20
NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008 Berrien Moore III Climate Central Princeton, NJ & University of New Hampshire Active Sensing of CO 2 Emissions over Nights, Days, & Seasons (ASCENDS)

NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

  • Upload
    anneke

  • View
    40

  • Download
    3

Embed Size (px)

DESCRIPTION

Active Sensing of CO 2 Emissions over Nights, Days, & Seasons (ASCENDS). Berrien Moore III Climate Central Princeton, NJ & University of New Hampshire. NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008. - PowerPoint PPT Presentation

Citation preview

Page 1: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

NASA Carbon Cycle & EcosystemsJoint Science Workshop28 April - 2 May 2008

Berrien Moore IIIClimate CentralPrinceton, NJ

&University of New Hampshire

Active Sensing of CO2 Emissions over Nights, Days, & Seasons (ASCENDS)

Page 2: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Active Sensing of CO2 Emissionsover Nights, Days, and Seasons (ASCENDS)

Launch: 2013-2016Mission Size: Medium

ASCENDS provides a highly precise global dataset for atmospheric CO2 column measurements without seasonal, latitudinal, or diurnal bias.

This will quantify the regional carbon sources/sinks and thereby increase understanding of the underlying mechanisms are central to prediction of future levels of CO2.

Page 3: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Orbiting Carbon Observatory - JPL

Page 4: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Anthropogenic C Emissions: Fossil Fuel

1990 - 1999: 1.3% y-1

2000 - 2006: 3.3% y-1

0

1

2

3

4

5

6

7

8

9

1850 1870 1890 1910 1930 1950 1970 1990 2010

Fossil Fuel Emission (GtC/y)

Emissions

280

300

320

340

360

380

400

1850 1870 1890 1910 1930 1950 1970 1990 2010

Atmoapheric [CO2] (ppmv)

Temperature (deg C)

1850 1870 1890 1910 1930 1950 1970 1990 2010

2006 Fossil Fuel: 8.4 Pg C

[2006-Total Anthrop. Emissions: 8.4+1.5 = 9.9 Pg]

Raupach et al. 2007, PNAS; Canadell et al 2007, PNAS

Page 5: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Trajectory of Global Fossil Fuel EmissionsRecent emissions

1990 1995 2000 2005 2010

5

6

7

8

9

10Actual emissions: CDIACActual emissions: EIA450ppm stabilisation650ppm stabilisationA1FI A1B A1T A2 B1 B2

1850 1900 1950 2000 2050 2100

0

5

10

15

20

25

30Actual emissions: CDIAC450ppm stabilisation650ppm stabilisationA1FI A1B A1T A2 B1 B2

50-year constant growth rates

to 2050

B1 1.1%,

A1B 1.7%,

A2 1.8%

A1FI 2.4%

2006

Observed

2000-2006 3.3%

Raupach et al. 2007, PNAS; Canadell et al 2007, PNAS

Page 6: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

The Airborne Fraction (2000-2006)

Ocean removes 24% Land removes 30%

55% were removed by natural sinks

45% of all CO2 emissions accumulated in the atmosphere

The Airborne FractionThe fraction of the annual anthropogenic emissions that remains in the atmosphere

Canadell et a.l, 2007, PNAS

Page 7: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Atmospheric CO2 Concentration

2000 - 2006: 1.9 ppm y-1

1970 – 1979: 1.3 ppm y-1

1980 – 1989: 1.6 ppm y1

1990 – 1999: 1.5 ppm y-1

Year 2006Atmospheric CO2

concentration:

381 ppm35% above pre-industrial

0

1

2

3

4

5

6

7

8

9

1850 1870 1890 1910 1930 1950 1970 1990 2010

280

300

320

340

360

380

400

1850 1870 1890 1910 1930 1950 1970 1990 2010

[CO2]

2 ppm/year

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1850 1870 1890 1910 1930 1950 1970 1990 2010

1850 1870 1890 1910 1930 1950 1970 1990 2010

[CO2]

NOAA 2007, Canadell et al., 2007, PNAS

Page 8: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

65% - Increased activity of the global economy

17% - Increased carbon intensity of the global economy

18% - Decreased efficiency of natural sinks

Attribution of Recent Acceleration of Atmospheric CO2

To:• Economic growth• Carbon intensity• Efficiency of natural sinks

Canadell et al., 2007, PNAS

2000 - 2006: 1.9 ppm y-1

1970 – 1979: 1.3 ppm y-1

1980 – 1989: 1.6 ppm y1

1990 – 1999: 1.5 ppm y-1

Page 9: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Impact of Stabilizing Emissions versus Sabilizing Concentrations of CO2

Page 10: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Global Carbon Sources and Sinks

Source: GCTE / IGBP

Page 11: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Science Questions

How is the Earth's carbon cycle changing? What are the spatial and temporal patterns of exchange of CO2 between the atmosphere and the surface, and how are these patterns affected by large scale modes in weather-climate, and how are these patterns affected by human actions? What are the feedbacks of climate on the carbon cycle, and what are the likely effects on the carbon cycle of these feedbacks in the future?

This mission will make measurements day and night at all latitudes in all seasons of total column mixing ratio of CO2 with sufficient precision to allow accurate determination of spatial and temporal pattern of the sources and sinks of CO2.

The CARBON CYCLE. Carbon in the atmosphere is a controlling factor on climate and hence on ecological productivity and the sustainability of life.

Page 12: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Challenges Posed by the Science Questions

Because of spatial and temporal variability, practical determination of the pattern of sources and sinks from surface measurements is impossible. The only viable approach is to infer aspects of the rates of exchange by inverting the causal relation between source-sinks and atmospheric concentration.

This requires measurements of total column CO2 with high precision measurements in all seasons and all latitudes with a focus upon mid to lower troposphere, under a varying set of large-scale weather-climate modes.

MODIS

Page 13: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

ASCENDS will reduce major uncertainties and help explain the “missing carbon sink” and its dynamics.

ASCENDS will reduce major uncertainties and help explain the “missing carbon sink” and its dynamics.

Global Carbon Budget (IPCC, 2007)

The largest uncertainties about the Earth’s carbon budget are in its terrestrial components; land biosphere is the most vulnerable carbon pool.

Importance of the Science Questions

Page 14: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

ASCENDS will resolve the geographical and temporal patterns of oceanic sources and sinks.

ASCENDS will resolve the geographical and temporal patterns of oceanic sources and sinks.

Large uncertainties remain about the size of the oceanic sink. Recent evidence suggests that the Southern Ocean sink may be saturating. Oceanic uptake of CO2 increases the acidity of the ocean with unknown ecological effects.

Global Carbon Budget (IPCC, 2007)

Importance of the Science Questions

Page 15: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Science Rationale Science Measurement Requirements

• ASCENDS CO2 Measurement Requirements derived from Observing System Simulation Experiments (OSSEs) conducted by Peter Rayner and Frédéric Chevallier, CEA-CNRS.

• Assumed measurement precision for 100-km tropospheric CO2 column measurement over land of 1.3 ppmv during day and 0.8 ppmv at night and over water of 4.2 ppmv during day and 2.1 during night.

Fractional Error Reduction

ASCENDS will make major contribution to knowledge of CO2 sources & sinks.

ASCENDS will make major contribution to knowledge of CO2 sources & sinks.

Average ErrorReduction

Land: 40% Ocean: 13% Total: 20%

Page 16: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Airborne Test FlightsApproach

• ASCENDS will deliver laser based remote sensing measurements of CO2 mixing ratios (XCO2)

• Day and night• At all latitudes• During all seasons

• ASCENDS includes simultaneous measurements of• CO2 number density (ND) tropospheric column• O2 ND column: surface pressure for CO2 to XCO2

• Temperature profile: improved CO2 accuracy• Altimetry: surface elevation, cloud top heights• CO profile: identify combustion sources of CO2

• ASCENDS will be a logical extension of OCO and GOSAT capabilities

Summary

• ASCENDS identified as a medium size mission in the NRC Decadal Survey

• LRD 2013-2016 to overlap with OCO (OCO scheduled launch: Dec 2008)

• Data have been collected from airborne instruments to verify the CO2 measurement capability of the laser based approach

Mission Objectives

Day/Night Global CO2 Column Measurements

Airborne Demonstration

Pre

s su

re

Alt

i tu

de

(km

)

Latitude

Active Sensing of CO2 Emissions over Nights, Days, & Seasons (ASCENDS)

Page 17: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Payload

• CO2 column measurement• CO2 Laser Absorption Spectrometer to resolve

(or weight) the CO2 altitude distribution, particularly across the mid to lower troposphere.

• 1.6 µm LAS only baseline• Integrated 1.6 µm + 2.0 µm

• Surface pressure measurement• O2 Laser Absorption Spectrometer to convert

CO2 number density to mixing ratio.

• Surface/cloud top altimeter• Laser altimeter to measure CO2 column length.

• Temperature sounder• Six channel passive radiometer to provide

temperature corrections.

• CO sensor• Gas Filter Correlation Radiometers

(at 2.3 & 4.6 µm) to separate biogenetic fluxes from biomass burning and fossil fuel combustion.

• Imager• To provide cloud clearing for soundings.

CO2 column mixing ratio (XCO2) measurement with Laser Absorption Spectrometer (LAS) technique requires the simultaneous measurement of the CO2 column number density (CND); the O2 column number density to converting the CND to XCO2; and the path length of the measurement. A temperature profile measurement is also required to constrain the XCO2 measurement. A column CO measurement over the same XCO2 path is also recommended for interpreting sources and sinks of CO2.

Page 18: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008
Page 19: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008

Key Mission Milestones

• Pre-Phase A: Present – April 2010

• Start Phase A: April 2010

• Confirmation: April 2012

• Payload Delivery: April 2014

• Satellite Ship: September 2015

• Launch: October 2015

• End of Primary Mission (3 years): October 2018

Note: Earlier launch (August 2014) is technically feasible if prior year implementation funding is provided.

Page 20: NASA Carbon Cycle & Ecosystems Joint Science Workshop 28 April - 2 May 2008