120
{NAS-CR-14999 2 ) RESEARCH STUDY ON >1PS N76-322-14 DIGITAL CONTROLLER DESIGN Final Report (Systems Research Lab., Champaign, Ill.) 2 -P C $55.50 CSCL 22A Unclas G3/13 03490 I L [IT

{NAS-CR-14999 RESEARCH STUDY >1PS DIGITAL …

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

NAS-CR-149992 ) RESEARCH STUDY ON gt1PS N76-322-14DIGITAL CONTROLLER DESIGN Final Report(Systems Research Lab Champaign Ill)

2 -P C $5550 CSCL 22A Unclas G313 03490

I L [IT

V - 76

FINAL REPORT

RESEARCH STUDY ON IPS DIGITAL CONTROLLER DESIGN

B C KUO

C FOLKERTS

September 1 1976

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C MARSHALL SPACE FLIGHT CENTER

Under Contract NAS8-31570

DCN I-6-ED-02909(IF)

Systems Research Laboratory

P 0 Box 2277 Station A

Champaign Illinois 61820

TABLE OF CONTENTS

1 Analysis of the Continuous-Data Instrument Pointing System I

2 The Simplified Linear Digital IPS Control System 10

3 Analysis of Continuous-Data IPS Control System With Wire Cable Torque Nonlinearity 23

4 Analysis of the Digital IPS Control System With Wire Cable Torque Nonlinearity 33

5 Gross Quantization Error Study of the Digital IPS Control System 45

6 Describing Function Analysis of the Quantization Effects of the Digital IPS Control System 50

7 Digital Computer Simulation of the Digital IPS Control System With Quantization 66

8 Modeling of the Continuous-Data IPS Control System With Wire Cable Torque and Flex Pivot Nonlinearities 71

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities 78

10 Modeling of the Solid Rolling Friction by the First-order Dahl Model 88

11 Describing Function of the First-order Dahl Model Solid RollingFriction 94

12 Modeling of the Solid Rolling Friction by the ith-order Dahl Model and the Describing Function 101

13 Digital Computer Simulation of the Continuous-Data Nonlinear Control System With Dahl Model 107 References 117

I Analysis of the Continuous-Data Instrument Pointing System

The objective of this chapter is to investigate the performance of

the simplified continuous-data model of the Instrument Pointing System

(IPS) Although the ultimate objective is to study the digital model

of the system knowledge on the performance of the continuous-data model

is important in the sense that the characteristics of the digital system

should approach those of the continuous-data system as the sampling period

approaches zero

The planar equations which describe the motion of the Space-lab using

Inside-Out Gimbal (IOG) for the pointing base are differential equations 1

of the fourteenth order A total of seven degrees of freedom are

represented by these equations Three of these degrees of freedom (Xs Zs

P ) belong to the orbitor and three degrees of freedom (Xm Zm Y) are

for the mount and the scientific instrument (SI) has one degree of freeshy

dom in 6

A simplified model of the IPS model is obtained by assuming that all

but motion about two of the seven degrees of freedom axes are negligible

The simplified IPS model consists of only the motion about the scientific

instrument axis c and the mount rotation T The block diagram of the

simplified linear IPS control system is shown in Figure 1-1

In this chapter we shall investigate only the performance of the

continuous-data IPS control system The signal flow graph of the

continuous-data IFPS control system in Figure 1-1 is shown in Figure 1-2

The characteristic equation of the continuous-data IPS is obtained

from Figure 1-2

A = (I - K4K6)s5 + (K2 + KIK 7 - KI K4K7)s4 + (K - KK4K7 + KK7 + KI K2K7) 3

0- Compensator

Compensator = I for rigid-body study

Figure T-1 Block diagram of simplified linear IPS control system

s-1 n fI

- -K

cu t ct s

-KK2

Figure 1-2 Signal flow graph of the simplified linear

continuous-data IPS control system

+ (KIK 7 - KK 4 K7 + KIK3K 7 + K0K2 K7)s 2 + (KIK 2 K7 + KoK3 K7)s K K3 K = 0

I-I)

The system parameters are

KO = 8 x i0 n-m

KI = 6 x 104 n-msec

K = 00012528

K = 00036846

K = variable

K4 = o80059

K = 1079849

K6 = 11661

K = 00000926

Equation (1-1) is simplified to

5s + 16 704s4 + 22263s3 + (1706 + 27816 105K )s2

+ (411 + 1747 1O- 8 K )s + 513855 10- 8 KI = 0 (1-2)

The root locus plot of Eq (1-2)when KI varies is shown in Figure 1-3

It is of interest to notice that two of the root loci of the fifth-order

IPS control system are very close to the origin in the left-half of the

s-plane and these two loci are very insensitive to the variation of K-

The characteristic equation roots for various values of K are tabulated

in the following

KI ROOTS

0 0 -000314+jO13587 -83488+j123614

104 -00125 -000313984j0135873 -83426ojl23571

1O5 -01262 -00031342+j0135879 -828577+j123192

106 -138146 -00031398+jO135882 -765813+jill9457

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

V - 76

FINAL REPORT

RESEARCH STUDY ON IPS DIGITAL CONTROLLER DESIGN

B C KUO

C FOLKERTS

September 1 1976

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C MARSHALL SPACE FLIGHT CENTER

Under Contract NAS8-31570

DCN I-6-ED-02909(IF)

Systems Research Laboratory

P 0 Box 2277 Station A

Champaign Illinois 61820

TABLE OF CONTENTS

1 Analysis of the Continuous-Data Instrument Pointing System I

2 The Simplified Linear Digital IPS Control System 10

3 Analysis of Continuous-Data IPS Control System With Wire Cable Torque Nonlinearity 23

4 Analysis of the Digital IPS Control System With Wire Cable Torque Nonlinearity 33

5 Gross Quantization Error Study of the Digital IPS Control System 45

6 Describing Function Analysis of the Quantization Effects of the Digital IPS Control System 50

7 Digital Computer Simulation of the Digital IPS Control System With Quantization 66

8 Modeling of the Continuous-Data IPS Control System With Wire Cable Torque and Flex Pivot Nonlinearities 71

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities 78

10 Modeling of the Solid Rolling Friction by the First-order Dahl Model 88

11 Describing Function of the First-order Dahl Model Solid RollingFriction 94

12 Modeling of the Solid Rolling Friction by the ith-order Dahl Model and the Describing Function 101

13 Digital Computer Simulation of the Continuous-Data Nonlinear Control System With Dahl Model 107 References 117

I Analysis of the Continuous-Data Instrument Pointing System

The objective of this chapter is to investigate the performance of

the simplified continuous-data model of the Instrument Pointing System

(IPS) Although the ultimate objective is to study the digital model

of the system knowledge on the performance of the continuous-data model

is important in the sense that the characteristics of the digital system

should approach those of the continuous-data system as the sampling period

approaches zero

The planar equations which describe the motion of the Space-lab using

Inside-Out Gimbal (IOG) for the pointing base are differential equations 1

of the fourteenth order A total of seven degrees of freedom are

represented by these equations Three of these degrees of freedom (Xs Zs

P ) belong to the orbitor and three degrees of freedom (Xm Zm Y) are

for the mount and the scientific instrument (SI) has one degree of freeshy

dom in 6

A simplified model of the IPS model is obtained by assuming that all

but motion about two of the seven degrees of freedom axes are negligible

The simplified IPS model consists of only the motion about the scientific

instrument axis c and the mount rotation T The block diagram of the

simplified linear IPS control system is shown in Figure 1-1

In this chapter we shall investigate only the performance of the

continuous-data IPS control system The signal flow graph of the

continuous-data IFPS control system in Figure 1-1 is shown in Figure 1-2

The characteristic equation of the continuous-data IPS is obtained

from Figure 1-2

A = (I - K4K6)s5 + (K2 + KIK 7 - KI K4K7)s4 + (K - KK4K7 + KK7 + KI K2K7) 3

0- Compensator

Compensator = I for rigid-body study

Figure T-1 Block diagram of simplified linear IPS control system

s-1 n fI

- -K

cu t ct s

-KK2

Figure 1-2 Signal flow graph of the simplified linear

continuous-data IPS control system

+ (KIK 7 - KK 4 K7 + KIK3K 7 + K0K2 K7)s 2 + (KIK 2 K7 + KoK3 K7)s K K3 K = 0

I-I)

The system parameters are

KO = 8 x i0 n-m

KI = 6 x 104 n-msec

K = 00012528

K = 00036846

K = variable

K4 = o80059

K = 1079849

K6 = 11661

K = 00000926

Equation (1-1) is simplified to

5s + 16 704s4 + 22263s3 + (1706 + 27816 105K )s2

+ (411 + 1747 1O- 8 K )s + 513855 10- 8 KI = 0 (1-2)

The root locus plot of Eq (1-2)when KI varies is shown in Figure 1-3

It is of interest to notice that two of the root loci of the fifth-order

IPS control system are very close to the origin in the left-half of the

s-plane and these two loci are very insensitive to the variation of K-

The characteristic equation roots for various values of K are tabulated

in the following

KI ROOTS

0 0 -000314+jO13587 -83488+j123614

104 -00125 -000313984j0135873 -83426ojl23571

1O5 -01262 -00031342+j0135879 -828577+j123192

106 -138146 -00031398+jO135882 -765813+jill9457

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

TABLE OF CONTENTS

1 Analysis of the Continuous-Data Instrument Pointing System I

2 The Simplified Linear Digital IPS Control System 10

3 Analysis of Continuous-Data IPS Control System With Wire Cable Torque Nonlinearity 23

4 Analysis of the Digital IPS Control System With Wire Cable Torque Nonlinearity 33

5 Gross Quantization Error Study of the Digital IPS Control System 45

6 Describing Function Analysis of the Quantization Effects of the Digital IPS Control System 50

7 Digital Computer Simulation of the Digital IPS Control System With Quantization 66

8 Modeling of the Continuous-Data IPS Control System With Wire Cable Torque and Flex Pivot Nonlinearities 71

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities 78

10 Modeling of the Solid Rolling Friction by the First-order Dahl Model 88

11 Describing Function of the First-order Dahl Model Solid RollingFriction 94

12 Modeling of the Solid Rolling Friction by the ith-order Dahl Model and the Describing Function 101

13 Digital Computer Simulation of the Continuous-Data Nonlinear Control System With Dahl Model 107 References 117

I Analysis of the Continuous-Data Instrument Pointing System

The objective of this chapter is to investigate the performance of

the simplified continuous-data model of the Instrument Pointing System

(IPS) Although the ultimate objective is to study the digital model

of the system knowledge on the performance of the continuous-data model

is important in the sense that the characteristics of the digital system

should approach those of the continuous-data system as the sampling period

approaches zero

The planar equations which describe the motion of the Space-lab using

Inside-Out Gimbal (IOG) for the pointing base are differential equations 1

of the fourteenth order A total of seven degrees of freedom are

represented by these equations Three of these degrees of freedom (Xs Zs

P ) belong to the orbitor and three degrees of freedom (Xm Zm Y) are

for the mount and the scientific instrument (SI) has one degree of freeshy

dom in 6

A simplified model of the IPS model is obtained by assuming that all

but motion about two of the seven degrees of freedom axes are negligible

The simplified IPS model consists of only the motion about the scientific

instrument axis c and the mount rotation T The block diagram of the

simplified linear IPS control system is shown in Figure 1-1

In this chapter we shall investigate only the performance of the

continuous-data IPS control system The signal flow graph of the

continuous-data IFPS control system in Figure 1-1 is shown in Figure 1-2

The characteristic equation of the continuous-data IPS is obtained

from Figure 1-2

A = (I - K4K6)s5 + (K2 + KIK 7 - KI K4K7)s4 + (K - KK4K7 + KK7 + KI K2K7) 3

0- Compensator

Compensator = I for rigid-body study

Figure T-1 Block diagram of simplified linear IPS control system

s-1 n fI

- -K

cu t ct s

-KK2

Figure 1-2 Signal flow graph of the simplified linear

continuous-data IPS control system

+ (KIK 7 - KK 4 K7 + KIK3K 7 + K0K2 K7)s 2 + (KIK 2 K7 + KoK3 K7)s K K3 K = 0

I-I)

The system parameters are

KO = 8 x i0 n-m

KI = 6 x 104 n-msec

K = 00012528

K = 00036846

K = variable

K4 = o80059

K = 1079849

K6 = 11661

K = 00000926

Equation (1-1) is simplified to

5s + 16 704s4 + 22263s3 + (1706 + 27816 105K )s2

+ (411 + 1747 1O- 8 K )s + 513855 10- 8 KI = 0 (1-2)

The root locus plot of Eq (1-2)when KI varies is shown in Figure 1-3

It is of interest to notice that two of the root loci of the fifth-order

IPS control system are very close to the origin in the left-half of the

s-plane and these two loci are very insensitive to the variation of K-

The characteristic equation roots for various values of K are tabulated

in the following

KI ROOTS

0 0 -000314+jO13587 -83488+j123614

104 -00125 -000313984j0135873 -83426ojl23571

1O5 -01262 -00031342+j0135879 -828577+j123192

106 -138146 -00031398+jO135882 -765813+jill9457

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

I Analysis of the Continuous-Data Instrument Pointing System

The objective of this chapter is to investigate the performance of

the simplified continuous-data model of the Instrument Pointing System

(IPS) Although the ultimate objective is to study the digital model

of the system knowledge on the performance of the continuous-data model

is important in the sense that the characteristics of the digital system

should approach those of the continuous-data system as the sampling period

approaches zero

The planar equations which describe the motion of the Space-lab using

Inside-Out Gimbal (IOG) for the pointing base are differential equations 1

of the fourteenth order A total of seven degrees of freedom are

represented by these equations Three of these degrees of freedom (Xs Zs

P ) belong to the orbitor and three degrees of freedom (Xm Zm Y) are

for the mount and the scientific instrument (SI) has one degree of freeshy

dom in 6

A simplified model of the IPS model is obtained by assuming that all

but motion about two of the seven degrees of freedom axes are negligible

The simplified IPS model consists of only the motion about the scientific

instrument axis c and the mount rotation T The block diagram of the

simplified linear IPS control system is shown in Figure 1-1

In this chapter we shall investigate only the performance of the

continuous-data IPS control system The signal flow graph of the

continuous-data IFPS control system in Figure 1-1 is shown in Figure 1-2

The characteristic equation of the continuous-data IPS is obtained

from Figure 1-2

A = (I - K4K6)s5 + (K2 + KIK 7 - KI K4K7)s4 + (K - KK4K7 + KK7 + KI K2K7) 3

0- Compensator

Compensator = I for rigid-body study

Figure T-1 Block diagram of simplified linear IPS control system

s-1 n fI

- -K

cu t ct s

-KK2

Figure 1-2 Signal flow graph of the simplified linear

continuous-data IPS control system

+ (KIK 7 - KK 4 K7 + KIK3K 7 + K0K2 K7)s 2 + (KIK 2 K7 + KoK3 K7)s K K3 K = 0

I-I)

The system parameters are

KO = 8 x i0 n-m

KI = 6 x 104 n-msec

K = 00012528

K = 00036846

K = variable

K4 = o80059

K = 1079849

K6 = 11661

K = 00000926

Equation (1-1) is simplified to

5s + 16 704s4 + 22263s3 + (1706 + 27816 105K )s2

+ (411 + 1747 1O- 8 K )s + 513855 10- 8 KI = 0 (1-2)

The root locus plot of Eq (1-2)when KI varies is shown in Figure 1-3

It is of interest to notice that two of the root loci of the fifth-order

IPS control system are very close to the origin in the left-half of the

s-plane and these two loci are very insensitive to the variation of K-

The characteristic equation roots for various values of K are tabulated

in the following

KI ROOTS

0 0 -000314+jO13587 -83488+j123614

104 -00125 -000313984j0135873 -83426ojl23571

1O5 -01262 -00031342+j0135879 -828577+j123192

106 -138146 -00031398+jO135882 -765813+jill9457

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

0- Compensator

Compensator = I for rigid-body study

Figure T-1 Block diagram of simplified linear IPS control system

s-1 n fI

- -K

cu t ct s

-KK2

Figure 1-2 Signal flow graph of the simplified linear

continuous-data IPS control system

+ (KIK 7 - KK 4 K7 + KIK3K 7 + K0K2 K7)s 2 + (KIK 2 K7 + KoK3 K7)s K K3 K = 0

I-I)

The system parameters are

KO = 8 x i0 n-m

KI = 6 x 104 n-msec

K = 00012528

K = 00036846

K = variable

K4 = o80059

K = 1079849

K6 = 11661

K = 00000926

Equation (1-1) is simplified to

5s + 16 704s4 + 22263s3 + (1706 + 27816 105K )s2

+ (411 + 1747 1O- 8 K )s + 513855 10- 8 KI = 0 (1-2)

The root locus plot of Eq (1-2)when KI varies is shown in Figure 1-3

It is of interest to notice that two of the root loci of the fifth-order

IPS control system are very close to the origin in the left-half of the

s-plane and these two loci are very insensitive to the variation of K-

The characteristic equation roots for various values of K are tabulated

in the following

KI ROOTS

0 0 -000314+jO13587 -83488+j123614

104 -00125 -000313984j0135873 -83426ojl23571

1O5 -01262 -00031342+j0135879 -828577+j123192

106 -138146 -00031398+jO135882 -765813+jill9457

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

s-1 n fI

- -K

cu t ct s

-KK2

Figure 1-2 Signal flow graph of the simplified linear

continuous-data IPS control system

+ (KIK 7 - KK 4 K7 + KIK3K 7 + K0K2 K7)s 2 + (KIK 2 K7 + KoK3 K7)s K K3 K = 0

I-I)

The system parameters are

KO = 8 x i0 n-m

KI = 6 x 104 n-msec

K = 00012528

K = 00036846

K = variable

K4 = o80059

K = 1079849

K6 = 11661

K = 00000926

Equation (1-1) is simplified to

5s + 16 704s4 + 22263s3 + (1706 + 27816 105K )s2

+ (411 + 1747 1O- 8 K )s + 513855 10- 8 KI = 0 (1-2)

The root locus plot of Eq (1-2)when KI varies is shown in Figure 1-3

It is of interest to notice that two of the root loci of the fifth-order

IPS control system are very close to the origin in the left-half of the

s-plane and these two loci are very insensitive to the variation of K-

The characteristic equation roots for various values of K are tabulated

in the following

KI ROOTS

0 0 -000314+jO13587 -83488+j123614

104 -00125 -000313984j0135873 -83426ojl23571

1O5 -01262 -00031342+j0135879 -828577+j123192

106 -138146 -00031398+jO135882 -765813+jill9457

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

+ (KIK 7 - KK 4 K7 + KIK3K 7 + K0K2 K7)s 2 + (KIK 2 K7 + KoK3 K7)s K K3 K = 0

I-I)

The system parameters are

KO = 8 x i0 n-m

KI = 6 x 104 n-msec

K = 00012528

K = 00036846

K = variable

K4 = o80059

K = 1079849

K6 = 11661

K = 00000926

Equation (1-1) is simplified to

5s + 16 704s4 + 22263s3 + (1706 + 27816 105K )s2

+ (411 + 1747 1O- 8 K )s + 513855 10- 8 KI = 0 (1-2)

The root locus plot of Eq (1-2)when KI varies is shown in Figure 1-3

It is of interest to notice that two of the root loci of the fifth-order

IPS control system are very close to the origin in the left-half of the

s-plane and these two loci are very insensitive to the variation of K-

The characteristic equation roots for various values of K are tabulated

in the following

KI ROOTS

0 0 -000314+jO13587 -83488+j123614

104 -00125 -000313984j0135873 -83426ojl23571

1O5 -01262 -00031342+j0135879 -828577+j123192

106 -138146 -00031398+jO135882 -765813+jill9457

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

____________ ________ ______________

--

--

centOwvqRAoPM(9P ] r ~NRL 0 fnw Nv-Yk SQUARE O010 10 THEINCH AS0702-10 4

- L c---- -4 - - -shy

i Q-2IIp 7 F

- - I ~ 17 - - - - -- --- w 1 m lz r - shy-

_ _ __ __o__o _ - -- _

---n --jo- - _ iI_ - sect- - --- j -- - - _

- - - - x l - ~ ~ j m- z - -- is l] n T

- -i - - - - -- - I L -4- - I - X-i- a shy- shy

i- wt -- -w 2 A -(D - - m- I - ______I _____ _ I-__ ___ ____ ____

(D - -I------=- -- j

- -+ - - I 1l - - - ---In- - - --- _- _ - shy _- - _ I

L a- - - ___0 __ - - -c -2 1-+J -I - A -- - -- __- 4 -

-

0-- - -I -shy ---

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

6

K ROOTS

2X)o 6 -308107 -000313629+j0135883 -680833+j115845

5xlO6 -907092 -000314011+_jO135881 -381340+j17806

2xlO 7 -197201 -000314025plusmnj0135880 -151118plusmnj] 6 7280

107 -145468 -000314020+jO135881 -l07547+j137862

5x1o 7 -272547 -000314063+j0135889 527850j21963

108 -34-97 -000314035+j0135882 869964+j272045

The continuous-data IPS control system is asymptotically stable

for K less than 15xlO

It is of interest to investigate the response of the IPS control

system due to its own initial condition The transfer function between

and its initial condition eo for K = 5xl06 is

c(s) s2 + 167s2 - 893s - 558177) (1-3)

-5 167s 4 + 22263 3 + 13925s2 + 12845s + 25693

where we have considered that s(O) = 0 is a unit-step function input0

applied at t = 0 ie o(s) = 1s

It is interesting to note that the response of E due to its own

initial condition is overwhelmingly governed by the poles near the

origin In this case the transfer function has zeros at s = 805

-12375+j2375 The zero at s=805 causes the response of a to go

negative first before eventually reaching zero in the steady-state

as shown in Figure 1-4 The first overshoot is due to the complex

poles at s = -38134+j117806 Therefore the eigenvalues of the

closed-loop system at s = -38134plusmnj117806 controls only the transient

response of e(t) near t = 0 and the time response of a(t) has a long

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

-- -----

-----

--

-- - -- - -- - - --

( +( (f ( 0 T( ) ~~SQAREI laX lxI 11WNC AS-08ll-CR

I I ]I-IF I--t---- -r

- - 44 A tK~---A - t -- - -shy____ __ +++T 4-W t - - ----- - 44_2~it ___ - _f-f- -o-n~ta o-4-

_----___ -- _ - -

- Seconds I -Ii-

- K2 - _W -

jir - - _ i i--4--- --------- --------shy ----- - --------1U shy -- 4- - Iishy ---- ----- -

- -- ----- - - I --- - - -- shy

1 - - - -

Z xt KI 1- 2 - - shy

-

T 2 ----K -- t - - ------------------- I - t - - -- -- = - - i - shy JJT7 ix shy

- --- i -Ii ibullll- + 5lt - - -I-= _

+~ 7 -- i-n-- --- ----- _ t + + 4 _

I - shy - I - I- +

_ -_ _ + __ _ _ _- -I--+

--- - _ - _-_ _ ill - - - shy

- -i- - -- i -r -- shy bull---

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

--

SPPP SGIAUARE II)A 010 THEINC AS0801 G0

t __ -- - _ - - shy2 _2 L- _ - X - ----- - -- - shy

- I - -- - -Cg Jflfta ---w-

_ _ _____ -_ __ -__-t-1__ _ _ _ _ _ 4 __ _ _s_ id) _ _ I

------- t

______ - __-l

_____ - - ___-- T-1-2-1

_-i_-_ I _--t__--_--_ I 00 7 - ----

--__I-- L

_ ---- -

- -

-2

- -

- - - --- - --- - -- -I p shy- -- j --_- _-_- -- r--- - - -- -- --- I--- - - -- --

I ___ 1 ForI- Resectcnsiof- LZ tia val fi-et L

--- I _ i - ---- _ _ - --- --z- --- shy

shy-- -__ 1------ - I l - __-_ 1 Irl

-_ - H-

j -t -

_ _ _ _ _ _ _-__-_ i- P -H -tti-4-- -+i-4-j-- -

H-

j

- __ _ _ _

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

9

period of oscillation The eigenvalues at s = -000313 + jO1358 due to

the isolator dynamics give rise to an oscillation which takes several

minutes to damp out The conditional frequency is 01358 radsec so the

period of oscillation is approximately 46 seconds Figure 1-5 shows the

response of a(t) for a = 1 rad on a different time scale over 100 secondso

Although the initial condition of I radian far exceeds the limitation under

which the linear approximation of the system model is valid however for

linear analysis the response will have exactly the same characteristics

but with proportionally smaller amplitude if the value of a is reduced0

Since the transient response of the system is dominated by the

isolator dynamics with etgenvalues very close to the origin changing

the value of KI within the stability bounds would only affect the time

response for the first second as shown in Figure 1-4 the oscillatory

and slow decay characteristics of the response would not be affected in

any significant way

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

10

2 The Simplified Linear Digital IPS Control System

In this chapter the model of the simplified digital IPS control

system will be described and the dynamic performance of the system will

be analyzed

The block diagram of the digital IPS is shown in Figure 2-1 where

the element SH represents sample-and-hold The system parameters are

identical to those defined in Chapter 1 An equivalent signal flow graph

of the block diagram in Figure 2-1 is drawn as shown in Figure 2-2

Applying Masons gain formula to Figure 2-2 with A(s) and 0A (s) as

outputs OA(s) and 2A(S) as inputs we have

Gh(s) KIT Gh(s)A) -7 As (A1 - K4)A(S) - (K0 + -- ) - (A1- K )O(s) (2-1)

As4A0 z-1 7 A 1 4 A

Gh(S) KIT Gh(s)CA(S) -KIK 7 As2(A - K4)QA(s) - (K0 + -1)K7 s-(AI K4)0A(S) (2-2)

where A =I+ K s-1 + K s-2 (2-3) 1 2 3 A = 1 - -1 + K3s-2 (2-4)

Gh(s) _I - e (2-5)bull S

Lett ing

Gl(s) = K Gh(s) K7 (1- e-TS)(l - K4)s 2 + K2s + K3) (2-6)1 7 As(A 1 K4) = 2(1_ K4K6 )s 2 + K2s + K3)

G2(s) = K G- (As) K G(s)As2 (2-7)2 s

and taking the z-transform on both sides of Eqs(2-1) and (2-2) we have

K T PA( z ) = -K]G I (z)A(z) - (K0 + Z-1-)G I (zE)A(z) (2-8)

KIT 0A(z) = -KIG 2 (z)amp2A(z) - (K0 + z--G2(Z)oA(z) (2-9)

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

E A A_

+ +

4 1 Figure 2-1 Block diagram of simplified linear digital IPS control system

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975

2k

-KK K(-

0 A T

Figure 2-2 Signal flow graph of the simplified inear digital IS

control system

13

From these two equations the characteristic equation of the digital system

is found to be

KIT A(z) = 1 + KIGI(z) + (K0 + - G)2(Z) = 0 (2-10)

where2 ( l -7e - i K4

26) s + K 3 1

G2(z) = t(G(s) s ) (2-12)

The characteristic equation of the digital IPS control system is of

the fifth order However the values of the system parameters are such

that two of the characteristic equation roots are very close to the z = I

point in the z-plane These two rootsampare i^nside the unit circle and they

are relatively insensitive to the values of KI and T so long as T is not

very large The sampling period appears in terms such as e0 09 4T which

is approximately one unless T is very large

Since the values of K2 and K3 are relatively small

4K7(l - -1(z) K) ] 7K1- K 6 z4T

= 279x]0-4 T -(2-13)z--)

2G(Z) K 1 K4 (1 - Z1279x1 0- T 2 ( ) 214)1 - K4K6 ) s 3 2(z - 1)

Substituting GI(z) and G2 (z) into Eq (2-10) the characteristic equation

of the digital IPS is approximated by the following third-order equation

z3 3+K0 _PT 2 K K T 33z2 + [KpKT p 3z

KKT 1I p- 2K+ 3 z

3K K1IT K0K Ti2

P2 +K 1 2 (~5

14

where Kp = 279gt0 and it is understood that two other characteristicpI

equation roots are at z = I It can be shown that in the limit as T

approaches zero the three roots of Eq (2-15) approaches to the roots of

the characteristic equation of the continuous-data IPS control system and

the two roots near z = 1 also approach to near s = 0 as shown by the

root locus diagram in Figure 1-3

Substituting the values of the system parameters into Eq (2-15) we

have

A(z) = z3 + (1116T 2 + 1674T - 3)z2 + (3 - 3348T + 1395x10-4KIT3)z

+ (l395xIo-4KIT3 + 1674T - ]l6T 2 - I) = 0 (2-16)

Applying Jurys test on stability to the last equation we have

(1) AI) gt 0 or K K T3 gt 0 (2-17)

Thus KI gt 0 since T gt0

(2) A(-l) lt 0 or -8 + 06696T lt (2-18)

Thus T lt 012 sec (2-19)

(3) Also la 0 1lt a3 or

11395x10-4KIT3 + 1674T - lIl6T - II lt 1 (2-20)

The relation between T and K for the satisfaction of Eq (2-20) is

plotted as shown in Fig 2-3

(4) The last criterion that must be met for stability is

tb01 gt b2 (2-21)

where 2 2b0 =a 0 -a 3

b =a a2 - aIa 3

a0 = 1395xl0- KIT + 1674T - lil6T2 - I

--

to

shy

0 I

lftt

o

[t

-I

-J_

_

CD

C 1_ v

-

1

_

_-

I-

P

I

--

11

-

I i

[

2

o

I

-I

I m

la

o

H-

-I-

^- ---H

O

-I

I

I

-

o

-

--

iI

j I

I

l

ii

-

I

-2 I

1

coigt-

IL

o

Iihi

iiI

I I

-I

--

-__

I

u _

__

H

I

= 3 - 3348T+ 1395x1- 4KIT3

2 a2 = lll6T + 1674T - 3

a = 1

The relation between T and K I for the satisfaction of Eq (2-21) is

plotted as shown in Figure 2-3 It turns out that the inequality condition

of Eq (2-21) is the more stringent one for stability Notice also that

as the sampling period T approaches zero the maximum value of K I for

stability is slightly over I07 as indicated by the root locus plot of

the continuous-data IPS

For quick reference the maximum values of K for stability corresshy

ponding to various T are tabulated as follows

T Max KI

71O001

75xo6008

69xio 6 01

When T = 005-sec the characteristic equation is factored as

(z - l)(z 2 - 0884z + 0442 - O1744x10-7K ) = 0 (2-22)

Thus there is always a root at a = I for all values of KI and

the system is not asymptotically stable

The root locus plot for T = 001 008 and 01 second when KI

varies are shown in Figures 2-4 2-5 and 2-6 respectively The two

roots which are near z = 1 and are not sensitive to the values of T and

KI are also included in these plots The root locations on the root loci

are tabulated as follows

17

T = 001 sec

KI

0 100000

106 09864

5x10 6 0907357

107 0853393

5x]07 0734201

108 0672306

T = 008

KI

0 0999972

106 0888688

5XI06 00273573

6 75xi06 -0156092

107 -0253228

108 -0770222

ROOTS

091072 + jO119788

0917509 + jO115822

0957041 + jO114946

0984024 + jO137023

104362 + jO224901

107457 + jO282100

ROOTS

-00267061 + jo611798

00289362 + jO583743

0459601 + jO665086

0551326 + j0851724

0599894 + j0989842

0858391 + j283716

NO341-

D

IE T

ZG

EN

G

RA

P-H

P

AP

E R

E

UG

E N

E

DIE

TG

EN

tCOI

10

X

O

PE

INC

A

IN U

S

ll ll

lfti

ll~

l~

l l Il

q

I i

1 1

i I

i

1

1

i

c

I-

I

I-I

I

f i l

-I-

--

HIP

1 I

if

~~~~

~1

] i t I

shyjig

F

I i

f i_~~~~i

I f 1

I

III

Il

_

i

f I shy

1

--I - shy

n

4 q

-- -shy-

-

4-

----L-

- -

TH

-shy

r

L

4

-tt

1--

i

-

_

-shy

_

-----

_

_ _ L

f

4 ---

----

-shy--shy

~

~ i

it-i_

-_

I

[ i

i _ _

-shy

m

x IN

CH

A

SDsa

-c]

tii

-

A

I-A-

o

CO

-

A

A

A

-A

A

N

I-

A

-

-

IDI

in--_ -

--

r(

00A

7 40

I

CD

-I

ED

Ii t4

]

A

0 CIA

0w

-tn -I

S

A- 0f

n

(I

__

(C

m

r S

QU

AR

ETIx

110T

OE

ICH

AS0

807-0)

(

-t-shy

7

71

TH

i

F

]-_j

-

r

Lrtplusmn

4

w

I-t shy

plusmn_-

4

iI-

i q

s

TF

-

--]-

---

-L

j I

-- I

I -

I -t

+

-

~~~4

i-_

1 -

-

-

-

---

----

-

-

I_

_

_ -

_ _I

_

j _

i i

--

_

tI

--

tiS

i

___

N

__

_ _

_ _

_

-

-

t --

-

_ _I__

_

_

__

-

f

-

J r

-shy

_-

-

j

I

-

L

~

~ 1-

i I

__

I

x times

_

_

i

--

--

-

--

----

----

----

---

---

-

i

-

I

o-

-

i

-

-

----

-

--

I

17

-_

x-

__

_-

-i-

-

i

I__

_ 4

j lt

~

-

xt

_ -_

-w

----K

-

-

~~~~

~~~~

~~~~

~~

-

-

l]

1

i

--

-

7

_

J

_

_

_

-

-_z

---

-

i-

--

4--

t

_

_____

___

-i

--

-4

_

17 I

21

T =01

K ROOTS

0 0990937 -0390469 + jO522871

106 0860648 -0325324 + j0495624

5xlO 6 -0417697 0313849 + jO716370

7xlO6 -0526164 0368082 + jO938274

07 -0613794 0411897 + jl17600

108 -0922282 0566141 + j378494

The linear digital IPS control system shown by the block diagram of

Figure 2-1 with the system parameters specified in Chapter 1 was

simulated on a digital computer The time response of e(t) when theshy

initial value of c(t) c6 is one isobtained Figure 2-7 illustrates

the responses of c(t) for T = 001 KI = 5xO 6 and T = 01 KI = 105

and KI = 106 Similar to the continuous-data IPS control system analyzed

in Chapter 1 the time response of the digital IPS is controlled by the

closed-loop poles which are very near the z = I point in the z-plane

Therefore when the sampling period T and the value of KI change within

the stable limits the system response will again be characterized by

the long time in reaching zero as time approaches infinity

The results show that as far at the linear simplified model is

concerned the sampling period can be as large as 01 second and the

digital IPS system is still stable for KI less than 107

COUPC~PCP1ION SuIF~~oN~wyoSQUARE IS x I 10TOM ICH AS -GO~~(~)

2

~I------

-~~_~l~

1 shyW-

-I 4

-_ _ --_I- -

1I

F~- -

_

__--shy___shy

_

2 _ -

_-71__

shy 4-f e do

F I f

i- iL _I

_ - r--ny n--4 F7 I7kp-- - _-- -4-- - 4- _ --- - ---

-

K -

-

5 -it 0 -shy

~ _-

t I i- (Seconds -shy 4-IL4

-- - -

-

E -

- - 4 -

_ -

_- _

_ -shy

-- _ __ __-_ __ _ -L_ -____ -ILE H 5-4-_-_-----_-_

_

_ _

-

j2ZI-4-

-

- -I

I r

9

- --

1

-

23

3 Analysis of Continuous-Data IPS Control System With Wire Cable

Torque Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

IPS control system with the nonlinear characteristics of the torques caused

by the combined effect of the flex pivot of the gimbal and by wire cables

for transmitting power etc across the gimbal to the experiment as shown

in Figure 3-1

The flex pivot torque disturbance has been modeled2 as a linear spring

with slope KFP as shown in Figure 3-2 The wire torque disturbance is

modeled as a nonlinear spring with a slope of KWT as shown in Figure 3-3

The total torque disturbance associated with the flex pivot and wire cables

is summed up as shown in Figure 3-4 The continuous-data IPS control system

with the nonlinear torque characteristics is shown in Figure 3-5

The objective of the analysis in this chapter is to study the condition

of sustained oscillation of the nonlinear IPS control system shown in

Figure 3-5

The Describing Function of the Wire-Cable Nonlinearity

It was pointed out in the above discussion that the wire cable

nonlinearity can be modeled by either the arrangement shown in Figure 3-4(a)

or Figure 3-4(b) For the model of Figure 3-4(a) a relay characteristic

is present between a and Tc and in addition a linear gain of KWT + KFP

exists between E and TC where KFPdenotes the gain constant due to the flex

pivot torque Using this model one can conduct a describing function

analysis with the relay nonlinearity but the linear system model is altered

by the addition of the branch with the gain of KWT + KFP However careful

examination of the block diagram of Figure 3-5 reveals that the branch with

Figure 3-1 Experiment with wire cables

25

Torque (N-m)

K (N-mrad)FP

------ c (rad)0

Figure 3-2 Flex-pivot torque characteristic

Tor ue (N-m) I HWT (N-m)

Z ~~ c (rad)

KW (N-(rad)_

Figure 3-3 Wire cable torque characteric

26

T KF

poundWHWT ~HWT + C

(a)

T

K(FP+KwHW

(b)

Figure 3-4 Combined flex pivot and wire cables torque

characteristics

WTI)

DO 1 p

rigure 3-5 PS control system with the

nonlinear flex pivot and wire cable torque

Kcs character ist

28

the gain of KWT + K is parallel to the branch with the gain KO which has

a magnitude of 8x)0 5 N-mrad Since the value of KWT lies between 025 and 25 N-mrad and the maximum value of K is in the order of several hundred

it is apparent that the value of K0 will be predominant on Lhe system

performance This means that the linear transfer functionwillnot change

appreciably by the variation of the values of KWT and KFP

Prediction of Self-Sustained Oscillations With the Describing

Function Method

From Figure 3-5 the equivalent characteristic equation of the nonlinear

system is written as

I + N(s)G eq(s) = 0 (3-1)

where N(s) is the describing function of the relay characteristic shown in

Figure 3-4(a) and is given by

N(s) = 4HWTr5 (3-2)

The transfer function Geq(s) is derived from Figure 3-5

G eq

(s) - 00013946(s 4 + 00012528s 3 + 00036846s2) (3-3)A(s)

where A(s) = 5s + 16704s4 + 2226s 3 + (2781xlo4K 1+1706)s 2

+ (411 + 1747xO-6KI)s + 513855xO-8 Ki1(3-4)

A necessary condition of self-sustained oscillation is

Geq(s) = -1N(s) (3-5)

Figure 3-6 shows the frequency response plots of Geq (s)for K = 105 106 and 107 a function of and the trajectory of -1N(s) =- 4HWT

as w

NO 34- aDICTZGEN ORAPH PAPER EUGENE DIETZOEN CO MA E IN U S A

1O X I PER INCH

OF TRF-ttOBiI+t_

I f i l l -I __ re

h shy-HIE hh 4 i zj-+ shy4-

I- 4+ -H I 1

I t j-I

-L)

------ gt 4~~ jtIi 11 --- - -41 -a Itt- i

i i li L 2 4 I __-- __-_

_ _++_A _ I iI I It I T-7 1

- _ i h-VK0 L qzH1 -LiT ____-___-_-

~ ~ - OrtIldf~jj plusmnL -e ~ ~ ~ fl pdffle

I-I____+1 [+ Flr___ fI

30

the latter lies on the -180 axis for all combinations of magnitudes of C and

HWT Figure 3-6 shows that for each value of KI there are two equilibrium

points one stable and the other unstable For instance for KI = 10- the

degGeq(s) curve intersects the-180 axis at w = 016 radsec and w = 005 radsec

The equilibrium point that corresponds to w = 016 radsec is a stable equilishy

brium point whereas w = 005 radsec represents an unstable equilibrium point

The stable solutions of the sustained oscillations for K = 105 10 and l0

are tabulated below

KW HWT (radsec 6HwT (rad) (arc-sec) (radsec) c (sec)

107 72x]o-8 239xI0 -7 005 03 21

106 507x]0-7 317x10 6 39065 016-

105 l3xlO-5 8l9xlo - 5 169 014 45

The conclusion is that self-sustained-oscillations may exist in the

nonlinear continuous-data control system

Since the value of K 1-svery large the effect of using various values 0

of KWT and KFP within their normal ranges would not be noticeable Changing

the yalue of HWT has a one-to-one effect-on the amplitudes of oscillations

of E and C

Digital Computer Simulation of the Continuous-Data Nonlinear IPS Control System

Since the transient time duration of the IPS control system is exceedingly

long it is extremely time consuming and expensive to verify the self-sustained

oscillation by digital computer simulation Several digital computer simulation

runs indicated that the transient response of the IPS system does not die out

after many minutes of real time simulation It should be pointed out that the

31

describing function solution simply gives a sufficient condition for selfshy

sustained oscillations to occur The solutions imply that there is a certain

set of initial conditions which will induce the indicated self-sustained

oscillations However in general it may be impractical to look for this

set of initial conditions especially if the set is very small It is entirely

possible that a large number of simulation runs will result in a totally

stable situations

Figure 3-7 illustrates a section of the time response of e(t) from t = 612

sec to 692 sec The initial conditions are c(O) = 10 and E(0) = 10 and

allother initial conditions are set to zero KI = 105 HWT = 1 and KWT + KFP

= 100 It was mentioned earlier that the system is not sensitive to the values

of KWT and KFp From Figure 3-7 it is seen that the period of the oscillation

is 48 seconds or 013 radsec which is very close to the predicted value

0

Time (sec) c(t)

61200E 02 -47627E-05 -+

61400E 12 -265 E-05 ------------------------shy6 16iOE 02 -23637E-06 --------------------------shy618 00E 02 1 6859E-C5 ---------------------------- + 62I0E 02 231E-5 - ----------------------------b22~0HE 02 38527E-05-------------------------------shy6 2400E 02 49397E-05- ------------------------------E26 0OE 0 6 1609E-05 ------------------------------ +

SOCE 02 70494E-05 ------------------------------ + F JCE 02 5BO E 0 610C0E 02 6333E-05--------------------------------shy

-64320 02 5036E-05--------------------------------shy6 3400E 02 41 3i9E-05 --------------------------63600E 0 26582_E-----------------------------shyt( 80E 02 2 078E-05 ----------------------------64000E 02 -4 5 E-06 -------------------------shy

64200E 02 2042E-05 -------------------------- + 644 0OE 02 -346 1E-05 -------------------------64600E 02 - 1003E-05- -----------------------shy

r 400E 02 -61067E-05 ------------------------D 500E 02 -6 1478E-05 ----------------------- +

- 6520]0E 02 -5 6092E-05 ------------------------65400E 02 -51468E-0 ------------------------shy

o 65600E 02 -5 SE- ------------------------shy6 58OCE 02 -42871E-05 ------------------------66000E 02 -29645E-05 ------------------------- +

06200E 02-- -9329 0E- 0-shy-t 16400E 02 1 2747E-05 --------------------------- +

6S6400E 02 1 824E-05--------------------------------668-O0E 02 31904E-05 ---------------------------shy

67000CE 02 419042-05- -------------------------------- + 6720]0E 02 41_SE-05 ----------------------------- + 67400E 02 4 583E-05- ------------------------------

CD 760uE 02 i E- ------------------------------shy

6b78b0E 02 56122OE-05---------------------------------62000E 02 461205E-05_ ----------------------------- + 6 2 02 ---------------------------U00E 24641E- 05

65400E 02 99768E-06 --------------------------- + 6_260OE 02 54662- 0-_E --------------------------- + 68H00E 02 -87772E-06 -------------------------shy6 U00E 02 -2145E-05 ------------------------ + 69200E 02 -- 5 751E-05 ------------------------shy

33

4 Analysis of the Digital IPS Control System With Wire Cable Torque -

Nonlinearity

In this chapter we will conduct a stability analysis of the simplified

digital IPS control system with nonlinear characteristics of the torques

caused by the combined effect of the flex pivot of the gimbal and wire cables

The analysis used here is the discrete describing function which will

give sufficient conditions on self-sustained oscillations in nonlineardigital

systems The block diagram of the nonlinear digital IPS system is shown in

Figure 4-1 For mathematical convenience a sample-and-hold is inserted at

the input of the nonlinear element

A signal flow graph of the system in Figure 4-1 is drawn in Figure 4-2

The z-transforms of the variables in Figure 4-2 are written

SA (z) = -G2 (z)Tc(z) (4-1)

QA(z) = -Gl(z)Tc(z) (4-2)

H(z) = G4 (z) Tc (z) (4-3) KIT

Tc(Z) K QA(z) + (K + T) OA(Z)

-(KWT + KFP )G3 (Z)Tc (z) + N(z) (z) (4-4)

where G0(5) shy

01(z) = h (A 1 - K4)J

(z) =ZKGCA KK7

K Gh(s)3 (z) 7

3= =

7 As lJI G4(z) Gh(s) AdlK7 hAS

s-e-Ts Gh (s)

A2 = I + K2s-I + K3s-2

++

KO+--

H

S S

the nonlinear flex pivot and wire cable torqueEl characterist ics

U)

AT T

-4K 6zG 2

logg

T T K T

i

36

A = ( - K4K6) +-K2s- + K3s-2

N(z) = discrete describing function of ideal relay (+HwT 0 -HWT)

Since K2 and K3 are very small approximations lead to

G0(z) = 279 10-4T z 2- +

1)G2 (z) 279 1-4T2(z + 2(z - 1)2

0000697T1(z + 1)

3z 2(z - I)2

00001394TG4(z ) z - 1

Equations (4-I) through (4-4) lead to the sampled flow graph of Figure

4-3 from which we have the characteristic equation

A(z) = I + KiG (z)+ K + _1- G2 (z)+ (KwT + KFp)G (z)+ G4 (z)N(z) (4-5)

Equating A(z) to zero the equivalent transfer fucntion G (z) is obtainedeq G4(z)

Geq(z) = - KIT (4-6)e + KiG (z) + Kdeg + Z jG2 (z) + (KwT + KP) 3(z)

The intersect between G (z) and -IN(z) gives the condition of selfshyeq

sustained oscillations in the digital IPS control system

Figure 4-4 shows the Geq (z) plots for various values of Ngt-2 for KI = 105

In this case it has been assumed that the periods of oscillations are integral

multiples of the sampling period T Therefore if T denotes the period of

oscillation Tc = NT where N is a positive integer gt 2

From Figure 4-4 it is seen that when N is very large and T is very small

Geq(z) approaches Geq(s) However for relatively large sampling periods

37

-G2(z)

-G (z N(Z)

-

Figure 4-3 Sampled signal flow graph of the digital IPS

control system

Geq (z) does not approach to G (s) even for very large N This indicates

the fact that digital simulation of the continuous-data IPS can only be

carried out accurately by using extremely-small sampling periods

The critical regions for -IN(z) of an ideal relay are a family of

cylinders in the gain-phase coordinates as shown in Figure 4-5 These

regions extend from --db to +- db since the dead zone of the ideal relay

is zero For N = 2 the critical region is a straight line which lies on

the -180 axis The widest region is for N = 4 which extends from -2250

to -135 Therefore any portions of the G (z) loci which do not lie ineq

the critical regions will correspond to stable operations

It is interesting to note from Figure 4-4 that the digital IPS system

has the tendency to oscillate at very low and very high sampling periods

but there is a range of sampling periods for which self-sustained

oscillations can be completely avoided

l- Zit iii n 1 i - iyo t-- _ __-_ I -

-

--- o it Th t r-tshy

--shy

4

+ - - - o5 s -

- - _- - - - - -- - - I I

-- A T-- ----- o o

-

N-4ltshy

_

--shy

-(_) shy

61 -Idao

-

I

-_ I --

rZ

]- - r-u cy-response plt-----

jFigure i-4en___

a G-4 forvar ioi Isva]Ues of -

-shy ---shy [- _ _ - b - = 7

- -- -- --

-- __-____ ~4 -- t-~ -- - i r -

r

_

--

- -

-

o-

-- -shy

tj______

ID

-

-

__ ______

I

deg--

_-

_ _

_ shy

_--

_ _

-- -- I-- shy- f ttr-Z -- 300 I -260o-2T - 0- - - 10 = 10 -1 o - -o- -6 - - -r- r H f I1 I -- 1 --- f- - DE R Es r_--- -l -- -- - ~-- - ~-- - -v- - 4 t - I 1 0

AlA tr

1 ~ ~

In

L w I-m1th7 - I--r-I-

~ ~ 7 1 1--r1~

I

-shy 7

1- 0 c17

_ _

A

r qIo

___

Ia L

I Ill ~ - ---- --

II7 -LI 4 --- - I 1

[-- - r- lzIjIiz --i-i--- [ ii - - -L _

- - i - --

[J2jV L L f

I

-__

- _ _- - -

Te

- -

ayshy

-__

deL-Lr-i-b

l _ _ I-shy

________ ~ H- t1 sectj4--ffff

e

-i-i-desc

____shy i

I~At ~~~~-7= AITtt-

~ T_

_ S

1 ___ _IAI

5A

_

IP

-

4

_____ __ __

_

~

__

_

__

___t-j --

___ __ ____

L

Referring to Figure 4-4 it is noticed that when the sampling period T

10~2 is very small (T lt sec approximately) the loci of Geq(z) for N = 2

3 and 4 lie in their respective critical regions and self-sustained

oscillations characterized by these modes are possible However since the

actual period of these oscillations are so small being 2 3 or 4 times

the sampling period which is itself less than 001 sec the steady-state

oscillations are practically impossible to observe on a digital computer

simulation unless the print-out interval is made very small This may

explain why itwas difficult to pick up a self-sustained oscillation in the

digital computer simulation of the continuous-data IPS system since a

digital computer simulation is essentially a sampled-data analysis

When the sampling period is large (T gt 9 sec approximately) the digital

IPS system may again exhibit self-sustained oscillations as shown by the

Geq(z) loci converging toward the -1800 axis as T increases However the

Geq(z) loci of Figure 4-4 show that there is a midrange of T for which the

digital system is stable The Geq(z) locus for N = 2000 actually represents

the locus for all large N Therefore for T = 01 the Geq(z) locus point

will be outside of the critical regions since as N increases the widths

of the critical regions decrease according to

N = even width of critical region = 2urN

N = odd width of critical region + 7TN

Therefore from the standpoint of avoiding self-sustained oscillations

in the simplified digital IPS control system model the sampling period may

be chosen to lie approximately in the range of 001 to I second

41

Digital Computer Simulation of the Digital Nonlinear IPS

Control System

The digital IPS control system with wire-cable nonlineari-ty as shown

by the block diagram of Figure 4-1 has similar characteristics as the

continuous-data system especially when the sampling period is small The

digital IPS control system of Fig 4-1 without the sample-and-hold in front

of the nonlinear element was simulated on the IBM 36075 digital computer

With initial conditions set for c and S typical responses showed that the

nonlinear digital IPS system exhibited a long oscillatory transient period

Figure 4-6 shows the beginning portion of the response of 5(t) for s(O) = 10- 3

-4(0) = 10 K I = 105 T = 01 sec HWT = 1 KWT + KFP = 100 Figure 4-7

shows the same response over the period of 765 sec to 1015 seconds Figure

4-8 gives the response of E(t) for the time duration of 1530 sec to 1725 sec

and it shows that the response eventually settles to nonoscillatory and

finally should be stable

---------------------------

Time (sec) e(t)

0 0 1 9000 E-04 ----------------------------- ----shy

487-0450 ]E2 400- - -10I0E 01 -- - 2E 0E- shy0 +E--4

- 15000CE 01 -1 6-E- 5 shy I E ll 2311 8E-4------------------------------------------

C 25000E 01I 4 2-1)i4S -01 101 i 4 032E-04-------------------------------------------------------shy- 50lOE 01 4334E-04 ------------------------------------------- + I 40 0 -44-2E-04 +------------------------------------shy

45000245000 E --46699-054 -----------shy0101 3095 3E -04 -------------7 ---shy

(D 5000E 01 -43414E-04- -------------shyi (a 55000E 01 -amp6717E-04 ---------------shy0 - 60000E 01 -14427E-04--------------------------shy

9i65000 E 01 1843E-04 --------------------------------------shy-- 70000 01 E-04--- -----------------------------------------------shy

0 7500 CE 01 4036E- 1-----------------------------------------------shy01 29-04-_000CE ------------------------------------------- +

8~ 36615E-05------------------------------------shy5000E 01 09000011 01 -22174E-04--------------------------Oh 5IE 01 -37802E-04-----------------shy

1 0000E 02 -3492-04 ----------------shy-1 95002 02 -1 33E-04-----------------------------11000E 02 __-63194E-05-- -------------------------11500E 02 173434E-4 --------------------------------------shy1200E 02 2264 -04----------------------------------shy

o 12500E 02 1 EZi4 +-shy

- 1 3000E 02 47188E-05 ---------------------------------13500E 02 -71956E-0a--------------------------------+

1L14000E-0---1---4E04--------------------7-------shyI1 4500E 02 -1 74_E-0--4 ------------------------

100E 02 -1 - 0-04- ---------------------------1550OE 02 -149E 4--------------------------------shy4

16 0E 02 - 1-344E-04 ----------------------------------- shy

o) E 169 u E 02 18073E-04------------------------------------------shy1700ii0E 02 1 6576E- 04------------------------------------------17500E 02 77892E-05--------------------------------------shy1 8000E 02 -2 2145E-05----------------------------------shy1 8500E 0 -1 14--------------------------19000E 02 -1 644E-04 ------------------------- + 1 950E 02 -1 1929E-04 + 200LE 02 -27840 E-- ------------------------------shy21 _E 02 1 47-E- 054-----------------------------------

21000E 02 15121E-04- ------------------------------------shy

Time (sec) s(t)

7 6500E 02 42449E-05 --------- +

7 7000E 02 46277E---5 -- --------------------------------- + 77500E 02 2 5093E-05 -------------------------- --- + - 78000]E OS- -371--E-06 -+

OjII 2 --- --7 M E I]2- -2 S n --- -- -- --- ----- =S7 nnnE -- ---i02 -- shy Io IJ-E-

S500E 02 -2 9759E-i-05 -shy

iA 00E 02 -6 2_116E-06 --shy

S1500E 02 -2 1103E-05 ------------------------ --- -+8 O1E 2 -- 21 E -- --

81500E 02 2279E-05 -- - + - 1000-E 02 48384E-0 -- ------------------------- - +

On0 153002E S 8500E 02 -23254E-05 +---------------------shyo _8 _5 IOTa- 42021E-0E-06F - --------------- --- -- -shy II0E 02 37490i -- -- - ---- ---

00E 2 -8 -711E-05 - -

M-- -- - -- - shy+ 045E 02 -101671E-05 ------------------------------------- +

4005I00E 0202 31- 05- -------------------------------- +S5000 3 E- 0 -----------------------------------

86000E 02 8522E--05 ---------------------------------86500E 02 29366E-05----- ---------------------------

SAME 93945E-lI6 -----------------------------------shy2

87500E 02 -1 2310-0 -------------------------------E-800E0 - 2GA v------------------------------- +

0- 0E QOE 02 -1 1E- -----------------------------shy

oj 89500E 02 69699E-0 ------------------------------- +

8 8 -026411E- 05 - shy

90 00 02 2537-0-------------------------------shyo 9 0500E 02 3 19E-= --------------------------------

91000E 02 28 5E-05 -------------------------------- +

3 9 1500E 02 1 3396E-0---------------------------- 7------- c-

- 2000E 02 -441E-- ------------------------------shy92500E 02 0-20198E--5 ------------------------------ + 93 00E 02 -23537E-05 ----------------- ------------- +

- 9300E 2 -1 4725E-05 ------------------------------ +

ii 9 4000E 02 2 -E-0 -------------------------------shyo 94500q20200 1 E-----------------------------------Z 95000E 02 9036E-05 -------------------------------- +

95500E 02 2T71E-05- -----------------------------shy + 02E02 16172E-05 -------------------------------- +

_ -39172E-07 --------------------9650OE 02 -71OIE-02 -1 4506E-05 ------ ----------------- -------- + 97500E 02 -2 0075E-05 ------------------------------ + I O00E 02 -14941E-05 -----------------------------shy

500E 02 -1 6809E-o_ ------------------------------- + 9 OE 02 1 3r672E-05 ------------ ------------------- + 99500E 02 2429-0--5 -------------------------------- +

1 000E 03 25769E-05 -------------------------------- + 1 0050E 03 1 654E-05 --------------------------------I1OiOOE 03 1 ------------------------------shy3 6 0 101502 3 -94976E-06 ------------------------------- +

--------------------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

-----------------------------------

-n

O

o shyo 0 I (

(D oo -h

= 2

0o

II m

C 0

+1 01 2 + shy

0

Time (sec)

15302 0315350E 03

15400E 03 1 5450E 13

E(t)

-3 0269E-07 6569-

12387E-06 59750E-06

0315500E77)6E-06 1 5550E 007 1 5600E 03 1 5650E2 03 1570 0E 0 15750E 03

1 5850 E 03 1 5900E 03 1 5950E 03 1S00E 03

16050E 03 1 6100E 03 16150 03 16200E 03 1 250E 03 16300E 03 1 6350E 03 1 402 03 1 6450E 03 1 6500E 03 1w6550E 03 1 660E 03

6650 2 03

6700E 03-16750E 03 169502E 03 1 - 0E 0 16900UE 03-

17100E 0317050E OS

17100E 03

1 7150E 03 1 7200E 03 172502 03

681E-06

--- -shy

-- - - - -- - - - - -- - - shy --+

-+ - +

62441E-06- ------------------------------shy36730E-06---------------------------------shy1 3305E-06 26 2E-07-

28820E-0 5297- 06 70821E-06 74646E-06 631902-06 42071E-2 0731E-06 84777E-1 0379E-06 2530 0- shy46163E-06

-- ---shy------------------------------shy------------------------------shy------------------------shy------------------------------shy

+ + +

------------------------------shy------------------------------shy

63 ---------------------------------shy70292E-06 ------------------------------- +

63401E-06---------------------------------shy46612E-06-------------------------- -------- + 275 9-06 -------------------------------shy1 4624E-06 ------------------------------shy1 31E-06 -------------------------------shy

-552E-06- ------------------------------shy05-

57316E- O------------------------------shy65755E-06 +

490E-06- ------------------------------shy2889E-0 -- -- -- - -- -- -- - -- -- shy

I90 EE-06 -- - - - - - - - - - - - - - shy

16209E-06 ------------------------------shy2 33 E- - -------------------------------shy37732E76I---------------------------shy

45

5 Gross Quantization Error Study of the Digital IPS Control System

This chapter is devoted to the study of the effect of gross quantization

in the linear digital IPS control system The nonlinear characteristics of

the torques caused by the combined effect of the flex pivot of the gimbal

and wire cables are neglected

Since the quantization error has a maximum bound of +h12 with h as the

quantization level the worst error due to quantization in a digital system

can be studied by replacing the quantizers in the system by an external noise

source with a signal magnitude of +h2

Figure 5-1 shows the simplified digital IPS control system with the

quantizers shown to be associated with the sample-and-hold operations The

quantizers in the displacement A rate QA and torque Tc channels are denoted

by Q0 QI and QT respectively The quantization levels are represented by

ho h and hT respectively

Figure 5-2 shows the signal flow graph of the digital IPS system with

the quantizers represented as operators on digital signals Treating the

quantizers as noise sources with constant amplitudes of +ho2 +hi2 and

+hT2 we can predict the maximum errors in the system due to the effect

of quantization The following equations are written from Figure 5-2 Since

the noise signals are constants the z-transform relations include the factor

z(z- )

T KoK++z) h 1 (KT -Kz 7Gh(S)l( ) 4 h(S)K h z

2A(z) 7hsI + 47h I_ ()+LI- (5-2) 0 2 z1(-1

OA(Z)~ -7hSA(s2 7h()s - 2 z A(s) 2s)

K 4SHQlK I shy

0 Sshy

2 ~~~Figure 5-1 Linear simplfe iia P control syse wihun za o

-K 6 K

s Kdeg

-~ ~~~f- T OAq zT

KK

K-2 Fiur S6na sipiTe dTgISsse wt un~ Tloin Trp Tof

48

The last two equations are written as

hT 0A(z) = G(z) T (z) + 27 (5-4)

eA(z) = G2 (z)T (z) h (5-5)

-2 where AI(s) = I + K2s- + K2s (5-6)

A(s) = 1 - K4K 6 + K2s-I + K3s-2 (5-7)

G1 (z) 2782z1x]O-4T (5-8)- T

1 ~z -I

G2(z ) = 2780-4T2(z + )(5-9)2(z - 1)2

Figure 5-3 gives the digital signal flow graph representation of Eqs (5-i)

(5-4) and (5-5) Using Figure 5-3 we can analyze the worst-case errors due to

quantization in the steady state at any point of the IPS system

As derived in previous chapters the transfer functions GI (z) and G2(z)

are given in Eqs (5-8) and (5-9) The characteristic equation of the system

is obtained from Figure 5-3

K T A(z) = I + K1G(z) + K + G2 (z) (5-10)

We shall now evaluate the maximum steady-state quantization errors for 0A 0A and Tc in terms of the quantization levels ho h and h

From Figure 5-3 To(z) is written

f hf+ ] T hTTc(Z) = 1 - --a( I KIT~+ Lh K T] ___K + GKN + ]2(z)]z (5-11)= AtI 2 + z -ldt- 2 I1 +fLK + z-1J1 2 z - I (-i

The steady-state value of Tc(kT) is given by the final-value theorem

lim Tc(kT) = lim (0 - z-I)Tc(z) (5-12) ku o z-1

Substitution of Eq (5-Il) into Eq (5-12) we have

49

h (5-13)lim T (kT) = +- ( - 3k _gtoc 2

S imi larly

-ho KIT] +h hT

+ K1 41G(z)OA(Z) = +K + K- 1) - G2 z(5-14)

Then shyim OA(kT) = im (1 - z-1)e (z)= h (5-15) kzrl A 2

1 ho K T ] hl hiZ aA(Z) = y-K + T- I K1 T G(z) z (5-16)

Iim 2A(kT) = im (0 - zl )QA(z) = (5-17)

Therefore we conclude that the maximum error in Tc due to quantization

is + hT2 and is not affected by the other two quantizers The quantizer in

the eA channel affects only 0A(z) in a one-to-one relation The quantizer

in the PA path does not affect either 0A QA or Tc

-G2(z)

-G (z)

2 z z-

K T I shy

0 z-I

+T z 2 z-l+ ho

2 z- I

Figure 5-3 Digital signal flow graph of the simplified digital IPS with quantization

50

6 Describing Function Analysis of the Quantization Effects-of the Digital

IPS Control System

In this section the effects of quantization in the digital IPS control

system are investigated with respect to self-sustained oscillations

Since the quantizers represent nonlinear characteristics it is natural

to expect that the level of quantization together with the selection of the

sampling period may cause the system to enter into undesirable self-sustained

oscillations

The digital IPS control system with quantizers located in the 0A 2 A and

T channels is shown in Figure 5-1 We shall consider the effects of only one

quantizer at a time since the discrete describing function method is used

With reference to the signal flow graph of Figure 5-2 which contains all

the quantizers-we can find the equivalent character-stic equation of the

system when each quantizer is operating alone Then the equivalent linear

transfer function that each quantizer sees is derived for use in the discrete

describing function analysis

Quantizer in the eA Channel

Let the quantizer in the SA channel be denoted by Q0 as shown in Figure

5-2 and neglect the effects of the other quantizers Let the discrete

describing function of Q be denoted by Q (z) From Figure 5-2 the following

equations are written

Tc(Z)= K0 + I IT Qo (z)A(z) + K12A(z) (6-1)

z-K7 Gh(S) A (s) K4K 7 Gh (s)] E)A(Z) = - 2 A+ 2A Tc(z)

=-G 2(Z)Tc(z) (6-2)

51

A-K7Gh(S)A (s) K4K 7Gh(s) zA (Z) = --h+)I- Tc(Z)

= -GI (z)Tc(Z) (6-3)

where AI(s) = I + K2 s-I + K3s- 2 (6-4)

A(s) I - + K2s - I + K3 s-2K4K6 (6-5)

278x10-4TG(Z) shy (6-6)

G2(z) - 278xO-4T2 (z + ) (6-7)) 2

2(z-

A digital signal flow graph portraying-Eqs (6-1) (6-2) and (6-3) is

shown in Figure 6-1 The characteristic equation of the system is written

directly from Figure 6-1

Qo ( z )A(z) = I + G2(z) Ko + -z- I + K1GI(z) = 0 (6-8)

To obtain the equivalent transfer function that Qo(Z) sees we divide both

sides of Eq (6-8) by the terms that do not contain Qo(z) We have S KIT

Q-f=G (z) K +

1 + 1+ K 1 ( JG qo(z) = O (6-9)KIT

Thus G2(z) Ko + z - (6-1)

eqo KIG1(Z)+ 1

Quantizer inthe A Channel

Using the same method as described in the last section let Ql(z) denote

the discrete describing function of the quantizer QI When only QI is

considered effective the following equations are written directly from Figure

5-2 OA(z) = -G2 (z)T (z)c (6-11)

QA(Z) = -G(z)T (z) (6-12)

TC (Z) = K + Z QA(z) + K1Ql(z) A(Z) (6-13)

52

Q-(z)K o + KIT

ZT(z)

Figure 6-1 Digital signal flow graph of IPS when Q is in effect

KIT

A z- 1

KIQ+( )T-Z

oA

-G2(Z)

Figure 6-2 Digital signal flow graph of IPS with QI if effect

53

The digital signal flow graph for these equations is drawn as shown in

Figure 6-2 The characteristic equation of the system is

A(z) = I + K1GJ(Z)Q(z) + G2 (z) K0 + zK-T01 = o (6-14)

Thus the linear transfer function Q(z) sees is

KIG (z)

Gl z ) (z)1 + G 2(z) (Kdeg -T (6-15)Gq 0 + K T 3

Quantizer in the T Channel

If QT is the only quantizer in effect the following equations are

wtitten from Figure 5-2

eA (z) = -G2 (z)QT(z)Tc(z) (6-16)

QA (z) = -GI (z)QT(z)Tc (z) (6-17)

Tc(Z) = K + KIIA(z) + KlA(z) (6-1-8)

The digital signal flow graph for these equations is drawn in Figure 6-3

The characteristic equation of the system is

K T A(z) = I + KIGI(z)QT(z) + 02 (Z)QT(Z) K + I 1 0 (6-19)

The linear transfer function seen by QT(Z) is

GeqT(Z) = KIG I(z) + G2 (z) [K + (6-20)

The discrete describing function of quantizershas been derived in a

previous report3 By investigating the trajectories of the linear equivalent

transfer function of Eqs (6-10) (6-15) and (6-20) against the critical

regions of the discrete describing function of the quantizer the possibility

of self-sustained oscillations due to quantization in the digital IPS system

may be determined

54

KIT

0 z-l

-GI~)Tc(z)

Figure 6-3 Digital signal flow graph of IPS with IT in effect

Let Tc denote the period of the self-sustained oscillation and

Tc = NT

where N is a positive integer gt 2 T represents the sampling period in seconds

When N = 2 the periodic output of the quantizer can have an amplitude of

kh where k is a positive integer and h is the quantization level The critical

region of the quantizer for N = 2 is shown in Figure 6-4 For N = 3 the periodic

output of the quantizer is a pulse train which can be described by the mode

(ko k k2) where k h k 2 h are the magnitudes of the output pulses

during one period Similarly for N = 4 the modes are described by (ko k])

The critical regions of the quantizer for N = 3 and N = 4 are shown in Figures

6-5 and 6-6 respectively Figure 6-7 illustrates the frequency loci of Geqo(z)

Geq] (z) and GeqT(z) of Eqs (6-10) (6-15) and (6-20) respectively together

with the corresponding critical region of the quantizer The value of K is

equal to 105 in this case It so happens that the frequency loci of these

transfer functions are almost identical Notice that the frequency loci for

the range of 006 lt T lt018 sec overlap with the critical region Therefore

55

self-sustained oscillations of the mode N = 2 are possible for the sampling

period range of 006 lt T lt 018 sec It turns out that the frequency loci for

N = 2 are not sensitive to the value of KI so that the same plots of Figure

6-7 and the same conclusions apply to K = 106 and KI= 107

Figures 6-8 6-9 and 6-10 illustrate the frequency loci of Geqo(z) Geql(z)

67and GeqT (z) for N = 3 and for KI = 105 10 and l0 respectively From

Figure 6-8 we notice that for KI = l05 the frequency loci do not intersect with

the -critical region for any sampling period Thus for KI = l05 the N = 3 mode

of oscillations cannot occur

For K I = 10 6 Figure 6-9 shows that sustained oscillations for N =

would not occur for T lt 0075 sec and large values of T ForK I = 107

Figure 6-10 shows that the critical value of T is increased to approximately

0085 sec

For N = 4 Figures 6-11 6-12 and 6-13 illustrate the crit-ical region

and the frequency loci for K = O5 106 and 10 respectively In this case

self-sustained oscillations are absent for KI = l0 for any sampling period5

I6 For KI = 10 6 the critical sampling period is approximately 0048sec for

quantizers Q1 and whereas for Q The stabilityT the critical T is 007 sec

condition is improved when KI is increased to for QI107 and QT the critical

values of T are 005 sec and 0055 sec respectively for Q it is 009 sec

As N increases the critical regions shrinks toward the negative real

axis of the complex plane and at the same time the frequency loci move away

from the negative real axis Thus the N = 2 3 and 4 cases represent the

worst possible conditions of self-sustained oscillations in the system

The conclusion of this analysis is that the sampling period of the IPS

system should be less than 0048 second in order to avoid self-sustained

56

oscillations excited by the quantizer nonlinearities described in these

sections

j Im

-1

-(2k+l) k- -(2k-1) 0 Re

2k 2k

Figure 6-4 Critical region of -lQ(z) of quantizer for N = 2

__

(3 fl~hCC MA -- ~r PAN u) NuSQUARE lOXx 10TOIt 0NCR AS080I41

77InU-14

= I I ~4IZ 1 ~~tP I -- -77-- -1 I IL _ _ _ ~

I ~T ~ -~ iplusmngt i A h~iF __ - ___ _ __ __ ___ IL

2-_ - shy 0 2 e

4--

I_ 1shynI

4- --shy - - ___H I 4__+4I 1 ~~~~~-

-T

7 -

1- _____ 7-yzL - - - - - t - -

- ---

- ----- -- - --

___________ p i twc~ts 10 0YATR-l -ornmSOVAI I0 xI 10TILE INCA AS0O0160

I-t-tii- h - -- JJ --F - tm --- r-- - 4P] -- F--I- AJ++ jj H-W - i -+-+j+-1+ m Irj=m-- shy

----I-r--t---t--- - -----IJ I

1 __ _ iI 4 rt- l -- r --- n --I- --- __ _ i-i 4At FA-t t

7-- I-I - - I

- t1 _ - ---- ---- i------ - - - -i- R-e- _ _ _ __ _1 _ _ 1 I----__ - _ __

-- - I--- -I -- - 2--- + - 2 - -- Il -- - -- -- - - --shy

_ -J--__

W z - -- __ _ __ ____

-l -__ __ -- i----T------ -- - --- - i_ -7I- it - _0 _1 I i ---- ----- ------ -- - --- - shy 4z __ ___ i_~ ___ ions_ _ ____ ____ ___

-~~~7 - -H1 11 1- ~ j O

- - - shy- -- -- -- ~ ---------------- -- ~~ 1 ~ -- -- - - ------- = -- - -H4- - K --- --1- - - - ---

-4~

- ---l-

- -_

- -

_ -A

- -- Liti- -- N

I - 1 - - +_

----- -

((- fAJ lth Va(01f No ft~ SQUARE IA 0807 ~I~s 10 1ToIN[ INCH As -to

I A TV 4 f~lJLI REF7 - t- 1 r-x -Lu- I- -i- _ _21 1 I 4 - - - -- tr 7i

L 2 i1 7 - _ V 1 I h iT --shy1-4 _

-I- _- - - -- T IM

2-shy

t - lt TZ-L-

- 0 85--------- - - -shy - - - ------- - - i-- - - -l-

-1 2 8

T )

j 5 -5SI-ishy

-4 --shy____ ~ ~ ~~ ~ ~ ~ ~ ~ tfr~ ~ f 1 4__t ~ -~- lt~-

-- 2-E- - - -

-- Maximum span of c r it aI rec ion-s~own wi th k-1 1 -1 _ shy

-I- - T 1 G 04 -02-ft o -(Z-aV-shyk__ k--I

- -o -he u _o 0 - --LE3 shy-----

thj j- M xms ofr F s pq-wi 1F -- - T= seS - - shy- - - - - -- -- -- - -- ----- - --1-I- - shy

___ _ _ _ - --- - - -- -r- - -L~ - -

- - - - - - - - - - - - - -- - -- - --

- I- - - - - - - _------ -i - -- - I -- -- - i -- --- ----- -- --- -------- 1

- - I - r I A ~ - 1

Gfl4~C~-un F F~NwSQUARE 10 X 10 TOIREINCH AS 0807 -GON~

t r--

- T - ]- -1 - -

1 0 0 4 - - 2 0 0 I K ] ii j~ 00 vC ( )-- I

z m - ---- wzz shy0 Q

-for N -or

--4 -- - - - - - ---- -- --- - I- - -- ] - rn rzj-_

-- -- J -4 - - - - --

n-o N =-3enc-)i ]j - -- br -J- - - 0 - - -- _ __ _

__ _ _ _-- -____-__ _ -____ __ shy_----I-

-~+ cent - - D- - 6- -I - 4 shy---- f-- igre 5VG~ () ii4-~)-C () ed-critTca~l regi 1~U

( (3 ePPGCi W4tV apt~ ~ l1 (-M~~~LS 10 10 101N INCH AS 0501 41OVARI

A yC

A-R-h-h- -Id-tA------ bull - - - - - - - - shym- J- - - 4 L-- _--_ - - -n i-- I_

I - -- -- l ibull- -r - - -- - - shy i L ---E- -

h-- shyL t-cent ___ j ___ I-_ _4 ItJ -P~

m z __ _

J - - - -i WZT-2 +--00 06=L

_ - -- - _ I m - - - ---- -- -- --- -r

_ _1_

7f6 008m

-0 0 shy

-11 _0__ 4 _ _ _7 -- - - 00

I __4 oST t __ztf_____1a = 0 -0 05 -90

i G (zJ -i -- b Ishy- icaI e for - 0 --E- JOSd- - -shy TXT -r-

- ~~-- T -_----shy- ht - -- - - shy

- - - - - - - - __ _ _ -)- - - -- - ---- - -- - -- -

K- H- - q -

f- ------shy J -- 9 _--- i __72j- -_

I

_ _ _ _ v ----- shy shy uri _ - - 3 ari - 7 _ 2 r~ t_2 cL O ---- a d 2_

--

_ __

r --- T-- SQUARE10 IN tELAS08-7 - -0

ji--- __ _I

( z)7bull -- shy-- --- tgi _ _ ____ 0_2 _ _ __ _

eL4 -- bull-S Z) oo -7-- - - 1 I (3 n pjI( 4 4 2j 2_ _ _ _ _Re_ -

-- 04-L~~~~~0 4 1 2Wshy=

2 - -Re 74 - 2 -2 006-- - shy

005 c - (fO-O

I I

_____ - -- 1 7- o ~ UIc -04 Rshy

-~~r -- shy - I i ------

V qK l~)-f quarL iiHrir =Ln 04

-----

- --

0G CP C CO NTI4O LS CG RflPO t D N00AMdeg ( 10X 101 O HEINCH AS060-G ATI D J

[i t H

-1- 47 Ii-fohr-t- h -i 9 4_tr_4 _- _shy

-- -r- tca -rgion- c f--- ( i i~ -~i-~j

fo r- N --q 4 - -- 1

- a_ -4

7_7_ 1t c---r -2 - 6-- - _ -- _Rew -shy

-- X--- -I - _ ___ --__ -_ 00 1 q

-7_O 0 - 0 - _6z1202R

- ------ --

_ - -r1---- 0- __ _ _ -_ _ _ __

-- - - - - -- - - - ----- --- _ --- _shy

_ _ _ -- o4 o-shy - -- 1 1 11

Hf- -- 7 M-- I- --- -- 1

-___2t4 r- t2~~~S gt J

-9F4+-LfHre I rqunc__ SL u__

2 ~-s47-- 1-- ry mnLl------- m Afl2AJU494441

------- ---

-ON ron JoN BulfNLY- SIIARE R X101TTHEINCH AS-BO --_ -G

77 _i I

-i-o] _LL1 -- Th V i t-- W JT E t

-_

L L 12 i0 - - _ _ - shy4Zt2amp

fI

I-L - - 4 shy

12 -H-IL deg 1i (z---- r T j_ n f-fti- J_=u V1 -t- - t JW _ooT T4 i G

I c-i-i---- ~0 - 0 0

- i 1-F Jiplusmn t+ - _7_ I---i---v - _---L- - i-0- _ -- --i- A-a - 4 -- -02H-m-----n----- V A -i-- rj --- i --0- ---

___ __T 003-r

P - ~ 0-- Kij T -(sec)-

-I~~~Li4 i Hiit - 1H -i-P71

~~ 1 -9 e62 ~Peun~~4U177~~~~-G---- G__ cristcal--regbon of aI~~ltHr-Nv iI q4JPEP +Qz) frN ~Land177

ii V~ww~hhfiuI~w~141

__ __

r(pAzPHPPE OAApOI0N3 InP01A11N t INCH 4CDA BflLf~idTN(t SUFAREI1010T THE AS-0607

TI I ijfI _j I1 - j_ _i

-ri-i- 1 jb I mr --~t o-f t4

-- -ie

--L-- - -A--m-T -- ---i-i 0_ -T sec)shy

_ _ _ U - -0- shy

__

- - _- H

0_

b - -2 _ _ _

~~ __

--- o _

___--_ CF - -__ _ _ t J - I

08---006--I 0

_ __ I7__ _ _ _ __ _ _ 0

_

6 -0I _ - ___ _--

- ai

77 Id2 71 _ __ - L- oj-- m i

q on c - c__ - T I1I I L ~ -- - i 0 s u -1-__ _

- -t- f - -4- _i Lr- I -

L LIlt --- _

_ ___ishy

----0 Reshy

shy shy

Ft2

- 0 e shy

f- - 57

_

66

7 Digital Computer Simulation of the Digital IPS Control System

With Quantization

The digital IPS control system with quantizers has been studied in

Chapter 5 and 6 using the gross quantization error and the describing function

methods In this chapter the effect of quantization in the digital IPS is

studied through digital computer simulation The main purpose of the analysis

is to support the results obtained in the last two chapters

The linear IPS control system with quantization is modeled by the block

diagram of Figure 5-I and it is not repeated here The quantizers are assumed

to be located in the Tc 6 A and SA channels From the gross cuantization error

analysis it was concluded that the maximum error due to quantization at each

of the locations is equal to the quantization level at the point and it is

not affected by the other two quantizers In Chapter 6 it is found that the

quantizer in the Tc channel seems to be the dominant one as far as self-sustained c

oscillations are concerned it was also found that the self-sustained oscillations

due to quantization may not occur for a sampling period or approximately 005

sec or less

A large number of computer simulation runs were conducted with the quantizer

located at the Tc channel However it was difficult to induce any periodic

oscillation in the system due to quantization alone It appears that the signal

at the output of the quantizer due to an arbitrary initial condition will

eventually vary between h 2 and -hT2 indefinitely in a random fashionT Th1 This points to the fact that the system the quantizer sees is not a low-pass

filter so that the describing function method becomes inaccurate However

the results still substantiates the results obtained in Chapter 5 ie the

quantization error is +hT2 Figure 7-1 and 7-2 show-typical responses of

the simulation runs for K 105 and T = 008 sec When K = 107 the system

is unstable

67

TIME I 0 0 00E- i - shy

40000E-02 00 --------------------------+ 2 0 U OGE-02 - U G00E-G1 + 12000E-O01 00 -------------------------shy16000E-1 -27600E-01- ----------------shy20000E-01 00 -------------------------shy24000E-Cl 30200E-01 -----------------------------------+ 28000E-01 00 -------------------------shy320OE-1 95000E-02 ----------------------------- +

36000E-01 00--------------------------shy4000E-Cl -11300E- 0----- -----------------+ 44000E-01 0 0---------------------------shy48000E-01 -32000E-02 ------------------------- + 52000E-01 00--------------------------shy5600GE-01 43000E-02 --------------------------shy6O00GE-01 00 +-------------------------shy6400E-1 1000 E-02 ----- --------- ----------- + E8000E-101 00 - ---- ------------- +-----7OOE-01 -16000GE-02 ------------------------shy

6000E-01 00- ----------------------- - - -- +

0000E-01 -2000E-GB- --------------------------shy84000E-01 00--------------------------shy880O0E-01 -50000E-03- -------------------------shy92000E-01 00- - -------------------------shy960)E-01 1O000E-03- --------------------------1O000E O0 00--------------------------shy1 0400E 0 -1000E- 03- ------------------------shy1 0200E O0 00---------------------------11200E 00 00--------------------------shy1 1600E 00 00 -------------------------shy1 2000E 00 00------------------------shy1 2400E O0 00 --------------------------12800E 00 00 --------------------------13200E An 00 ------------------------shy

1 360 E 00 00 ---------------------------14000E 00 0 ---------------------------14400iE O 100) G-SE-03 - --------------------------14800E 00 00 --------------------------15200GE 00 -1000GE-f3 --------------------------15600E 00 00 -------------------------shy16000E 00 1 000E-0 ---------------------------16400E 00 00 --------------------------16800E 00 00 -------------------------- + 17200CE 00 00---------------------------17600E O0 0 0-- --------------------------18000E 0 0 0 +--------------------------18400E 00 00 - ------------------------ + 18800E AO0 ------------------------GEn -19200E 00 00 -------------------------- + 19600E 00 00 ------- -------------------- + 20000E 00 00 -------------------------- +

REPRODUCIBILITY- OF THE ORIGINAL PAGE ISPOOR

Figure 7-1 Response of output of quantizer at Tc hT2=0001 K = 105

T = 008 sec

68

T I PIE-6

)040AEO0 0 -------------------------- + 2 0800E O0 1OO0E-OB -------------------------- + 2120OE 0 -00 --------------------------- + 21600E O0 00 -------------------------- + 21)O00OE 00 0 0--------------------------

2-2400E 00 -1 O00E- -------------------------- + 22800E 00 00 --------------------------23200E 00 10000E-O- --------------------------23600E 00 00 -------------------------shy

4000E A0 24400E O0 00 --------------------------24800E 00 00 --------------------------25200E 00 00 -------------------------- +

42 00 +-------------------------shy

256 00CE 00 00 -+------------shy 56002E 00----------------------------------+6000OE 0000 0 0+

26400E 00 10000E-3 -------------------------- + 26800E 0 00 -------------------------- + a 7200E f0 -10000E-03 --------------------------27600E 00 00 --------------------------28000E 00 0 0--------------------------28400E 00 00 -------------------------- + 28800E 0 10000E-- ---------------------------a9200E 00 0 0----------------------------2600E 0 0 00 -------------------------shy-O00E 00 00 -------------------------- + - 0400E 00 00 -30200E 00 00 --------------------------312OOE 00 00 --------------------------31600E 00 00 -------------------------- + 2 000E 00 0 --------------------- --- + - --

Figure 7-1 (continued)

--------------------------

69

-TIME YT I00 3000GE-01 40 00E-02 00---------------------------shy

8 000E-02 8 0520E-01 + 12000E-01 00 + 1 6000E-01 -2570E-01 -+

shy

2000IE-1 00 -------------------------- + 24000E-01 3 01-------------------------shy0210E-Ol 2 0 0CE-O0I 00 --+ 32000E-01 9480E-02 ------------------------- +shy

3600E-01 00 -------------------------shy+ 4 0000E-01 -1 1300GE-OD ---------------------shy44000E-01 00--------------------------shy48000E-01 -32000E-02 -------------------------+ 52000E-01 00 ----- -------------------- + 56000E-l 4-2300E-02 ----------- -------------- + 60000E-01 00 + S400E-01 00 -------------------------shyb 50OOGE-01 100 E-0 +--------------------------shyS4000E-01- -36i O E-02-j ----------shy

6000E-O1 00 + s000E-O1 -3600E-3 -------------------------shy

84000E-01 00 --------------------------shy1 3000E- 1 -scC0E-03 ------------- ---------- + 12002-01 00-------------------------shy9600 CE-Cl 30OE-03----------------------------1000E 00 000--------------------------10400E 00 -2 O0002-3 -------------------------shy1 cs00E O0 00--------------------------shy1 12OE 00 -2 O00E-04 --------------shy1 1600E 00 00--- ------------------------- -I 200 GE 00 8 00 E-04- -------------------------12400E O0 00---------------------------12500E 00 4 OOE-04 - -------------------------- + I3200E O0 00- - - ---------------------------13600E 0 -3 OCI00E-04- --------------------------14000GE D0 --- ------- ++----------1 4400E 0 2 O000E-04 --------------------------- +

1600E O0 00 +--------------------------16800E 00 O00DE-04 -------------------------- +

1 6400C O 0 D 0+ 1 63 JE 00 1 O00002-04-----------------+

17200E 00 0 0 -------------------------- + 17600E 00 1 00 0 OE- 04 -------------------------shy

5Figure 7-2 Response of output of quantizer at T hT2=00001 K = 1

T = 008 sec

REPRODTCmILUY OF THE ORffMNAL PAGE IS POOR

70

1 0960EOF 01 - - +

11O0E 01- 00 -shy1 1040E 0411 0-0 -- -+

111080E 01 00 - -+ 11160E 01 r --------------------------- + I I1 6 C ll shyIIE II U 11200E Ol 00 -------------------------shy1 124 OF 01 00--------------------------------11280E 01 00------------- ------------- + 11320E 01- 00 -------------------------- + I136CIE 01 00 ------------------------- + 1140E Ol 00C----- -------------------- + 11440EO01 -1000E-04 -------------------- +

114uE 01 I 0--------------------------+ 11520E 01 1 OOOOE-04 --------------------------11560E 01 00 -------------------------- + 1 1600E 01 0 0 ------------------------- +

11640CE 01 0 -------------------------- + 1168EO01 - 1OOOE-04 -------------------------- + 1172EO01 0I -------------------------- + I I76 E 0 1 0 --------------------------- + 1 180O OE 011 000------- -- -- -- -- -- -- -- -- -- -- -- --- +

1-18~40E 01l j000OF-04------------------------------1-1880E 01 0 0--------------------------1192E 01 -i OOOE-04 -------------------------- + 1196CE il 00 --------------------------1200CE 01 -I O00E-04 -------------------------shy1 240E 01 0 0-0 - -------------------------- + 120-OE Ol 1 OO -04- - ------------------------- + 12120E 01 00 ------------------------- +

Figure 7-2 (continued)

71

8 Modeling of the Continuous-Data IPS Control System With Wire Cable

Torque and Flex Pivot Nonlinearities

In this chapter the mathematical model of the IPS Control System is

investigated when the nonlinear characteristics of the torques caused by the

wire cables and the friction at the flex pivot of the gimbal are considered

In Chapter 3 the IPS model includes the wire cable disturbance which is

modeled as a nonlinear spring (Figure 3-3) The combined effect of the wire

cable and flex pivot is also modeled as a nonlinear spring characteristics as

shown in Figure 3-4

In this chapter the Dahl model45 is used to represent the ball bearing

friction torque at the flex pivot of the gimbal together with the nonlinear

characteristics of the wire cables

Figure 8-1 shows the block diagram of the combined flex pivot and wire

cables torque characteristics where it is assumed that the disturbance torque

at the flex pivot is described by the Dahl dry friction model The combined

torque is designated TN

TwcT

W3WC -H E Wire cable -WT torque

+r

a TM

Dahi ode]TotalDahl Model + nonlinear

T Ttorque

TFP

E Flex Pivot torque

Figure 8-1 Block diagram of combined nonlinear torque characteristics

of flex pivot and wire cables of LST

72

Figure 8-2 shows the simplified IPS control system with the nonlinear

flex pivot and wire cable torque characteristics

The nonlinear spring torque characteristics of the wire cable are

described by the following relations

TWC(c) = HWTSGN(c) + KWT (8-1)

where HWT is in N-m KWT in N-mrad s is in rad and TWC(c) in N-m

Equation (8-I) is also equivalent to

T+(e) = H + K gt 0 (8-2) WC WT WT

TWC(c) = -HWT + KWT_ E lt 0 (8-3)

It has been established that the solid rolling friction characteristic

can be approximated by the nonlinear relation

dTp(Fp)dF =y(T - T (8-4)

where i = positive number

y = positive constant

TFPI = TFPSGN( )

TFP = saturation level of TFP

For i = 2 Equation (8-4) is integrated to give

+ C1 y(Tte- I TFPO) pound gt 0 (8-5)

-+C lt 0 (8-6)2 y(T1 p + TFpO)

where CI and C2 are constants of integration and

T = TFp gt 0 (8-7)

TW = T lt 0 (8-8)

FP FP ieann

The constants of integration are determined at the initial point where

Wire Cable P TWr Nonli earity +

Model hDahl + r

K_ + KI

ss+s TT

s

K -2 Figure 8-2 IPS Control System with the

nonlinear flex pivot and wire cable

K ~torque char acterisitics using the

3 Dahl solid rolling friction model

74

C = initial value of E

TFp i = initial value of TFP

Ther F~ iFitC1 -i y(TF -TTP) (8-9)

1 lt 0C2 =-i Y(TFFPi + T FPO (8-10) + T8-10)

The main objective is to investigate the behavior of the nonlinear elements

under a sinusoidal excitation so that the describing function analysis can be

conducted

Let e(t) be described by a cosinusoidal function

6(t) = Acoswt (8-ll)

Then T(t) =-Awsinpt (8-12)

Thus E = -A gt 0 (8-13)

S = A ltlt 0 (8-i4)

The constants of integration in Eqs (8-9) and (8-10) become

C1 = A y(T T (8-15)

C2 =-A- 12y(T~p Tp (8-16))

Substitution of Eqs (8-li) and (8-15) in Eq (8-5) and simplifying the

solution of T + is FP T + - + (8-17)

TFPO 2( - cost) + R-l

which is valid for gtgt 0 or (2k+]) lt Wt lt (2k+2)r k = 0 1 2

a = 2yATFPO (8-18)

R = - + a2+ 1 TFP (8-19) a2a TFPO

Similarly for s lt 0 using Eqs (8-11) and (8-16)in Eq (8-6) we have

75

S 2-(i - cosmt)FP R+1= 1I2 (8-z0)

TFPO 2(- coswt) +

which is vaid for 2kw lt wt lt (2k+)Tr k = 0 1 2

The expressions for T+ and T obtained in Eqs (8-17) and (8-20) togetherFP FP

with those of T (-) in Eqs (8-2) and (8-3) are useful for the derivation of

the describing function of the combined nonlinearity of the wire cable and

the flex pivot characteristics

-The torque disturbance due to the two nonlinearities is modeled by

T+ =T+ + T+N WO FP

R---+ - coswt) = HWT + KwTAcoswt + TFPO a - cost) + (8-21)

(2k+l)fr lt Wt lt (2k+2)r k = 0 12

T=T +T N WC FP

R - (1 - cost)-Ht + +T(2 (8-22)

Hwy + ITACOSt + T FPO a - t R+

Figure 8-3 shows the TFPTFP versus sA characteristics for several

valdes of A when the input is the cosinusoidal function of Eq (8-ll)

Figure 8-4 shows the normalized (3TFP + TWC)(3TFPO + KWT + HWT) versus

CA for several typical combinations of A HWT and KWT

10

76

O A10 A 3

02

-13

bull-10 8 06 OA4 02 0 02 04 06 08 106A

Figure 8-3 Normalized flex pkot torque (Dahi model) versus SA

for WPS with cosine function input

77

10 -_ _ _ _08

I -____ _____ ___- ___ ___

08

06 _ K_ =10_HWT=1o -0 4 A = 1 0 - A =10

- =10 2 A 1=

3 02 shy7 25+K - 01lt 0 A = 1shy

-02 KwVT-25i HK -10 K~r-10 i_VVT 0 --10 Hw K 10

- 1 F-2X 04A 101 A 10 A 10KWT-25

HHw 01

A -10 1 _ -

-08 -

-10 -08 -06 -04 -02 0 02 04 0806 10 AA

Figure 8-4 Normalized flex pivot plus wire cable torques versus CA

for IPS with cosine function input

78

9 Describing Function of the Combined Wire Cable and Flex Pivot Nonlinearities

Figure 8-1 shows that the disturbance torques due to the wire cable and

the gimbal flex pivot are additive Thus

T =T +T (9-)

For the cosinusoidal input of Eq (8-11) let the describing function of

the wire cable nonlinearity be designated as NA(A) and that of the flex pivot

nonlinearity be NFP(A) Then in the frequency domain the total disturbance

torque is

TN(t) = NFP(A)() + N A(A)E(w)

+ (NFP(A) + Nwc(A))(w) (9-2)

Thus let N(A) be the describing function of the combined flex pivot and wire

cable nonlinear characteristics

N(A) = NFP (A) + N A(A) (9-3)

Tha describing function of the Dahl solid friction nonlinearity has been

derived elsewhere 6 for the cosinusoidal input The results is

N (A) = l - jA (9-4)FP A

where 4 2 HC(C+A 1 =- TFPO + ifC- -AJ (9-5)

B 2 11 (9-6)I yA 02 -_A 2

The describing function of the wire cable nonlinearity is derived as follows

For a cosinusoidal input the input-output waveform relations are shown in

Figure 9-1 The wire cable torque due to the cosinusoidal input over one

period is

TWC(t) = KWTAcoswt - HWT 0 lt Wt lt 7F

---

79

TWC TWC

HWT+KWTA

H W V NTA -KWT T

A- HWT

70 Tr ii 3r 27r t HWT 2 2

2H WT

0r AA

T2 H

(-AC

Wt

Figure 9-1 Input-output characteristics of wire cable torque

nonlinearity

80

Twc(t) = KTACOswt + HWT T lt wt lt 2r (9-7)

The fundamental component of the Fourier series representation of Twc(t)

is

Twc(t) = AIsint + B coswt

2 2=A + B2 cos(wt - (9-8)

AI

Bt (9-9)

A1 = 0 Twc(t)sinmt dct (9-10)

A 1 20TW

B 7 j Twc(t)cosot dtt (9-1I)

The coefficients A and B are derived as follows

A = 2 0 Twc(t)sint dwt

= -- (IwTAcost - H )sinbt dt

4HwT -r (9-12)

B = 2 Tw(t)cosdt dwt1 7Fu0 WO

2 gTF (HAcoswt )coswt

J -W HWAdf

=KwTA (9- 3)

2 4Hw2 Then 2 2 4n T + (KWTA) 2 (9-14)

A1 + B1 SA

t-4HwT = tan -I W (9-15)

7KWTA j

81

The describing function of the wire cable nonlinearity is written

as BI - jA l A + BI

NWT(A) AA

4HWTI 2 2 a n- I 4Hw

LTAJ + KWT tV KWT (9-1)

For the combined nonlinearity the describing function is the sum of the

two describing functions However since there are three ball bearings on the

flex pivot- the final expression is

N(A) = NWT(A) + 3NFP (A) = NR(A) + jNI(A) (9-17)

where NR(A) =3 22 ( C] 2 ])+KT(-8-yA C A

R Fy 2 2 [E-A - TN(( = j -i + Kw NI(A) = 3Ki TFp 0

+ A+ 4HWT (9-19) - A+2r T s-s

Asymptotic Behavior of -IN(A) for Very Small Values of A

The asymptotic behavior of -lN(A) for very small values of A can be

derived analytically It can be shown that

NR(A) =yT 0 + KWTplim (9-20)A-O

and 4HWT Tim N I(A) = lim - (9-21) A- O A-O

Therefore

-1

ANR (A) + jN (A) n -1 lim

0 (A)

- = 0-270 (9-22)

j ri 4 WTTim 7rA

82

Asymptotic Behavior of -IN(A) for Very Large Values of A

For very large values nf A it can be shown that

lim N (A) =KWT (9-23)A-poR

and lim NI(A) 0 (9-24)

A-to

Then in -IN(A) 4-800 (9-25)

A4-0 KT

Magnitude Versus Phase Plots of -IN(A) of the Combined Nonlinearities

A digital computer program for the computation of N(A) and -IN(A) is

listed in Table 9-1 The constant A is designated as E in this program

The parameters of the nonlinearities are

TFPO = 000225 N-m

- 1 104 (N-m-rad)Y = 92444

KWT = 025 to 100 N-mrad

HWT 001 to I N-m

Figure 8-2 shows the plots of -IN(A) for the nonlinearities in magnitude

(db) versus phase for varies Combinations of KWT and HWT It is seen that

varying the value of HWT between the range of 001 to 1 does not affect the

curves appreciably

Prediction of Self-Sustained Oscillations in the IPS System With the

Combined Nonlinearity By Means of the Describing Function Method

The characteristic equation of the nonlinear IPS control system with the

wire cable Dahl-model nonlinearities is determined from Figure 8-2

I + N(A)G eq(s) = 0 (9-26)

-where N(A) is defined in Eq (9-17) and

83

TABLE 9-I

IPS CONTINUOUS DESCRIBING FUNCTION OF COMBINED NONLINEARITY

CAILCULATIOII FOP -1-M COMPLE GY M G

EAL8 P20-PIPADTO GRMMAEOTRPTEARPTGFITGFN

REL8 8qshyPI=3 -14159Dr1 FATIf8lBOPI TO= 0r_22BO HBT=1 DO hT=1 0 DO

MMR=S9 2444D3 ECTART=I fD-10shyNP=5 IE=12

IlITE(5101) DO I J=i ODflU 1 bull1=1 i-IPDO I I=l NF

E=E[TARTDFLORT(I) lODOtJ-1) A8=2D OGRi1AETO R=(-1 Dl0-A-+D-RT (AAAA+ OAAAFiD1 TGFI=RTO TGFN=TGFI TGFP=-TGFI C1=E-1 DO- (GAMMATi3FP-TO) C2=-E- 1 0 (GAMlATGFri+T) A1=-4 nD OTP I +( 1 D0 ePI1GAMAE 4DLO C 1+E-C 2-E )1-( 1-E) 2+E t

AZ=DLOG (C1+E(C2-E zr(C1-E)-zC2+E)) A1=-4 0TUPI ) +(Av (P IGMMRAE) B1=C-I1 DO- AMHA1E D EPT (C2C2-EE) -CI lOPT (CIC1-E fO+C2-1E

Rz1=-4 D HITP I B 1=EKIIT A1=31A+A- E

BB1= 3 -4+BSi -1B

GiN=CPL(BB1 -8A1) 3V=-I - GBr 31=PEALI GV) G2=AIGGV GMAi=CABC GV GBDB=20 ALOG10 MAG GPHR--E=PADBATAr2G2G1 ) IF GPHASE GE )GPHACE=GPHAS- E-T60 bWITE5 10)ETFI GPHA-E GIBDB GMAG

1 CONTINUE 100 FORMAT COtTINUOUS BESCPIBING FUNCTION FOP LZT HOrLIEAPITJ 104 FORMATgt E TGFI i0-T f -8- PHSE O MAGHI TUBEshy102 FURMRT(IPSE145)

-TOP E i] REPRODUChInIL THE

RuNAI PAGE 1i POOR

84

3 2 G (s) 000139 46(s3 + 00012528s + 0003 6846s)eq A(s)

where A(s) is defined in Eq (3-4) fdtice that G (s) in Eq (9-27) is equaleq

to s times the Geq(s) in Eq (3-3) since in Chapter 3 the input to N is

whereas now it is e The frequencyplots of Geq(s) of Eq (9-27) are plotted

in Figure 9-2 for K = 105 and 106 Similar to the curves in Figure 3-6 these

frequency loci for Geq(s) have two equilibrium points for each curve one stable

and the other unstabl-e For instance for K = l0 the Geq(s) intersectscurve

the -IN(A) oci at w = 0138 radsec and w = 0055 radsec The equilibrium

point that corresponds to w = 0138 radsec is a stable equilibrium point

whereas w = 0055 radsec represents an unstable equilibrium point These

results are very close to those obtained in Chapter 3 where the flex pivot

is presented as a spring Therefore the impact of using the Dahl solid friction

model is not great although all the loci are substantially different For

K 106= the stable equilibrium point is at w = 016 radsec and the unstable

equilibrium point is at w = 005 radsec

Figure 9-2 shows that for the system paramters used the intersections

between Geq(s) and -lN(A) all fall on the portion of the -lN(A) loci that lie

on the -270 axis This means that as we vary the values of KWT and HWT of

the wire cable nonlinearity characteristics within the stipulated ranges only

the amplitude of oscillation A will be varied Equations (9-21) and (9-22)

further show that for small values of -IN(A) which correspond to the range

of intersections in the present case the amplitude of oscillation is not

sensitive to the values of y T and KWT However the amplitude ofFPO KT oscillation A is directly proportional to the value of HWT Typical results

of the stable sustained oscillations are tabulated in Table 9-2

0

-20

-4 0

-60

1

A

-3_

- 4

-2

10 101(4)

N(A)

dO

10 1 bull

A + C

-oo(2)

A-00 O I(6)

(I) WT 0 25 HWr 0 OI

WT 0 25 =w

( ) WT - 10 HWT= 01

SIT - 0 HWT 001 (5)KWT = 50 HWr = 01KT -5-0 HWT=001

(7) WT 1 00 H WT 00 1

(8) T - 250 HWT T0

(9)KWT 500 11WT ]0

CA0) K--=oo H~ o 10

01

0

-80 K0--1 )

L0U

I-1 20C1m o0__- _ ------101ndeg--shy D-14

Ii ____ C

11 _ _

-120

-14C

o5

16

21

N (A)

-- 100

4 15C

01

0P)701

-160 10000

---- - - 0 00

-320 -300 -28amp -2600 -246 -22d -20d -18Qdeg -16d -14d -12d -10d -80 -6od -4d

Figure 9-2 Frequency response plots and describing function loci of IPS system with flex pivot and wire cable nonlinearities (DaM model)

OD

86

TABLE 9-2

KI KWT HWT A (rad) (arc-sec) w (radsec)

105 025 001 10-6 02 0138

105 025 01 10-5 20 0138

105 100 001 10-6 02 0138

1O5 100 1O00 1 -4 200 0138

105 500 001 10-6 02 0138

105 500 100 O- 200 0138

105 I000 001 10-6 02 0138

105 1000 100 10- 4 200 0138

105 2500 100 10-4 200 0138

105 -10000 100 O- 4 200 0138

106 025 001 3xlO -8 0006 016

106 025 01 3xl - 7 006 016

106 100 001 3x10 -8 0006 016

106 100 100 3xO -6 06 016

106 500 001 3xlO shy8 006 016

106 500 100 3xO -6 06 016

106 1000 001 33lt108 0006 016

6 1O0000 100 3xO -6 06 016

106 2500 100 3xO - 6 06 016

iO6 i0000 100 3xlO - 6 06 016

It is of interest to compare these results with those obtained in

Chapter 3 Using the results tabulated on page 30 the following comparisons

are obtained

HWT = KWT= arbitrary

Results in Chapter 3 Dahl model results

KI A (rad) w (radsec) A (rad) w (radsec)

-6106 317xlO 016 3timesI0 -6 016

105 819Xl0 -5 o14 10-4 0138

Therefore we see that for all practical purposes these results are

identical

88

10 Modeling of the Solid Rolling Friction by the First-Order Dahl-Model

It has been established that the solid rolling friction characterisshy

tics can be approximated by the nonlinear relation

dTFP (0) T - T1

de FPI FPO

where i = positive number

y = constant

TFP I = TFPSGN()

TFP(E) = friction torque

TF 0 = saturation level of TFP

s= angular displacement

The describing function of the friction nonlinearity for n = 2 has

been derived In this chapter the input-output relationship will be obshy

tained by solving Eq (10-1) with i = I The describing function for the

i = I case is deri ed in the next chapter

Let theangular displacement s be a cosinusoidal function

e(t) = A cos wt (10-2)

Then we can write

dT p(s) dT pC()dT shy d s = -yA sin wt (T - TO)dt d P P (10-3)

where i has been set to 1

Since TFPI TFPSGN(s) Eq(10-3) is written

dTFP (E) = -yAr sin wt (T - ) gt0dt FP FPO)0

= yAw sin wt (TFP + TFPO) ltlt 0 (10-4)

For lt O 2Trk ltc t lt (2k + 1ft k = 012

Equation (10-4) is integrated on both sides to give

T p[s(t)] d~()FFR (Td) yAw sin

(10-5) F[FP O)] (TFP) FO

Thus

TFP[s(t)] mt Zn(TFP + TFPO)T = -yA cos wts (10-6)

Or

n(TFP(s) + TFPO) - kn(TFP (0) + TFP0) = -yA(cos wt - 1) (10-7)T p()T

n TFP(0) + TFP = -yA(cos wt 1)- (10-8)FP + TFPO

Since for the cosinusoidal input d(o) = A and a lt 0 for 2rk lt wt lt

(2k + 1)7r k = 012 T (0) = TFPI gt 0 This is because at E = 0

a is decreasing and TFP acts in the direction opposite to the motion

thus T P 0 Equation (10-8) iswritten as

TFP (a) + TFPOJn T P = -yA(cos wt - 1) (i0-9)

Or

TFp() TFpI + e-yA(coswt-1) (0-10)

TFPO TFPO

For agt 0 (2k + I)i lt wt lt (2k + 2)gt k = 012

Equation (10-4) is integrated on both sides to give

) j2 Tr

TFP ( 2 FdTFP()

- =T (10-11)(Tlp -T-7 mt -yA sin wT doT PFP F

9o

Carrying out the integration we get

IT p() - TFp 0 ]

VPnTFP(2)TFP= -yA(1 - cos wt) (10-12)TFP (7) TFPO1J

Now at wt = 27 T (2T) = T gt 0 Equation (10-12) leads toFP EPI

TFP () = + FPJ - yA(cos t - ) (10-13)

ITFPO TFPO

Let

R = TFPITFPO (10-14)

Then Eqs (10-10) and (10-13) become

sT (a) I + (R + )e A(cO bt ) (10-15)

TFPO

TFp(s) = 1 + (R - )eyA(coswt-1) (10-16)

T FPO

respectively

In order to evaluate R we equate the last two equations at Wt = IT

Then

-1 + (R + Ile2yA = I + (R - I)e- 2yA (10-17)

The solution is

- 22 e 2YA + e yA

e2yA _ -2y A e2yA _ e-2yA

or

R = csch (2yA) - cot h (2A) (10-V8)

Since a = A cos wft and E = s(O) = A Eqs (10-15) and (10-16) are written

as - iP -l + (R + 1)e-Y ( lt 0 ( 0-19)

TpF(TFp 0

)

91

TFP(s) y(s-c)

-TFp0 = I + (R - l)e s gt 0 (10-20)

Figure 10-1 shows the TFPTFP versus sA characteristics for several

valuesof A when the input is the cosinusoidal function of Eq (10-2)

Figure 10-2 shows the normalized (3TFP + TWc)(3TFPO + KWT + HWT versus

sA for several typical combinations of A HWT and KWT

92

A=O 0

06

04 ___

0

-06

-10 -08 -06 -04 -02 0 02 04 06 08 10 eA

Figure 10-1 Normalized flex pivot torque (Dahl model i = 1) versus

EA for IPS with cosine function input

(3T

p T

w 3T

K

A

+H

) I

II

I

S0

0

0

0

0

000-o

(C

lt copy 0

O0

o-O 1

70

ogt

0 0)

So

-i

i ~I

m

IN

(D

Pot-

Ashy

(D E 0 o

0) U

0C

0

--1

P

iO -

I

a

OO

NO

JO

c

0

oO

-shy

00

CD

-I

tii

I

o 0

- 9 4 11 Describing Function of the First-Order Dahl Model Solid R6lling

Friction

The mathematical description of the first-order Dahl model of the

solid rolling friction is presented in the last chapter The frictional

torques for the two ranges of S for a cosinusoidal input displacement are

given by Eqs (10-19) and (10-20) These equations are rewritten in the

following form

TFP () = TFPI e-yA(coswt-1) + TFPO(e-YA(coswt=1) - ) (I-I)

TFp () = TFP eYA(coswt-l) - TFP (eYA(coswt-) - I) (11-2)

For the cosinusoidal input 5(t) = A cos wt let TFP() be approxishy

mated by the fundamental component of its Fourier series representation

ie

TFP() = A1 sin wt + B1 cos Wt (11-3)

The describing function of the friction nonlinearity (i = 1) is defined as

B - JA 1 NFP (A) = A1-4)

where

A 27I T~(c) sin wt dwt

= plusmn 0 ((T + TF)e)eYA(cost -) TFPO) sin wt dwt

1 FPO) )eYACCO TPO)

+ f2TF I - TFPOeyA(cost-1) + T sin wt dwt (11-5)

Evaluating the integrals in the last equation we have

A = -4TFPo + -- T p I (e- 2 yA + e 2 yA - 2) + T (e 2 yA - 2yA))I iyA F F011-6)

95

or 4TFPO 2r

A= + I Fp I (c o sh 2yA - I) + TFP(sinh 2yA) (11-7)

FPO]1 ii y TFP)e-w(TFP

- + 1 )r2 [(TFPI TFPO)eYA(FosPtO1)+

In order to evaluate the integralsof BI let us represent eyAGoswt as a

power series -YAcosut (yA)2 Gas2 cos3

ec sY t =1 7yA cos wt + (y 2 cos2 Wt (yA)3 CO3 t + 2 3 (11-9)

Consider the integral

IBI = Je yAcoswt c wt dct 0

(yA)2 2n

1= iil - yA cos wt + (yAA)2 3 + cosw t dt 2 ct2 30

(11-10)

Since

7Tf cos cot dut = 0 for m = odd integers (11-11)

Eq (11-10) becomes

IBI (A f(r Cos cot dit i = odd integers (11-12) i=0 1 0

Evaluating the integral the result is

-A-B1 = [1+ (yA )2 _]+ (yA 4 ( 1(3+ (yA)6 1 __ ]

BI 2 2 4 434 6 4+ (1-

(YA)8 -~ 5 j+ ] (11-13)

Similarly the integral

B2 f 27r eYACosWt cos wt dut iT

is evaluated and the result is

IB2 =-I (11-14)

Substituting the results of IB and IB2 into Eq (11-8) we have

B TFPI + TFPO yA + T TFPO e-yA7f B81 T e 12BP

[Bl yT(eA TA T (eYA A]i - I e- ) + TFPO (11-15)

For very small values of yA

Bl 2 01(l-16)

Equation (11-15) becomes

- (TFPI(eTA - e TA) + TFP0(eTA + e-YA)] (11-17)

or

BI -yA(TFPl sinh (TA) t TFPO cosh (TA)] (11-18)

For large values of yA I81 becomes very large However we shall

show that TFPIapproaches -TFP as yA becomes very large so that B

becomes zero

We shall now investigate the limiting values of AIA and B IA when

A approaches zero and infinity Since

lim T = 0 (iI ) A O FPI

AI

limA = lim ~y+- 4TF~Y (11-20)AO A O 2wAy I2=A

97

im A= -YTFp (1-1-21) AF0

Therefore

iim(-lNFP (A) yT (-22)A-00TFPO

When A approaches infinity

I Pim FP (11-23)FPOAro FPI -T

A B (_ FPO TFPOeYAI

= 0 (11-24)

The value of A1A also approaches zero as A becomes very large

however it decreases at a much slower rate than B IA Thus

TimTIN(A)] Tim -l70

A o -P A_ o j

Figure 11-1 shows the plot of -INFP(A) in the magnitude (db) versus

phase coordinates for

-Y = 1342975 (N-m-rad)

TFPO = 00088 N-m

Magnitude versus Phase Plots of -INFP(A) of the Combined Nonlinearities

For the combined nonlinearity of the Dahi friction model (i= 1) and

the wire cable the nonlinear describing function is written as (Eq (10-17))

N(A) = NWT (A) + 3NFP (A) (1-25)

where NWT(A) is given in Eq (9-16)

Figuretl-2 shows the plots of -IN(A) for the combined nonlinearity

in magnitude versus phase for various combinations of dTand HWT These 1

40

- - i0 30 - - -shy

- - y013= 3

T =o0088 FPO

75 N-r-e I7

N-m44 4

4

__

I

co-

_

1 -

_-- -T shy

~10lt_

I-

-

4

4

4 0 -

4

1

z]

m w-10

-4

-3

A10

4

L4-4shy

-30- l

____-_

gt ]-417

-4 44~

-

___

-40--0 [ -

-360 -34C -32C 300- -28--27

Figure 11-1 Magnitude versus phase plot of -1IN FP(A) of Dahl solid rolling friction model with i = 1F

-20

-60

--

51( 45

3 -1 A0-

(1) aVT- 10 HrT ((2)KIT =50 WT -M I

5(5)KT 5o HWr = 001

(7)KIT = 5WT = 00

- 13 7

0NAA

5- NK--T K=10

o-100 I 010

bull120 40

-320 -3O0deg

-1-0---__ _ _ _oo_

280 -260 -240 -220 -200d -1800 -16O0 -140o -1207 -16d

Figure11-2 frequency response plots and describing function loci of IPS

flex pivot and wirB cable ndnlinearities (DahM model i = I)

1515 5

-s0deg -600

systemwith

-4d

100

cUrves are similar to the plots shown in Fig 9-2 which are for = 2 in

the Dahl model especially when the values of A are very small and very

large

The frequency loci of Geq(s) of Eq (9-27) are plotted in Fig 11-2

for K = l05 and 106 Similar to the cases in Fig 9-2 these frequency

loci have two equilibrium points for each curve one stable and the other

unstable

06For KI = the frequency of oscillation at the stable equilibrium

is approximately 016 radsec and is rather independent on the values of

KWT and HWT This result is identical to that obtained in Chapter 9 when

i = 2 is used for the Dahl friction model

Figure 11-2 shows that for K = 105 the frequency of oscillation at

the stable equilibrium varies as a function of the values of KT and HWT

For the various combinations of KWT and HWT shown in Figure 11-2 the

variation of frequency is not large from 0138 to 014 radsec Of more

importance is perhaps the fact that when i = 1 the amplitude of oscillation

A is larger as compared with that for i = 2 For example for = 10010T

HWT = 10 KI = 105 Figure 9-2 shows that the amplitude of A is approximately

-l for k = 2 whereas for the same set of parameters Figure 11-2 shows

that A = l0-3 for i = 1

101

12 Modeling of the Solid Rolling Friction by the ith-order Dahl- Model

and-The Describing Function

In the previous sections the solid roiling friction was modelled by Eq

(10-1) with i = 1 and 2 In general the exponent i can be of any other value

In this section we shall derive the mathematical model of the solid rolling

friction for i t 1

Let the frictional characteristics be approximated by the ndnlinear

relation dTFP ()

dF y(TFp i - TFPO) i (12-1)

where i = positive number 1

y = constant

TFPI = TFP SGN() (12-2)

TFP() = friction torque

T = saturation level of TFP

e= angular displacement

Let the angular displacement s be a cosinusoidal function

C(t) = A cos wt (1-2-3)

Then e(t) = -Ao sin ct (12-4)

We can write dTdtFP = shy yAw sin ct(TFp I - TFPO) (12-5)

In view of Eq(12-2) the last equation is wriften

dTFPdtY= A sinlt(TFp -TFPO)i _

(12-6)

Aw sin t(-TFP TFPO lt 0

If s gt 0 for 2k-r ltwt lt (2k+])r k = 0 1 2 Eq (12-6) is integrated

tto give TFP(e(t)dT F]A t u)

(TP P= -yA sin udu = - yA(-cos(TFP - TFPO ) i 0

TFP(e(O)) Wt = 0

RPRQDUC1BI OF PAIlPAE flRUWA JffPAQE A Zomki

102

= - yA(-cos wt + 1) (12-7)

The last equation becomes

FP FPO (TFpi TFPO)-(i-)(TTFP FPO (-i+]) TFpi 0(- - - -

= yA(cos ot - 1) (12-8)

where TFpi = TFp(e()) and TFp TFp(s(t)l

Equation (12-8) is further simplified to-(i-1) FPO - (i-]) (T - T O) ) - (TFp - T )= -(i-)yA(cos wt - 1) (12-9)

Defining R = TFPITFP (12-10)

Eq (12-9) leads to TFP- I +RTFPO __ _ __ _ _ __ _ _ -_-__1 __ _ _ __ _ _ _)_ _

TFPO 1 - (i-1)YA(TFPoR-1))(i-)(cos t - 1)1(il)

If s lt 0 for (2k+)r lt wt lt (2k+2) k = 0 1 2 Eq (12-6) is

integrated to give

(-(27r)) dTF P SFP yA sinu du = A(- cos t) (2-12)

(-TFPTFPO - t-

TFp (E(t)J

Following the same steps as in Eqs (12-8) through (12-11) we have

TFP R+ 1 - (2-13) TFPO 11 + (i-)yA(-TFPO(RJ(i+ )(cos Tt - )l( i- )(

In order to evaluate R we equate Eqs (12-11) and (12-13) at wt =11 After

simpli-fication the result is

1 [TI + -((R+1 (i

+ (12-14) -1) - - )wher ( -) i-) 1 0 -R ) -) ( 2 14

where = 2(i - )yAFP(i-) (12-15)

2

103

Once the value of i (i 1) is specified R can be solved from Eq (12-14)

We can show that when i = 2

a = 2 y ATFPO (12-16)

which is identical to Eq (8-18) and

- a (12-17)a a a 2

which is the same result as in Eq (8-19)

Once R is determined from Eq (12-14) the torque relaftionships are

expressed by Eqs (12-11) for s gt 0 and Eq (12-13) for s lt 0

Describing Function For theDahi Model For i 1

Let

52 = (i - 1)yATFPO (12-18)

Equations (12-11) and (12-13) are simplified to

TFP R I TFPO (I8( - )(i l)( os t - I))l + I gt 0) (12-19)

TTFP R+1 -FPO l + (-(R + ]))(-1)(cos )t]1( -

) - 1 ( a) (12-20)

For the cosinusoidal input of Eq (12-3) let the output torque be

represented by the fundamental components of its Fourier series ie

TFP = A sin wt + B cos Wt (12-21)

where

A1 = - 0 T sin wt dwt (1222)Tr0 FP and PB = TF- c6s wt dtn (12-23)

Substitution of Eqs (12-19) and (12-20) into Eq (12-22) we get

T Tri A - 0 R+ 1 1)I 11sin wt dwt011 + s(-(R + )) -(i-1) JCsfo

104

+ __ R-P 17 R Io s et 1-3 +

7 r 1 - S(R - 1)i-1)(cos et - 1 1 ) I sqn wt dwt (12-23)

The last equation is-reduced to the following form

A1 41 TFPO(R + 1) 7Tsin wt dwt i-i +T(-(R + 1)) (i-I) (cos t - 1) 1(i-1)

TF (R -1j)[2iri t -+ TFPO (R - 1si-n d1))co t - (12-24)

Letx = (R-- 1)(1) Cos Wt (12-25)

and Y (-(r + 1))(i-1)Cos Wt (1226)

dx =Then -$(R - 1)(-1)sin-ct dnt (12-27) dy + i(R + 1)(i-)sin wt det (12-28)

Equation (12-24) is written

A 4TFPO + TFPO(R + I)( (R+l) (i-l

1 7i(R + I0-) ( 1T -s(R+l)(i- 1) 1 + (-(R+1))(i-1) + 1(-

TFPO (R - 1)( i - ] ) CR -1) 1 ) (i--)J)(R - 0-1) (1 - 0(R-) -1 1) (12-2)

Let (1

9 = 1 + $(-(r + i))( + y (12-30)

-=I + (R - 1)( 1) (12-31)

Then d9 = dy (12-32)

dR = dx (12-33)

Substitution of the last four equations into Eq (12-29) yields

4TFPo + TFPO (R + 1) l+2 (R+l)(i-1 d9 AI T 7rs(- (R+)(1) R1 )) 91t-1)

105

TFPCR - 1) l-28(R-1) (i-l) + FRO (

+ l(R - i) ( i- (12-34)

The ihtegralson the right-hand side of the last equation are now-carried

out and after simplification-the resuIt is

= 4TFPO + TFPO(R + 1) ([] + 23(-(R+1))(i-1)1( i 2) i - -A1

T$(R + 1 ) (i - 2)( - 1)

+ T( )- - -FP) -) (12-35)

The Fourier coefficient BI is determined as follows

B1 FPO 7R + I ~o w w T 0 1 + (- (R + 1))(-)(cos ot - ) (i l1cos ot dot

+ TFPOR+Icowtdt (23shyr fT --1 - (R)-l)(Cos ot - + 1i os o do (12-36)

The last equation is simplified to

fB FPO (R + 1) 1(-(R + I) (])cosit dot)1- -(R+-i-T o 1 - (-(R + I)J(i - I) + s(-(R + I)3 I-|cosmtT(1-i)

+ (R-RI + 8CR i)(i-1) cosowtdwt ]12-37) i ) 7) +(RR+I(i-i)](12-37)

Letting

x = 8(-(R + 1))(i-I)cos t (12--38)

y = 8(R - l)(i-1)Cos Wft (12-39)

dx = -03(-(R + l))(il)sin ot dot (12-40)

dy = -g(R - 1) -)sin ot dot (12-41)

Eq (12-37) becomes

106

Trx(r)

B FPO -(R + 1) x cot wt dx -7- - ) fx-CR0 - + 1)(1)+ xf (- T

(2 )R- + cot t dy (12-42) - Jy(r) (I+ 1(R - 1)(i-I) 10 -1)(R -1)(i

For the first integral in the last equation

cot t = + (2 ] (12-43)i2(- (R + I ) 2

and for the second integral

y

cot tot = (12-44)2(R_ 1)2Ci-) 2je( shy-IyT

Therefore

B1 TFPO - + 1) i-) Jtimes(o (-(R+]l )2(i-])-x2|2- 1)7- -(R(R 1) 1) Ixo) d (-(R+]))(i-])+xI1 0i-

Iy (27r)(R - 1) d

)ydy - 1 (12-45)CR-2 i i1 (-7)Ii -l fJ(T ) (I2 (R-)2(i-l)y22( + ()i(i 1)

These integrals can be carried out only if the value of i is given (i 1)

107

13 Digital Computer Simulation of the Continuous-Data Nonlinear IPS

Control System With Dahi Model

The IPS control system with the nonlinear flex pivot torque modelled by

the Dahl solid friction model is simulated on the digital computer for i =

and i = 2 The block diagram of the IPS system is shown in Fig 8-2 and the

nonlinearities are modelled by Fig 8-I

The main objective of the computer simulation is to verify the results on

the sustained-oscillation predicted-by the describing function method

Dahl Model i = I

The computer program using the IBM 360 CSMP for i = I in the Dahl model

is given in Table 13-1 The simulation runs were able to predict and verify

the results obtained by the describing function methed of Chapter 9 The

difficulty with the long response time of the IPS system still exists in this

case Generally itwould be very time consuming and expensive to wait for

the transient to settle completely in a digital computer simulation Figure

13-1 shows the response of E(t) over a one-hundred second time interval with

(0) = 10 5 (O) = 0 KI - 105 KWT = 100 HWT = 1 For the Dahl model i = 1

TFP = 00088 N-m and y 1342975 The parameters of the linear portion of

the system are tabulated on page 4 in Chapterl Figure 13-1 shows that the

response is oscillatory with an increasing amplitude and the period is 46 secshy

or 0136 radsec Since it wofld take a long time for the amplitude to settle

to a final steady-state value we selected another initial value P(O) and

repeated the simulation Figure 13-2 shows the response of C(t) with c(0)

0-3 which is decreasing in amplitude as time increases Therefore the stable

-operating point should be at an amplitude between 10 3 and 10-5 and the freqshy

uency of oscillation is 0136 radsec In general it would be very difficult

to find the initial state which corresponds to the steady-state oscillation

exactly The results predicted by Fig 9-2 are very close for the amplitude

TABLE 13-]

LIAWlL $IJIL ION 01 fNI-R WsIJLFS COorzFiL Ys rIM INL|

Pl-ti kI Ih Ik61-4 I20OO152 I3-000368l46 PIRiM I4 -O ROO59 - 1091HI449 k6- I 1661LY r--0000926

-il1t 1I I 10-

l-Adi (Pampm- L _14 v I r ro -o o00U-0 L Pf f I iiI 1 - 3 1i1i 0t00 f N I I I IJ

11FR T-Ii ( i l( I P1I

it)Nl F1I - I I II l-t[lfr lI O)iANl_-i -I+1shy

14 7 -14K7 1L OOP I IEO - 46

( U8-I F 1

ILAS f ( I )--EO k ( L) =l0( I

MF Fll I I1 IyPFIFi kIsr

-DLYNAtM I-ILILb i 14Ic -1wERl( I Il r I4 rI- zEtT-)

SGNIb f = L DO IF(lr1UI +LI 0 )S Niti=- DO0

TIAIC =130iEE1 111111 14I 4E ENDiPF0

I 1 Ii I- 1p0 rjT G T) FI[ r-- Y

[I- ITi1I I1 Q ) MO N I- F I ) GO TO f lifI lii L1(11 -Ishy

2 SF4llT IEEDF-

LF (Fl-i r I l sn3 m tiI- --1 O B Biil4i 0E -IT n-ol (1)) Til IIlrr-2i3HCT (j F t( fL-I -I)EgtF(r0 ) rFP()

L- I-I-UI IIIPo II F-rlr-I

ri- i I k -- ilio ) i to 3

r I) =rIFTIIl)l IF 0 f

i 1) i 2

I- LP YX L r I- -- FI -- l E(J - OPI_ riiRLt- I ro -IiTJX -f- Ls-C2-1-3I-JN II-L (IE - POOR IU)il-I M N I L 0- - v X2 6)J5 CIC1 a v 3L xlOtl

X I --( -r2 shym-l liq IINI M-FNOICL (XL) 1 -OUI X 100 0 f II I--- R I - -Jill -2 X3= I NFUll(tO XZ)

XS=-IE-I X3 X=I N I 3RL (c -XS

I Irlhl- I INIlIM-I 00+ olmr -I gt -3(U F L --CJIIIF FIE=I2tO PP L I LE )L) I L I)l I-C()

NIFlt 4POUiBtf hlT~$OF THE IIJicm Q]1U[G 4 PAGE 5l P0OOR

() m SIMLIATICON OF NONI-1NEAF 2 (( IoN]CIlL t YS I EiM PAGE 1 Co In I NI Im -SFYIi TIME MA4XIMUM

-- I 4F-OM 795 21- 7 Ii (9 TIMl E 1 1 IOC F Ioo IC

00 1 r0F)-5 - v0 -12SIl1 -0 001-Mw0)o w 200001 00 -5 JI-E- - _-08 1 Ou7qlw-r 5 -J 1 00

I I 40000E 00 -391411- -00 1 2 1923E-07 -40672-E2 - 091li 00 3 009081-O1-- E0000 Q

000E O -30000E-05 1 4 3671E-06 4 27E-07 9 9AI QE-0480000C 00 -2 03047-05 ---- 569H8-06 2------I 753F-07 16SLE-04

- 10000E 01 -8207---O6 -- 9142E-06 7134E -0S 23693E-04 12000E Ot 308211- 0 50496F-O6 -1 369E-07 -I AA 4-04

B 14000E 01 143 7e-05 - I 5Z79ThE-06 -3314LF1207 -5 2929-04(D 160002 01 24330r--0 -- 45396F-06 -53630E-07 -8277oE-04 1 118000E 01 --------- 33920E-06 -662192-07 -L 0 62E-03322519E--03 ---------

-I (D 20000C 01 3 7725r-O5 - - - 20195E-06 -7 1F-07 -1 26 E-03-1 n 22000 01 402701-O 7 -------- -- 52732E-07 -76676E-07 -13323E-03

0 2400E 01 4 10J11-E-0i ------------ - - ------ F 23766E-01------------------- 4140ME-07 -3392E-04 260002 01 4 1512E-OS - -6925E-07 1 306E-03 -9391 4E-01

II 2 000 01 3917E-03 ---------------------------------------- 746rE-07 14I -3J 176E-06 -2 15E-03CD 30000E 01 279351-05 --- -- -60[9Ar-06 -34878[1-07 -88793E-04 0 32000C o t5340- -5--------------- I -A46231=-06 12931-07 -647431-04S-h 34000E 01 22232E-06 F -6 54981E-06 8 3265E-08 -21338E-OS5

0 36000E 01 10-31-0L3 - -6163E--06 29663E-07 40436E-04

00 18000E 01 -2211W- - I -5 3931 -06 54 2082-07 74673E-044OOOOE 01 -3 J771 C--05 - -42 1S61-06 6 4674F-7W 1094CE-03 z 420002 O - 3 07991--05 - ----- I -2701E-06 72L0E-07 134092-03 44000E 01 -4 271JE-0 ---- F -1 1932E-06 8 OCE-07 142101-075

0 46000E 01 -43892-05 --- + -20133E-07 10068E-0 -7O190E-02 _1 480002 01 -416381--0 --- + -lt891E-07 98206E-04 -70250E-01

5000E 01 -4433--E-05 --- + 27074E-07 -12983F-n14 95104E-02ii - 520002 01 -34090E-05- -------- I 609801-06 46409E-07 10860E-03

II -21126E-0--- I 671324E-06 24197E-07 64778E-0454000E 01 ---------------56000E 01 -7246E-0 -------------------- 1 70196E-06 - 3465E-0 1 8895E-04 3-OO00 01 66376-06 ----------------- + 67863E06 -23424E-07 -2784YE-04

O 6000E 01 19503E-05 -------------------------- ----- I 60954E-06 -45246E-07 -70477E-0462000E 01 30721----0- ------------------------------------------ I 499492-06 -658611-07 -10500E-03 64000E 01 - ------------------------- + 35646-04 -I34182-033933-o ------------------ -77145E-07 66000E 01 44800-0-----------------------------------------------------F [02jE-06 -02747E-07 -15268E-03

4 68000E 01 46349E-05 --------------------------------------------------F14790E-07 -90037E-09 -1t3922-03 70000E 01 47672E-0 +---------------------------------------------------- 94910E-07 -60734E-04 43351E-01

I 72000E 01 477FI- - ------------------------------------------------ -21533E-07 68983E-04 -49704E-01 74000E 01 4051E-05 --------------- ------------- + -6 052IE-06 -55024E-0 -13139F-03

0 76000E 01 2742E-05 ------------------------------------------ F -69511E-06 -31833E-07 -8713452-04o 70000E 01 12997r-05 --------------- F -73944E-06 -8661E-08 -3805217-04 20000E 01 -18 I051R-06 ------------------------ I -73355E-06 142751-07 13161E-04 82000C 01 -1601 lE-05 ----------------- -6769E-06 249742-07 69714E-0484000C 01 -22621E-05- ----------- I -17709E-06 6203E-07 994A8F-04

H 26000E 01 -38007L-00 ------- --4373E-06 7 5562-07 132AE-03

If 68000E 01 -4 589317-05 --+ -26917E-06 93149E-07 15163E-039000E 01 -49437E-05 + -O 4867R-07 93800E-07 1644LE-0392000E 01 -503412-05 + -4 99372-07 8640E-01 -2 0314E2 0194000E 01 -50866E-05 F -10628E-07 14L18E-05 -10608E 00 960002 01 -46906E-05 -F 58678E-06 91792E-07 I 3506E-03 98000E 01 -34042---- --------- I 69901E-06 45654E-07 10808E-03 10000E 02 -1 930FW-0-- F 76476E-06 21592E-07 57286E-04

CSP30 SImIJA LON 14IA STOP

I- SI HILnT ION OFi NON lNI Al I UIR HVill RAMI1114 C) 1

HTproilIlvrds IUS ITME MAXIM MU1 (D A4 shy-4 W7 3 457F-03TEME E I C [ ll)I tIL-I I Ir

0gt 00 ---- -------------------- 1--- E - b - - ItLI O 800LV L - 2 2 AE 00 -36 1 -04 I L716711-04 79 Lr-05 1 L2AE-01

to J 4OOOE 00 - 4WWI - 4 - 30174-04 6 0254 0$ 1 0tt40-01 60000 00 -2675l-03 --------I O64-04 44711I -05 N3t4AI0 -2

-- 10000E 00 -i 7 -03 - ----------------- I 48454E-04 295W-05 5 _34E-02- 10000E 01 -7600-04 --------------------- I 52444E-04I - 91SE1-06 19014E-02 120001E 01 29=IFA-04 ------------------------ ----I 520 OE-04 -9 1 S3-F-06 -1 5 -O2( 1400) 01 1 3160-03 ---- -- - - ------- I 48883E-04 -25-Q-OU -4909aR-0222 1 E L6000E 01 2 n ----------------------------------- - - - 4j1 LE-04 -A 3670 -05 -7911SE-02

H V 18000E 01 296Jl-0 --------------------------------------------- 31517E-0 A -5 64 9E-05 -10203E-012r0000E 01 34120F-03 --- -- F 19206E-04 -65 -E-05 -i173E-01

22000LE 01 3722 E-03 --------------------------- - 56585E-05 -6 OE-05 -123a 7E-010D 0S 24000E 01 3 700lE-Q3 --------------------------------- 828611-05 -70727-05 -11 9gE-01

S26000 01 34106l- ------------------------- - --------------------F -21301 -04 -661WE-05 -11072E-01CDV 20000E 01 2867FII-01 -- --------------------------------------------- -32593E-04 -5096E-05 -913LE-02 0 30E 01 2-123-3 -------------------------------------------------- + -11357E-04 -161 56E-05 -66030E-02 -h 3200T 01 12001-- - ----------------------------------- f -46994E-04 -19643E-00 -35713E-020 34000E 01 2666H-04 ----------------------------- I -49120E-04 -20WS1E-O 6 -3077E-03O0 36000E 01 -7008E-04 --- -------------------- -47660E-04 16082E-05 2682DE-02 r 38000 01 - ft--33 -42738E-04 - 2 2E-05 582912-02

O4000E01 -23 5I5-03 ------------- I -34741E-04 A6W67E-05 8612E-0242000E 01 -2 9095E-0 --------- I -24335 -04 5 6491E-O 1020SE-01

0 44000E 01 -33077E-03 ------- 1 -12300E-04 62726E-05 11276E-0146000E 01 -34765E-03--------- 4 -23560E-07 11646E-04 2 0366E-024800011 01 -334901H-03 ------- F 13225E-04 60850E-05 I0W61E-0l 50000E 01 -296 7-03 ----------- 246905-04 52065-O5 95120E-0252000E O -237495-0-- ------------- 34199E-04 41822E-05 74742E-02H 54000 01 -t616-E-03 - ------------------ F 4109CE-04 271912-05 49012E-02 56000E 01 -75123E-04 ----------------------- 44910-04 11569E-0 1 4282-02

o 0 58000 01 15759E-04 ---------------------------- F 45410E-04 -5826E-06 -t0324E-02 t0o J 6000tIE 01 10427E-03 --------------------------------- F 42587E-04 -22154-05 -3Q2A4E-02

62000E 01 18400E-03- --------------------------------------- F 36694E-04 -362o5E-05 -65162E-0246 4000E 01 2492AE-03 -------------------------------------------- + 28202E-04 -480424-05 -85670E-02

66000E 01 29547E-03-- ----------------------------------------------- 17772E-04 -570-7E -905ltt2E-02 68000E 01 319Y3E-03 -----------------------------------------------shy + 61869E-05 -S98EL-05 -106302-01

Hi 7000E 01 32117E-03 - ------------------------------------------------ -5974VI-05 -320 2E-05 -1247E-01 72000E 01 29792E-03 ----------------------------------------------- + -17194E-04 -53752E-05 -96886E-02

0 74000E 01 25329E-03 ------------------------------------------- -271 ILE-04 -44isr-0S -01323E-020 76000E 01 190811-03 ----------------------------------------- + -3493ZE-04 -32162E-05 -50327E-0278000E 01 10520E-03 ----------------------------------- -40103C-04 -18101E-05 -34133E-0200000C 01 323621E-04- ----------------------------- -42279E-04 -3973E-06 -54374E-03

E82000E 01 -51791E-04 ------------------------ F -41361C-04 I0521-05 2 1947E-02 -I 84000E 01 - 3104E-03 -------------------- -3743IE-04 264OE-05 47736E-02

86000E 01 -17968E-0 ----------------- -30827E-04 3157E-05 69454E-02 88000E 01 -25280E -03 ------------ F -22062E-04 46220E-05 P6237E-02 90000E 01 -2689E-03 ---------- F -11809E-04 S335oE-05 96724E-0592000E 01 -29956I-03 ---------- -2654E-06 55307V-05 99468E-0294000E 01 -2bull92E2-03 ---------- I 102455-04 52428E-05 95836E-02 96000E 01 -2 6053E-03 ------------- 20264R-04 46838E-05 84017E-0298000E 01 -21122E-03 ---------------- 28684E-04 370712-05 66827E-02 i0000E 02 -14721E-03 ------- 34903E-04 25437E-05 4A501202 C0

CSNIgt360 STULAITON IATA STOP

and W = 0138 radsec

Dahl Model i = 2

Table 13-2 gives the computer simulation program for the i = 2 case

with TFPO = 000225 N-m and y = 92444 All other-system parameters are the

sameasthe i = I case Figure 13-3 shows a stable response when the initial

state s(0)is small 10- O As shown in Fig 11-2 when the initial state is

small the stable equilibrium point is c = 0 Figure 13-4 shows another stable

-8 response which would take longer timeto die out when s(O) = 10- Figures

13-5 and 13-6 show a sustained oscillation solution with aplitude lying between

- 710-7 and 7 xlO and a period of 44 sec or 1428 radsec These results-are

again very close to those predicted in Fig 11-2 The simulations for the

6i= 2 case are cfarried out with KW = 025 H =T 01 and K 10

112 01 1On

01-200 0 1 1 0 f400 01U2

01 600 I O 01800 J90

I n1r I S NI i rw I I(1i I PA1fli Ilt-Th Irfllni I I Pi A1li I rti FrVi--VU4441-4 T -I-O -l 0022 O Ir1f1iI F () I 1 7- r)oT0-) 0 T((4J1 F J I (I ) -f

[ I I fII LIWV -2 4iIEAIt

I) lU IY- ( A I~~vI- IIlfj hll- I AvI Uli Uf

0 PA rI Il I

cent) n AI F I-0

7PII-F

E1-

ITP L D- (-A l I SO3l (A [1-1 1EO)

UAOrO()--o0A(

02700 0-1300

o -O0 03000 0 100 0 150 01300 r)7 0( )3 100

03600 077()()

()M00 030

1000 u 4 10 ()O 0O200 0q300o

0nC) ) 04500 0 70( OqOC 0 043J0

4-2)

0)4)0 0)W-1100005tO

I

1-540 0

U[5O200

01-)-

0 100

X )

0640)

06 C00 0 NQ

TABLE 13-2

iiON i1 NONI Ih[k rsI

I111Il-F 11O) I 0 tO359 y I= 1079 49 I I

I4 I r- -w I

IKirbAt)K A 44TVA

I- =44kY K-1 (100 = I 170- 146

$fjsfIR f 1- l1 ( j )=LO f I )RRI 1 I) -11

II TI IOT I-RIIFX FI-I fJlYpJ

r5 fL~fl rU i I lRL (In4 - IlT - EnOT()rr E sonwr I 110

1- Itil(FOTLT 0 qGNErt r=-I fkI gtS nINE rf[ Ib T- I --

RIOPIFf1

I-1(1 r F =1-L (TF FO E FI O I GAM 1(1 lHt Vl01 o-N7l P0 II-I-L

G0 TO 2 I IJI()-i

FCI -- EO1 1 1F-f fln rLI 0 )SONlII =-I EO

IP T F= CS0NEU F+I I0-E-c-CC) v

r (TI PW fl IO)rF IEIFU

rrf TFP L F -TEPO TF---TI-PO

P - I ) -L(rPl-Dr

I I =1-R v U ON l-1 T= 1I 1 7TF I I P -0 +I4)1I T I 1 1n I

1F0JdE

hUJ- I1

- III-

T

1iF rshy -+x7 Fr -IR I sFiv I 10 i (RI (E)UIT 6 FIl IDO I

I I- fOIA C -I II11F

1 k- 1shy11 t 1I

IIfo-P

I 2

X - II[ A1 0 XC) II _X-VI 1-7 0

CON TI 9YS FFM

1 16-1 F66 1IK=0 )0000 926 F 09 K3-Q00369046

lE ) Ff N I))R() TO0 I

I-IELAS F(J ) L) ) FPE)JR

)Aq)r X5=F4 yI 1

0 0 Ii1 6 eL -0 r X)

07010 1 FI I N = 1CO DELT-

07110 IRTFL r FF F EDDDulT ITO) 0l 0 I 1IMN p I I M E IF-IIOI-DL - -0FPTEI =2 r0

IO 0 7 40 0 IMO

OF(750 1 EpODUCIIdTY OF THE

QRIOALDAGE shy

0) SIMULA TON or NONL trY9TIF-i )TI1lt01 Si fFM PyFAIPE t

C I FNI E IIME NIrSUS mAM rmlU R CD -9 624E-0 42560E-09 I FTIME 1 o r- -J V Q It 1 -k-04

- - 0 71 = 1 -1Ishyo 4 0000 o -- 1---II 4 - I 2-- E- -IA_-

1OOOOE 00 -93101b-1I---------- I 2 3155E-03 -1070-A4 1020-010 - 60000E 00 273 In ---------- 23[E-G -L37LL-04 10028E-018OOOE 00 9404E-10 ----------------- I V306EU08 -LQ7nE-04 102T-01 1 0000E 1

rt 1QOQ0 01 22- -fl-Q ----------------------------- I 23695E-08 -L37L-)4 1()02lE-01

1 0t 70 OF-Q -------------------------I 23766E-08 - 3 0 7 -04 10028E-01

H w L4000E 01 2 -0--- ----- shy 23664E-08 -1 TT7-r-t4 1062SE-01 A a 16000E 0t 716- r-f ------------------ -- - ----- ------I 2-S4lr-8 -1 3 7P-04 10AJE-01

(D IampW O0020 3AM60T--0Q ----- ---------------------- I 2045ampR-0 -IAWR Ad 1 AOVUE-012OOOE 01 36m20I-0 I- 231563E-08 - L397W -04 10028E-01t- 22000E 01 3 4 5 + 2 3573F-0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 ZRE-04 10023E-01

5 24000E 01 --- - - =4IRIII--09 -i-- - --shy 2 77 04 10028E-01D 46000E 01 425l -- O ------------------------------------------------F 23406E-08 -11 78P-04 i0028E-Ol

28000E 01 4 T31 E-Q --------------------------------------I 23363E-00 -l397ampE-04 1002OC-01 01 0 --CDOOOE 30 4- O--- - -- + 23306E-08 -13178En4 10028E-01

m 32000E 01 0954411-00 --------------------------------------- - - 23406E-08 -131 E-04 1 02SE-01 O 34000E 01 392691I -O -----------------------------------------------2 I 33 2E-00 -1397 _ 04 1 028L-01

36000E 01 3 721-AQ --------------------------------------------- I 2336LE-08 -159HE0A 1O0A t-01U) 38000E 01 3 605F-0 ----shy - - - F 233291E-09 -139 E-94 1001-82-01 40000E 01 34 27PE-0 ------------------------------------------ 4 23346E-09 -1 377 C-04 100281-01

0 42000E 01 33301 - ------------------------------------- -- F 233 S -00 -173E-04 10028E-01 -n 44000E 01 39Qc-OO -------------- -- ----------------------+ 23355E-08 -1397A-r 4 10(n2 1-01 m 46000E 01 2994LF-09 ------------------------------------I 2327Y2-08 -t3Q8F--04 10028E-01

43000F 01 265MII-09 --------------------------------- 1 23240E-08 -t770C-04 100281-01C 50000E 01 235H7F-O ----------------------------- 23290E-08 -l378--04 10028E-015 1000 01 2 LO00F-09 ------------------------ ----I 23307E-08 -1397 5-04 10028E-0115000E 01 I II-09 ----------------------- ---- 23431E-08 -13773 -04 10028-01

O 56000E 01 2 ----------------I 23167E-08 -1 3078E-04 1 0028E-011241-09 ------5130002 01 24753 -09 --------------------------- -----I 23619E-08 -13978W-04 10020l-01 A OOOOE O 22t2IC-O ------------------------------------F 23567E-0O -4-978 -04 I0028F-0l

- 62000E 01 30004E-0 --------------------------------------23453E-08 -11978E-04 10028E-01I ii 64000E 01 24lAE-59 ------------------ -- I 23342E-08 -1 397ampE-04 10028E-0166000E 01 2356F-09 --- I 23377-08 -13972E-04 10028-01

613000E 01 213573E-09 --------- -4----------------- 4 233512E-08 -1 378E-04 10028-0107 700002 01 24438E-09 -------------------------- F 23387E-08 -13778E-04 10021H-01 720002 01 240092-09 -------------------------------I 2 3422E-08 -13978e-04 100S2E-0174000E 01 24207E-09 ----------------------- ------ 234571-08 -1378E-04 1002OE-0176000E 01 25273 -09 --- + 2-43E-08 -13W78E-04 10028E-01 78000E 01 26lT--E-O -------- F 235012-08 -13978E-04 10028E-0180000E 01 27l12-09 -------------------------------- -I 23444E-08 -130VPIT-04 1 00213-01

I 82000E 2 7737P -09 I01 ----------------------------------- 2 1 15E -68 -t 3 32-04 1 0028 -01 C 84000E 270L1E-0 I01 - 23415E-08 -1221 -04 100282-0186000E 01 27280-09 - I 2341TTE-08 -13978E-04 100282-01NJ 88000E 01 2700fE-09 -- I 234J5E-08 -139-04 100201-01

l9OOOOE 01 268311-09 --------------------- - ----- 7-- 23415E-00 -13578-_-04 100203-0192000E 01 26605-09------------------------------------------ I 2341E-08 -1_31tE-O t 002e-01 94000C 01 26379I-0 ---------------------------------- I 23416E-08 -13978E-04 10023-0196000E 01 26322E-09 - - --- 23430E-08 -139732-04 1002RE-0198000E 01 2637SE-09 --------------------------------- 234161-08 -1397SE-04 1002-2-01

-II 1000E 02 26361 00 --------- 234T0E-08 -13rSE-01 10028E-01

0

STOP

SIMULArION OF NONLINEAp IPS CONrAOL SYSIN N1

MIN] MU E VERSUS 1 ME iAN IMo -Ti - -7 3586E-08 3 Cl0577E-l3

TIME E I I r l Ii00 1 0000E-08 ----------- n --- l- OEO--) - -- 0 1054E-04 I R 20000E 00 -22653E-08 - F -n_074E-09 3 1A73E-0 -817X9 -02C 40000E 00 -56443E-08 - J0r-13I 21981--04 -001-W6OOOOE 00 -02417E-08 ---- + II I J3Ii-09 -1 3240E-- 940i-i-02

U- 80000E 00 -328S4E-08 ------------------f Aql-n -1 A7l-n-8 2S-02_ l 0000E 01 -54728E-09 ------------------------ -- 6 3-3 1-4E-O- 0-02 12000E 01 23893E-08------------------------------------------------ I - 9nl- -A -L d4WAE-n1 96442L -01214000E 01 21370E-08 ------------------------------------------ I -s4APi-0) 1 97 1

-- -L i -01 En 16000E 01 26 0OE-)8------------------------------------------------------- I - 9t-0I I STeF-O- -lC028E-01rl 18000E 01 330533E-08 --------- ---------------- ------ - I o-s--Oo--os- I 79r-t-1 - LO2OF-0I

2 OOO0E 01 3237 1E-0-- ----------------------------------------------- I -22044r--t 118Eo-- -lon2rUshyc 22000E 01 385E38E-08-------------------------------------------- - --- I -9 1-f 8 1 I7 7M - - n lCD 24000E 01 36427E-08---------------------------------------------------------- ---- I - 51l -01 10--A -1002L-01

26000E 01 31598E-O-- --------------------------------------------- 26) 1W-0 15 _r-0- 02C-011 28000E 01 243 O11E-08 ------------------------------------------- - 03 I 3-O9- -04 -10 dE-01CD 3OOOOE 01 10165E-08-------------------------------------------- _- I - 13 -- -a 32000E 01 47649E-09----- ----------------------------------- I -2 717 03 -37eC-OA -lA-72E-010 34000E 01 -59788E-09 -------------------------------------- I 3 26-I1 00I 1 7E-04I -L029-0I

36000E 01 -16321E-08 - I------------------------J70 8-O shy( 30000E 01 -255 3E-08 ---------------------I 68i41 OIl I 30L- A -J 0002 -0l

40000E 01 -33067E-08 ------------------------ I A612-o I 3 I-4 -0 I-10 42000E 01 -38215-O0 --------------- F - 169C- 08 I 39 8k- 04 - flv2L-01

C 0 01 - 0 7 2 Ol----------- ------------- -1I0-100 2N56904I-I 139 40-04 -I001UE-01-100241000E0 1 -4706912-08 1 39724-m R-Ot (0 41000E 01 -40272r-08 ---------------------- -26 LgtO I 5 -4-- -0148000E O1 -3C70E-0- - - - - - - l244l-O3 1301I -0 -hI00282-03

5000 0i -1 -08---------------------------- - -1l-o 178-0 -1 0V2sE-01

0-i 3 6000E 01 -36342-09 --------------- -- I I 7O I [97F- -nl -0I 53000E 01 -295-09--- ---------------------------------- I -1l41li-OH 397Git-0-1 -t10 0

WL-01 -- 60bull000E 01 131821-08 ----------------------------------------- -I 9 5pound-flA 1 3UI -- - 0(S-0l500-1--------- -09---------------------------------------- -- --I I2I A7t3u1 LDU-- -1I0100

38000 0 42975E-- --09 -------------------------------- I 0 II90074 4 -10 -01460002O1 20963pound-08 --------------------------- ---- I 7-8-62000E 01 3061-0-- ---------------------------- n---I

------- 1I33-IJE- 1- 4-01 ------- I -yA n i 39U -I Z 0-

C) 74000- Ol 26234E-08 ---------------------------------------------10101 - C4 II A - shy72000 01 25128E-08 ------------------------- ---I1QlI I O)i 1 3 7017A-o -L1-qr- l

0 74000201E 275-08 -- - -- 14 1 -i A I P7 0 - (IQE 010 ----------------------------- 76000E 01 12023E-08 ----------------------------------------- -11-3 I 5T4 - A - LQO 8k-Ij

II 74000E 01 168-09- - ------------------------------ - NI -- 1W-- -1773141- 137 o-8000E 01 -49832 -098 -------------------------------------- I Li SU- l-iI I -ma 1l0 Ll

o 720002 01 -] 36389E- --- ----------------------------- I -1 i2r Z -W or 4 -l0Ql 01 84000E 01 -20745-08- ------------------------------ I QS91 -Oil I 3570k-l -1n 0 -- 01CD 26000E O -$AE-o --------- sn 1 s 7o O 8000E 01 -3145-08 ------------------------- IL-03 I 7 -3-Ot 9000 E 01 -33 46-0- -- ------------------ I -3I j -H6m -- oI p 4 1 -

200002 01 -310691- -- ------------------- 1lK I I 37 RI vI KI0194000E 01 -30A42-60E-- ---------------- - IA7W6-fli 1K -0 I w- 1 92000E 01 -26249E-04 ---------------- I - IIAl I lt3------1 -1-o

99100E Ol -20389E-OIl ----------- --- I rpil in I oI -L_L-01100002 02 -148E-00---------------------- I -I Ay-n)b L 7QW- - 0CY2_-F-0I

SIMULATION OF NONLINEAR IPS CONTROL SYSIEM PAGIE

MINIliUM VERSIJS rIME HAXTMUl -6579E-07 629292-07

TIME E I I LDI EDllUT IC 00 1 0000E-07 ----------------------------- 00 -25090E-04 1S0OOE-01 200002 00 -3 4600E-07 - I33992E-08 95392E-08 -S 1260E-07 40000E 00 -42162E-07 - -3974L-08 20S3E-05 -18303C-02

C I Q

60000E 8OOO010000r

00 00 01

-48371E-07 -43802E-07 -10114E-07

------

----------------- I

-12232L-0S 1 3923L-03 781-00

207SE-04 --1VloE- 0

6 --shyo

-90178E-02 1 34-02 3t5-5

I

12000E O 4000E 160002 1800O 2000012

01 o 01 01 01

4637E-00------------------------------- 1 17109E-07 -----I 2700E-07 -- ---------------------------------- I 36331r-07 ----------------------------- ---------4210=E-07 --------- - -

6470-08 -57l321204 V04L[[-08 -336ALt-0 061L 00 -04203E-09

34183C--00 -10989E-09 2i--41S-08 -7$4372-09

-V9uoE-07 -6 -3E-06 -971-2E-06 -1233E-05

-1 1 2

o-00 bull

2CD

22000E 24000E 26000E20000E

01 01 0101

44726C-07 01666E-07 576W 07 U3167E-07

---------- -------------------------------------------------------------

--------------------------------------------------------------- - ---

A

929[Ll-O92246 0 3J171-08

-I J2313 -07

-026M81-09 - [985E-05 -29250I-05

-140W-Ot 22923W-02 37g-0JE-02

-21011E-02 30000E 01 22406E-07 ------------- ------------------ -1 02C-0 7

606E-08 -45oTE5-0S CD 32000E 01 6646E-08 -- I -69390O--0S 21413E-09 -35167E-06

34000C 01 -6 0064-00 -----------------------shy 1 -6076r-00 2748 E3-09 22650E-06 0

(D

36000E 01 30000E 01 4L0000E 01 42000E 01

-109559C-07 -------------------30640E-07 --39346E-07 --4507O-07 --------

-60201 08 17547E-09 -0030C -08 60s002-0 -36 Ol-08 4771E-07- 002-0 047VI-07

66112-06 1 0 o9E05 1 347-05 15340C-05

0 v

44000E 46000E

01 01

-474LE-07-5430-07

--------shy +

1-100I 09 -40453L-083

18143E-094 W52-03

10 El-Oshy-30(72-02

cc

__

48000E 01 50000E 01 52000E 01

-60505E-07 -04406E-07 -01200C-07

-1 --- --

I 6446r 00 -13491[-0 737641b 00 -753SE-069204L 00 -2lt1-06

621-02 5585411-033l90C-S

-h 0i

54000E 56000E 50000E600002

01 01 0101

-564SOE-08 81453 E-08 21637F-0733072E-07

-- I19-F+-O( ----------------------- ---------------------------------- f --------------------------------- --- t

6071- 8 62JO -08

1302 -0

-229 -09 3091E-Oo -19904I-07 -35763E-06 -43L011-09 -7 W27t1-06 -6322 ampE-09 -116232-05

- 62000E 01 41940E-07 --------------------------------------- I 3688VE-00 -792211E-09 -143o5E-05 64000C 66000C

01 01

47649 -07 49001-07

-------------------------------------------- I -------------- ---------------------------- I

19U C-00 160kI 09

-8 j59E-0 -92347E-09

-I609E-Q -165102-05

Q

co

68000E 70OOO 72000E

01 01 01

50634E-07--------------------------------------------------6247E-07----- --------------------------------------------------53797E-07--------------------------- -----------------------

I I

U-0 -6[S7E-[0 -3t64 0

-085102-05 L1 860-04

-137W1-06

3b7E-02 -85140-02

97007E-04 74000E 76000C

01 01

2040W2-07-48647C-08

---------------------------------------------------------- I

-830E-00 430L-00

2I(412-08 L4B75-09

-237235-05 -2148E-06

70000C 01 -97530E-08 ---------------- ---- I WL -U 22533-09 40131E-06 II 80000-

0I20002 01 01

-23389E-07--------------------shy-35140E-07 ----------

I1 - -1-08 7 1--OS 7

7462E-09 1071pound-07

0463WC-06 1 2040E-05

0 14000E 01 86000E 01

--44177E-07 -49075E-07

-------------- I

3 201 I -430F-0

0 913-09 92390E-09

14- T32E--3S 1 oUOE-0S

8O002 01 -051605--07 ---- f - -9112F-1o 9258E-09 1716611-05 90000E 92000E 94000L

01 01 01

-604-14F-07 -6403-07 -5333E-07

-I I -- --

8 3EA 13 9 -8hI5s

- 0I

50=4E-0S 162222-04 01502E-07

-36442E-02 -1 35E-01 -2 5E-04

96000E 01 -- 0377E-0 --- ampV 3amp- -AW-LC-03 22h90E-0I Q8O0I-10000b1

D1 02

-441JE-08 I0719-07

-5 0 61955E -10

--2496SQl--09 13113E-0

-shy 43011E-06

n CBIP360 3 [IIULA IJ (IN 113r 4 4 STOP

SIMULA1IION OF NONLI126 ipS cONmFmR$YiftM Iu

r1 MINIMUM E W[ I ME MAY11-299A3E-06 tlamp

TIME E 7 L I-IL1 frLI I TiU00 70001E-07 ------------------------------ --- f (1C -91 r-A4 6 60OOE-01

2OOOE 00 - 9731E-06 4 4A7A4E-O -FSP77A-09 4212-0( 40000E 00 -238327E-06 - + 47rf--Q7 -5 T 38F-lII143E-04 6 000CE 00 -18249E-06 - 4V- I76 4 -IR 6t077E-(j

80000E 00 -1 8292-06 shy 432F- 1 927 E-00 3264612-0SI-O00CE 01 - 6Sj96E-07 -i 369162-07 I41IOr -09 12577E-051 206E 0 27S01E-07-------------------------------- I t 16772-O -7O97iUr-EO -1 2 11 -0 14000E 01 9673E-07 -------- 3 37I-07 -2302 E-Ct -366w1-0 16000C01 161742-06 ------------------------------ - I 1729E-07 3165100 -50SE-0

I-1 00E o0 212f42-06 --------------------------------------- --- 1147 W-07 -41229-r2 -- 2241E-05 200002 01 24641--06 - -------------------- 2 714r--07 -46t 0S - t 2 0 E-050 220001 01 262261-06 ---------------------- - -4LOI--Ot -416300 -OC -0 7n6 1L-05- 24000E 01 249P4C-06 ------------- - -2101I--1 -4 -3-nta4I70 t 2581-0_2CD 26000- 01 22106 -06 ------------------------- - -93---0-- --- Gl13I--02- -31032-02

0 2000 01 19846 -06 ------------------------------- - -- - -3V 3 -U73 -0fS--7 -0 5sf 3 L l- 0 30000E 01 I Jzfj19E-06-------------------------------------- ------- ~v--f 81 -1431-032000E 01 712844R-07 ------- -------- -740133r -t07 6I- 20262-02(4 340002 01 332172-08 ---------------------------I -35049E-h --40961-0 _j1 UK-06

D6000C ol -6 I 15 APE-07 ---- ------ shy -3------ L-k3 40000E Cl -10162I-06 -----shy

o 3 90002 01 -12212 -06 - - 44r 0 RJ 64L 4-05

-- 31 - 3dthI_ o) 6 -0 m 4200OF 0I -212064 -06 ------ - 5rS1L 01 160r3- 7- 1-W23-C50

44000C 01 -2-0NC4EC6 - 6797VL-08- 0343 f-OII4130L-0iS 46000E 01 -2Fu41f-0t ---- f - 690k-00O 29261-06 267 11-3shy4430002 01 -22751-06 - -4-09rEno I 20411 -0-I -9200I-02-h 50002 01 -237eI1-06- - F 4h40ThL- 0 7 -2423-E--7 26VF-04O 52000F O ----41---0- ---- 1r1 Y-OE7 -07 -13JE- 6 shy

-011 -t54000 01 91I-074421-07 2 71t8ht-- 20 ----22-Cs -- S6000E -------shy01 3---- 7 ----I A29KE-0y 22664E-19 7n7332-04

51000E 01 3$476-07 ------------------ - 4 7-07 - 7 E- -1 E S6OOOOE 0 0- -- - ---- --- --- a-jor-7 -2 4 1 0 - t-4E-0

620001 01 1A17 0-------------------------------- f2-aii------------------- 0-5w I-0t-f41 0pound6001in 01 2hE~6----------------- ------- ------------ 1A6L-0- -ei 613000E 01 337P-Q6 ----------- - T1 1 7 12111 1~OrO700001- 01 24 $E shy -- --- -- - --- -- --- -- ----- f 5 I -A1o ll AA 0 720002 01 210206- fI I034 t4 0t1II740002F )I I676 E-06 ----------------- -- ----- 0A4ramp 40-4ir ~3-122-1I

I ~760002 91 1 L283E-06 ------------------------ 4-7 C3C ~- 1 2-0

7130002 01 53294F-07 -- --- -- - shy-- - -7---7 x8900002 01 -SS5R 1 -8 ------ ----- ----- ---- 3 tVA 1L I -P 1 l l-t~nl-l920000 O1 2t3I AE0 11-

3 20002 01 -6Y3 2-7---------------------- 17A I-12110-2 t-03 o 8400W2 01 -t 242112-0A ------ 4II 4~360002 01 -169282-04 ----------- U2 1 17 ~4lPt 111-1W4~-0 t5

V shy3 30002 0I 1- 12------------ 7 rf I7 I~Vt r-A0001 01 -2 fI- -0A - 4 -4 _

t4000E 01 -2307A1-0k6- I 2eal 4 - I 1 0 9600OO Ol -1 37 E06 4

- I [ - -I tL 4 -117 21I hOshy9 0000L )I -J 2452-06- ---------------- shy- 117- rT6 I 3 E-0 -4- E301 10000h 02 -7304 -07 1

0 j40fl I

F4- 4 UOMOl40 SIUJLAIC(U 141 TA

117

REFERENCES

I Waites 1H B -Planar Equations of Motion of the Spacelab Using -Inside-Out Gimbal (lOG) for the Pointing Base Memorandum EDi-2-75-12 February 27 1975

2 Meadows J F Spacelab Pointing And Stabilization AnalysisNorthrop Services Inc Huntsville Alabama August 1975shy

3 Kue B C and G Singh Stability Analysis of the Low-Cost LargeSpace Telescope Final Report Systems Research Laboratory Champaign Illinois June 30 1975

4 Dahl P R A Solid Friction Model Report No TOR-0158(3107-18)-l Aerospace Corporation EISegundo California May 1968

5 Dahl P R Solid Frict-ion Damping of Spacecraft Oscillations -Report SAMSO-TR-75-285 The Aerospace Corporation El Segundo California September 1 1975