96

3-(benzothiazol-2-yl)-L-

homoalanine

L-Abu(Bth)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 19: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

97 O-acetyl-L-serine

L-Ser(Ac)

98 O-benzyl-L-serine

L-Ser(Bzl)

99 L-homoserine

L-hSer

100 O-benzyl-L-homoserine

L-hSer(Bzl)

101 O-benzyl-L-threonine

L-Thr(Bzl)

102 S-benzyl-L-cysteine

L-Cys(Bzl)

103

S-4-methyl-benzyl-L-

cysteine

L-Cys(4-MeBzl)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 20: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

104

S-4-methoxy-benzyl-L-

cysteine

L-Cys(4-MeOBzl)

105 L-methionine sulfoxide

L-Met(O)

106 L-methionine sulfone

L-Met(O)2

107 6-benzyloxy-L-norleucine

L-Nle(O-Bzl)

108 L-phenylglycine

L-Phg

109 L-homophenylalanine

L-hPhe

110 L-cyclohexylglycine

L-Chg

111 L-cyclohexylalanine

L-Cha

Nature Protocols: doi:10.1038/nprot.2017.091

Page 21: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

112 L-homocyclohexylalanine

L-hCha

113 2-indanyl-L-glycine

L-Igl

114 1-naphthyl-L-alanine

L-1-Nal

115 2-naphthyl-L-alanine

L-2-Nal

116 L-biphenylalanine

L-Bip

117 4-benzoyl-L-phenylalanine

L-Bpa

118 L-2-aminooctanoic acid

L-2-Aoc

119 L-homoleucine

L-hLeu

Nature Protocols: doi:10.1038/nprot.2017.091

Page 22: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

120 L-neopentyl-glycine

L-NptGly

121 L-norvaline

L-Nva

122 L-hydroxynorvaline

L-Hnv

123 L-tert-leucine

L-Tle

124 4-methyl-L-tyrosine

L-Tyr(Me)

125

4-(2,6-dichlorobenzyl)-L-

tyrosine

L-Tyr(2,6-Cl2-Bzl)

126 4-benzyl-L-tyrosine

L-Tyr(Bzl)

127

4-(2bromobenzyl)-L-

tyrosine

L-Tyr(2-Br-Bzl)

Nature Protocols: doi:10.1038/nprot.2017.091

Page 23: Nature Protocols: doi:10.1038/nprot.2017...unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino

128 L-homotyrosine

L-hTyr

129 4-methyl-L-homotyrosine

L-hTyr(Me)

Table 1 Structure of amino acids used in HyCoSuL synthesis. P1 Asp HyCoSuL contains 129 amino acids (19 natural and 110 unnatural). In the table we present the structures of Fmoc-protected amino acids used in the synthesis (left) and the structures of amino acids after Fmoc de-protection and TFA-assisted cleavage (right). Several protecting groups are TFA labile, thus the amino acids structures in the peptide library differ from the structures used for the synthesis. These groups are: Pbf (Arg), Trt (Asn, Gln, His), tBu (Asp, Glu, Ser, Thr, Trp, Tyr, Hyp, hGlu, hSer, Hnv, hTyr), and Boc (Lys, Dap, Dab, Orn, Agp, Agb, hArg, Phe-4-NH2, Phe-4-guan).

Nature Protocols: doi:10.1038/nprot.2017.091