39
Nares Strait Aug.-3, 2009 Level-1B Band-1 @ 645nm

Nares Strait Aug.-3, 2009

  • Upload
    ojal

  • View
    31

  • Download
    0

Embed Size (px)

DESCRIPTION

Nares Strait Aug.-3, 2009. Level-1B Band-1 @ 645nm. Infrared measurements of sea surface temperature (SST). Andreas Muenchow, University of Delaware, May-11, 2010. Nares Strait motivation Vertical and temporal temperature changes Sensor calibration Cloud detection Atmospheric correction - PowerPoint PPT Presentation

Citation preview

Page 1: Nares Strait Aug.-3, 2009

Nares StraitAug.-3, 2009

Level-1BBand-1 @ 645nm

Page 2: Nares Strait Aug.-3, 2009

Infrared measurements of sea surface temperature (SST)

• Nares Strait motivation• Vertical and temporal temperature changes• Sensor calibration• Cloud detection• Atmospheric correction• Validation

References:

1. Robinson, I.S., 2004: Measuring the Oceans from Space, chapt.-7

2. Gumley, L., 2006: Modis Ocean Products, http://www.ssec.wisc.edu/library/coursefiles/SouthAfrica/Gumley_MODIS_Ocean.ppt

3. Vincent et al., 2008: Arctic waters and marginal ice zones, a composite Arctic sea surface temperature algorithm, J. Geophys. Res., 113, C04021, doi:10.1029/2007JC004353.

4. Luo, et al., 2008: Developing clear sky, cloud, and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution, Rem. Sens. Env., 112, 4167-4185.

5. Minnett, P.J., 2001: The marine-atmosphere emitted radiance interferometer, a high accuracy, seagoing infrared spectrometer, J, Atmos. Ocean. Tech., 18, 994-1013.

Andreas Muenchow, University of Delaware, May-11, 2010

Page 3: Nares Strait Aug.-3, 2009

My first MODISSST image(made 4 days ago):

Pretty, but wrongon so many levels…

Nares StraitAug.-3, 2009

What is SST?

Page 4: Nares Strait Aug.-3, 2009

Geophysical Parameter Name

Description

nLw_412 Normalized water-leaving radiance at 412 nm

nLw 443 Normalized water-leaving radiance at 443 nm

nLw_488 Normalized water-leaving radiance at 488 nm

nLw_531 Normalized water-leaving radiance at 531 nm

nLw_551 Normalized water-leaving radiance at 551 nm

nLw_667 Normalized water-leaving radiance at 667 nm

Tau_869 Aerosol optical thickness at 869 nm

Eps_78 Epsilon of aerosol correction at 748 and 869 nm

Chlor_a OC3 Chlorophyll a concentration

K490 Diffuse attenuation coefficient at 490nm

Angstrom_531 Angstrom coefficient, 531-869 nm

SST Sea Surface Temperature: 11 micron

SST4 Sea Surface Temperature: 4 micron (night only)

MODIS Ocean Standard Products (Level-2)

[from Gumley, 2006]

Page 5: Nares Strait Aug.-3, 2009

sst4 sst

sst4 usable only at night (solar contributions)sst usable day and night (negligible solar contributions)

2 bands usedto estimatesst and sst4

Planck’s Law:

[from Robinson, 2004]

Page 6: Nares Strait Aug.-3, 2009

sst4

sst

[from Robinson, 2004]

Page 7: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 8: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 9: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 10: Nares Strait Aug.-3, 2009

[from Minnett et al., 2001]

Page 11: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 12: Nares Strait Aug.-3, 2009

Night Day

[from Robinson, 2004]

Page 13: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 14: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 15: Nares Strait Aug.-3, 2009

Sensor CalibrationBand-integrated radiance as a function of temperature(Planck’s Law) at detector:

L(Tb) = ∫ C1 () / [5 exp(C2/ Tb)-1] d

whereTb blackbody temperature() detector response function (determined pre-launch)C1, C2 constants

L = gain*S + offset or Tb = A + B ln(L)

Calibration finds gain and offsetto relate the digital output signal S to radiance at detector L:

Need 2 known points to find gain and offset for each detector

Page 16: Nares Strait Aug.-3, 2009

Striping dueto imperfectinter-detectorcalibrations

SST

MODIS has 10 detectors scanned by 2 mirror-sides --> 20 calibrations

[from Gumley, 2006]

Page 17: Nares Strait Aug.-3, 2009

Chlor_a

[from Gumley, 2006]

Page 18: Nares Strait Aug.-3, 2009

MODIS Chlorophyll Algorithm

Semi-analytical algorithm(1)

Chl_a = 10**(0.283 - 2.753*R + 1.457*R2 + 0.659*R3 - 1.403*R4)

where:

R = log10((Rrs443 > Rrs488) / Rrs551)

Rrs = nLw / F0; remote sensing reflectance

F0 = extraterrestrial solar irradiance

nLw = water leaving radiance at 443, 488, 551

(1) Performance of the MODIS Semi-analytical Ocean Color Algorithm for Chlorophyll-a Carder, K.L.; Chen, F.R.; Cannizzaro, J.P.; Campbell, J.W.; Mitchell, B.G. Advances in Space Research. Vol. 33, no. 7, pp. 1152-1159. 2004

[from Gumley, 2006]

Page 19: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 20: Nares Strait Aug.-3, 2009

Canadian Center forRemote SensingCloud Detection

Standard NASACloud Detection

[from Luo et al., 2008]

Page 21: Nares Strait Aug.-3, 2009

This really isanotherfull lecture

[from Robinson, 2004]

Page 22: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 23: Nares Strait Aug.-3, 2009

2008

[from Luo et al., 2008]

Page 24: Nares Strait Aug.-3, 2009

Modis BandsBi with i=1,2,3,6

[from Luo et al., 2008]

Page 25: Nares Strait Aug.-3, 2009

[from Luo et al., 2008]

Page 26: Nares Strait Aug.-3, 2009

[from Luo et al., 2008]

Page 27: Nares Strait Aug.-3, 2009

[from Robinson, 2004]

Page 28: Nares Strait Aug.-3, 2009

SST = a + b*T4 + c*(T4-T5) + d* (T4-T5)*(sec-1)

Tbi brightness temperature channel “i”, e.g, T4 (Band-31 in Modis)Tbj brightness temperature channel “j”, e.g, T5 (Band-32 in Modis)

Atmosphere-A: Atmosphere-B

[from Robinson, 2004]

Page 29: Nares Strait Aug.-3, 2009

SST = a + b*T4 + c*(T4-T5) + d* (T4-T5)*(sec-1)

a=-263.006b=0.963563c=2.579211d=0.242598 sensor zenith

Daytime Coefficients for NOAA-12 AVHRRSST algorithm(McClain et al., 1985)

SST

SST4

[from Robinson, 2004]

Page 30: Nares Strait Aug.-3, 2009

MODIS Longwave Infrared Sea Surface Temperature ---> SST

dBT <= 0.5

sst = a00 + a01*BT11 + a02*dBT*bsst + a03*dBT*(sec() - 1.0)

dBT >= 0.9

sst = a10 + a11*BT11 + a12*dBT*bsst + a13*dBT*(sec() - 1.0)

0.5 < dBt < 0.9

sstlo = a00 + a01*BT11 + a02*dBT*bsst + a03*dBT*(sec() - 1.0)ssthi = a10 + a11*BT11 + a12*dBT*bsst + a13*dBT*(sec() - 1.0)sst = sstlo + (dBT - 0.5)/(0.9 - 0.5)*(ssthi - sstlo)

where:

dBT = BT11 - BT12BT11 = brightness temperature at 11 um, in deg-CBT12 = brightness temperature at 12 um, in deg-Cbsst = Either sst4 (if valid) or sstref (from Reynolds OISST)sec() = 1/(cosine of sensor zenith angle)a00, a01, a02, a03, a10, a11, a12, a13 derived from match-ups

[from Gumley, 2006]

Page 31: Nares Strait Aug.-3, 2009

MODIS Shortwave Infrared Sea Surface Temperature --> SST4

sst4 = a0 + a1 * BT39 + a2 * dBT + a3 * (sec() - 1.0 )

where:

dBT = BT39 - BT40BT39 = brightness temperature at 3.959 um, in deg-C

BT40 = brightness temperature at 4.050 um, in deg-C

sec() = 1/(cosine of sensor zenith angle)

a0, a1, a2, and a3 are time dependent coefficients derived from match-ups between observed MODIS brightness temperature and field measurements of SST.

Note: sst4 is not valid during daytime because of solar reflection.

[from Gumley, 2006]

Page 32: Nares Strait Aug.-3, 2009

Measuring at-seaskin temperature forSST validation andalgorithm development

[from Minnett et al., 2001]

Page 33: Nares Strait Aug.-3, 2009

My first MODISSST image(made 4 days ago):

Pretty, but wrongon so many levels…

Nares StraitAug.-3, 2009

What is SST?

Page 34: Nares Strait Aug.-3, 2009

Standard SST algorithm

Arctic SSTalgorithm

[from Vincent et al., 2008]

Page 35: Nares Strait Aug.-3, 2009

[from Vincent et al., 2008]

Page 36: Nares Strait Aug.-3, 2009

[from Vincent et al., 2008]

Page 37: Nares Strait Aug.-3, 2009

Is atmospheric correction always appropriate?

SST = a + b*T4 + c*(T4-T5) + d* (T4-T5)*(sec-1)

Is anything lost by applying atmospheric corrections?

Page 38: Nares Strait Aug.-3, 2009

Is atmospheric correction always appropriate?

SST = a + b*T4 + c*(T4-T5) + d* (T4-T5)*(sec-1)

Is anything lost by applying atmospheric corrections?

•Image noise may be enhanced•Includes noise from 2channels•Thermal gradients are modified

Page 39: Nares Strait Aug.-3, 2009

Is atmospheric correction always appropriate?

SST = a + b*T4 + c*(T4-T5) + d* (T4-T5)*(sec-1)

Is anything lost by applying atmospheric corrections?

•Image noise may be enhanced•Includes noise from 2channels•Thermal gradients are modified

If spatial structures, patterns, fronts, eddies, plumes are studied

Use brightness temperatures Ti, not SST