95
Introduction Spending-Restricted Outcome Approximation Algorithm Nash Welfare, Market Equilibrium, and Stable Polynomials STOC 2019 tutorial 23 June 2019 Nima Anari Stanford University Jugal Garg University of Illinois at Urbana Champaign Vasilis Gkatzelis Drexel University Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

Nash Welfare, Market Equilibrium, and Stable Polynomials

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Nash Welfare, Market Equilibrium,and Stable Polynomials

STOC 2019 tutorial23 June 2019

Nima Anari Stanford UniversityJugal Garg University of Illinois at Urbana ChampaignVasilis Gkatzelis Drexel University

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Overview

First Section (9-10am)“Approximating the Nash Social Welfare with Indivisible Items”Vasilis Gkatzelis

Second Section (10-11am)“NSW Beyond Symmetric Agents with Additive Valuations”Jugal Garg

Coffee Break (11-11:20pm)

Third Section (11:20-12:20pm)“Nash Social Welfare and Stable Polynomials”Nima Anari

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Resource Allocation

Distribute a collection of items among a set of agents

Each agent has additive valuations

i

5

4

3

2

1

[vi1, vi2, vi3, vi4, vi5][15, 2, 4, 5, 3]

vi ({1}) = 15

vi ({2}) = 2

vi ({2, 3}) = 6

vi ({2, 3, 4}) = 11

vi ({2, 3, 4, 5}) = 14

Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Setting

Set N of n agents and set M of m indivisible items

For each agent i and item j : xij ∈ {0, 1}For each agent i : vi(x) =

∑j∈M xijvij

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[1,0,0,0,0]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Setting

Set N of n agents and set M of m indivisible items

For each agent i and item j : xij ∈ {0, 1}For each agent i : vi(x) =

∑j∈M xijvij

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[1,0,0,0,0]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Setting

Set N of n agents and set M of m indivisible items

For each agent i and item j : xij ∈ {0, 1}For each agent i : vi(x) =

∑j∈M xijvij

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[1,0,0,0,0]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Setting

Set N of n agents and set M of m indivisible items

For each agent i and item j : xij ∈ {0, 1}For each agent i : vi(x) =

∑j∈M xijvij

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[1,0,0,0,0]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Utilitarian Social Welfare

Maximize the utilitarian social welfare: maxx

∑i∈N

vi (x)

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Utilitarian Social Welfare

Maximize the utilitarian social welfare: maxx

∑i∈N

vi (x)

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Utilitarian Social Welfare

Maximize the utilitarian social welfare: maxx

∑i∈N

vi (x)

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Egalitarian Social Welfare [BS’06,AS’10,F’08,...]

Maximize the egalitarian social welfare: maxx

{mini∈N

vi (x)

}

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Egalitarian Social Welfare [BS’06,AS’10,F’08,...]

Maximize the egalitarian social welfare: maxx

{mini∈N

vi (x)

}

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Egalitarian Social Welfare [BS’06,AS’10,F’08,...]

Maximize the egalitarian social welfare: maxx

{mini∈N

vi (x)

}

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

Maximize the Nash social welfare: maxx

(∏i∈N

vi (x)

)1/n

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

Maximize the Nash social welfare: maxx

(∏i∈N

vi (x)

)1/n

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

Maximize the Nash social welfare: maxx

(∏i∈N

vi (x)

)1/n

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

Maximize the Nash social welfare: maxx

(∏i∈N

vi (x)

)1/n

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

Maximize the Nash social welfare: maxx

(∏i∈N

vi (x)

)1/n

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

Maximize the Nash social welfare: maxx

(∏i∈N

vi (x)

)1/n

2

1

8

7

6

5

4

3

2

1

[1,1,1,1,7,7,7,7]

[1,1,1,1,1,1,1,1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

The Nash SW objective satisfies highly desired properties:

Scale-independenceUsing v ′

ij = αivij for any αi > 0 does not affect the outcomeAvoids interpersonal comparability of individual’s preferences

Strikes a balance between fairness and efficiency

maxx

(1

n

∑i

[vi (x)]p

)1/p

Discovered by different communities:

Nash Bargaining [Nash ’50]

Proportional Fairness [Kelly ’97]

Competitive Equilibrium from Equal Incomes [Varian ’74]

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Nash Social Welfare

The Nash SW objective satisfies highly desired properties:

Scale-independenceUsing v ′

ij = αivij for any αi > 0 does not affect the outcomeAvoids interpersonal comparability of individual’s preferences

Strikes a balance between fairness and efficiency

maxx

(1

n

∑i

[vi (x)]p

)1/p

Discovered by different communities:

Nash Bargaining [Nash ’50]

Proportional Fairness [Kelly ’97]

Competitive Equilibrium from Equal Incomes [Varian ’74]

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Approximation Guarantee

Let x∗ be the integral allocation maximizing the Nash SW

Goal: Design algorithm computing an integral allocation x :(∏i∈N

vi (x)

)1/n

≥ 1

ρ·

(∏i∈N

vi (x∗)

)1/n

The first known algorithm achieved ρ ∈ Θ(m) [NR’14]

The problem is NP-hard even for two identical agents

In fact, this problem is APX-hard [L’15]

Theorem (CG’15, CDGJMVY’17)

There exists a poly-time algorithm that achieves ρ = 2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Approximation Guarantee

Let x∗ be the integral allocation maximizing the Nash SW

Goal: Design algorithm computing an integral allocation x :(∏i∈N

vi (x)

)1/n

≥ 1

ρ·

(∏i∈N

vi (x∗)

)1/n

The first known algorithm achieved ρ ∈ Θ(m) [NR’14]

The problem is NP-hard even for two identical agents

In fact, this problem is APX-hard [L’15]

Theorem (CG’15, CDGJMVY’17)

There exists a poly-time algorithm that achieves ρ = 2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Approximation Guarantee

Let x∗ be the integral allocation maximizing the Nash SW

Goal: Design algorithm computing an integral allocation x :(∏i∈N

vi (x)

)1/n

≥ 1

ρ·

(∏i∈N

vi (x∗)

)1/n

The first known algorithm achieved ρ ∈ Θ(m) [NR’14]

The problem is NP-hard even for two identical agents

In fact, this problem is APX-hard [L’15]

Theorem (CG’15, CDGJMVY’17)

There exists a poly-time algorithm that achieves ρ = 2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Resource AllocationNash Social WelfareApproximation Guarantee

Approximation Guarantee

Let x∗ be the integral allocation maximizing the Nash SW

Goal: Design algorithm computing an integral allocation x :(∏i∈N

vi (x)

)1/n

≥ 1

ρ·

(∏i∈N

vi (x∗)

)1/n

The first known algorithm achieved ρ ∈ Θ(m) [NR’14]

The problem is NP-hard even for two identical agents

In fact, this problem is APX-hard [L’15]

Theorem (CG’15, CDGJMVY’17)

There exists a poly-time algorithm that achieves ρ = 2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Program Formulation

This problem can be expressed as an integer program (IP):

maximize:

(∏i∈N

ui

)1/n

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xij ≤ 1, ∀j ∈ M

xij ∈ {0, 1}, ∀i ∈ N, j ∈ M

Observation

The integrality gap of the integer program IP is unbounded!

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Program Formulation

This problem can be expressed as an integer program (IP):

maximize:∑i∈N

log ui

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xij ≤ 1, ∀j ∈ M

xij ∈ {0, 1}, ∀i ∈ N, j ∈ M

Observation

The integrality gap of the integer program IP is unbounded!

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Program Formulation

This problem can be expressed as an integer program (IP):

maximize:∑i∈N

log ui

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xij ≤ 1, ∀j ∈ M

xij ≥ 0, ∀i ∈ N, j ∈ M

Observation

The integrality gap of the integer program IP is unbounded!

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Program Formulation

The relaxation of IP is equivalent to the Eisenberg-Gale program:

maximize:∑i∈N

log ui

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xij ≤ 1, ∀j ∈ M

xij ≥ 0, ∀i ∈ N, j ∈ M

Observation

The integrality gap of the integer program IP is unbounded!

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Program Formulation

The relaxation of IP is equivalent to the Eisenberg-Gale program:

maximize:∑i∈N

log ui

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xij ≤ 1, ∀j ∈ M

xij ≥ 0, ∀i ∈ N, j ∈ M

Observation

The integrality gap of the integer program IP is unbounded!

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Integrality Gap

Observation

The integrality gap of the integer program IP is unbounded!

n

...

2

1

m

...

3

2

1

[V, 1, . . . , 1]

[V, 1, . . . , 1]

[V, 1, . . . , 1]

Agents Items

1/n

1/n

1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Integrality Gap

Observation

The integrality gap of the integer program IP is unbounded!

n

...

2

1

m

...

3

2

1

[V, 1, . . . , 1]

[V, 1, . . . , 1]

[V, 1, . . . , 1]

Agents Items

1/n

1/n

1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Integrality Gap

Observation

The integrality gap of the integer program IP is unbounded!

n

...

2

1

m

...

3

2

1

[V, 1, . . . , 1]

[V, 1, . . . , 1]

[V, 1, . . . , 1]

Agents Items

1/n

1/n

1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Integrality Gap

Observation

The integrality gap of the integer program IP is unbounded!

n

...

2

1

m

...

3

2

1

[V, 1, . . . , 1]

[V, 1, . . . , 1]

[V, 1, . . . , 1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Integrality Gap

Observation

The integrality gap of the integer program IP is unbounded!

n

...

2

1

m

...

3

2

1

[V, 1, . . . , 1]

[V, 1, . . . , 1]

[V, 1, . . . , 1]

Agents Items

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Market Equilibrium Interpretation

Each agent is allocated a budget of $1 and item j has price pj

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$0.2

$0.2

$0.2

$0.4

$3

Agents Items

$1

$1

$1

$0.4

$0.2

$0.2

$0.2

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Program FormulationMarket EquilibriumSpending-Restricted Outcome

Spending-Restricted Outcome

Spending-Restricted outcome: at most $1 spent on any item

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

$2/3

$2/3

$2/3

$4/3

$10

Agents Items

$1

$1

$2/3

$1/3

$2/3

$1/3

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

Main Technical Contributions

The main technical contributions in the rest of the tutorial are:

1 SR outcome is computable in poly-time

2 SR outcome implies a better upper bound for OPT

3 SR outcome reveals useful information for rounding

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

1. Computing the SR outcome [CG’15]

Expressing the SR outcome via a convex program is not trivial:

Spending constraint combines primal and dual variables

Computed via complicated primal-dual algorithm in [CG’15]

maximize:∑i∈N

log ui

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xij = 1, ∀j ∈ M

xij ≥ 0, ∀i ∈ N, j ∈ M

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

1. Computing the SR outcome [CG’15]

Expressing the SR outcome via a convex program is not trivial:

Spending constraint combines primal and dual variables

Computed via complicated primal-dual algorithm in [CG’15]

maximize:∑i∈N

log ui

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xijpj = min{1,pj} ∀j ∈ M

xij ≥ 0, ∀i ∈ N, j ∈ M

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

1. Computing the SR outcome [CG’15]

Expressing the SR outcome via a convex program is not trivial:

Spending constraint combines primal and dual variables

Computed via complicated primal-dual algorithm in [CG’15]

maximize:∑i∈N

log ui

subject to:∑j∈M

xijvij = ui , ∀i ∈ N

∑i∈N

xijpj = min{1,pj} ∀j ∈ M

xij ≥ 0, ∀i ∈ N, j ∈ M

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

1. Computing the SR outcome [CDGJMVY’17]

An alternative “integer” program for the optimal NSW:

Let bij be the amount that agent i spends on item j

Let qj be the total amount spent on item j across all agents

max (∏

i ui )1/n s.t.

∀i , ui =∑

j xijvij

∀j ,∑

i xij = 1

∀i , j , xij ∈ {0, 1}.

max

(∏i

∏j v

bijij∏

j qqjj

)1/n

s.t.

∀j ,∑

i bij = qj

∀i ,∑

j bij = 1

∀i , j , qj ≤ 1, bij ∈ {0, qj}

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

1. Computing the SR outcome [CDGJMVY’17]

Solving the relaxation of this program yields the SR outcome!

Let bij be the amount that agent i spends on item j

Let qj be the total amount spent on item j across all agents

max (∏

i ui )1/n s.t.

∀i , ui =∑

j xijvij

∀j ,∑

i xij = 1

∀i , j , xij ∈ {0, 1}.

max

(∏i

∏j v

bijij∏

j qqjj

)1/n

s.t.

∀j ,∑

i bij = qj

∀i ,∑

j bij = 1

∀i , j , qj ≤ 1, bij ∈ [0, qj ]

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

2. Upper Bound [CG’15]

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

[2, 43 ,23 ,

23 ,

23 ]

[10, 0, 23 ,23 ,

23 ]

[10, 43 , 0, 0, 0]

[10, 0, 0, 0, 0]

$2/3

$2/3

$2/3

$4/3

$10

H

L

$1

$1

$2/3

$1/3

$1/3

$2/3

Theorem

For SR prices p and scaled vi :∏

i∈N vi (x∗) ≤

∏j∈H pj

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

2. Upper Bound [CG’15]

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

[2, 43 ,23 ,

23 ,

23 ]

[10, 0, 23 ,23 ,

23 ]

[10, 43 , 0, 0, 0]

[10, 0, 0, 0, 0]

$2/3

$2/3

$2/3

$4/3

$10

H

L

$1

$1

$2/3

$1/3

$1/3

$2/3

Theorem

For SR prices p and scaled vi :∏

i∈N vi (x∗) ≤

∏j∈H pj

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

2. Upper Bound [CG’15]

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

[2, 43 ,23 ,

23 ,

23 ]

[10, 0, 23 ,23 ,

23 ]

[10, 43 , 0, 0, 0]

[10, 0, 0, 0, 0]

$2/3

$2/3

$2/3

$4/3

$10

H

L

$1

$1

$2/3

$1/3

$1/3

$2/3

Theorem

For SR prices p and scaled vi :∏

i∈N vi (x∗) ≤

∏j∈H pj

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

2. Upper Bound [CG’15]

4

3

2

1

5

4

3

2

1

[3,2,1,1,1]

[15,0,1,1,1]

[15,2,0,0,0]

[15,0,0,0,0]

[2, 43 ,23 ,

23 ,

23 ]

[10, 0, 23 ,23 ,

23 ]

[10, 43 , 0, 0, 0]

[10, 0, 0, 0, 0]

$2/3

$2/3

$2/3

$4/3

$10

H

L

$1

$1

$2/3

$1/3

$1/3

$2/3

Theorem

For SR prices p and scaled vi :∏

i∈N vi (x∗) ≤

∏j∈H pj

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

2. Upper Bound [CG’15]

4

3

2

1

5

4

3

2

1

[10, 43 ,23 ,

23 ,

23 ]

[10, 43 ,23 ,

23 ,

23 ]

[10, 43 ,23 ,

23 ,

23 ]

[10, 43 ,23 ,

23 ,

23 ]

$2/3

$2/3

$2/3

$4/3

$10

H

L

$1

$1

$2/3

$1/3

$1/3

$2/3

Theorem

For SR prices p and scaled vi :∏

i∈N vi (x∗) ≤

∏j∈H pj

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

2. Upper Bound [CDGJMVY’17]

New program’s optimal value is equal to previous upper bound!

Normalizing so that vij = pj when bij > 0 gives∏i

∏j v

bijij∏

j qqjj

=

∏j p

∑i bij

j∏j q

qjj

=∏j

(pjqj

)qj

Then, observing that qj = pj if j ∈ L, and qj = 1 if j ∈ H:

∏j

(pjqj

)qj

=∏j∈L

1qj ·∏j∈H

pj =∏j∈H

pj

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

2. Upper Bound [CDGJMVY’17]

New program’s optimal value is equal to previous upper bound!

Normalizing so that vij = pj when bij > 0 gives∏i

∏j v

bijij∏

j qqjj

=

∏j p

∑i bij

j∏j q

qjj

=∏j

(pjqj

)qj

Then, observing that qj = pj if j ∈ L, and qj = 1 if j ∈ H:

∏j

(pjqj

)qj

=∏j∈L

1qj ·∏j∈H

pj =∏j∈H

pj

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

3. Spending Restricted Rounding Algorithm

a

a a a

a a a a

$1.3 $0.3

$1.5 $0.8 $0.9

The SRR algorithm:

1. Allocate leaf-items

2. Allocate low price items (pj ≤ 1/2)

3. Match remaining items to agents:

-Let vi (xp) be i ’s current value

-Change vij to log[vi (xp) + vij ]

-Add dummy items of value log[vi (xp)]

-Run maximum weight matching alg.

Theorem

The allocation x that the SRR algorithm computes satisfies:(∏i∈N

vi (x∗)

)1/n

≤ 2 ·

(∏i∈N

vi (x)

)1/n

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

Overview

First Section (9-10am)“Approximating the Nash Social Welfare with Indivisible Items”Vasilis Gkatzelis

Second Section (10-11am)“NSW Beyond Symmetric Agents with Additive Valuations”Jugal Garg

Coffee Break (11-11:20pm)

Third Section (11:20-12:20pm)“Nash Social Welfare and Stable Polynomials”Nima Anari

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials

IntroductionSpending-Restricted Outcome

Approximation Algorithm

Computing the SR outcomeUpper BoundSRR Algorithm

Thank you!

THANK YOU!

Nima Anari, Jugal Garg, and Vasilis Gkatzelis Nash Welfare, Market Equilibrium, and Stable Polynomials