24
Materials Sciences Division Nanowire Solar Cells Peidong Yang Department of Chemistry University of California, Berkeley Materials Science Division Lawrence Berkeley National Laboratory

Nanowire Solar Cells - APS Physics · PDF fileMaterials Sciences Division Nanowire Solar Cells Peidong Yang Department of Chemistry University of California, Berkeley Materials Science

Embed Size (px)

Citation preview

Materials Sciences Division

Nanowire Solar Cells

Peidong YangDepartment of Chemistry

University of California, BerkeleyMaterials Science Division

Lawrence Berkeley National Laboratory

Materials Sciences Division MRS Bulletin, Jan 2005

Emerging PV

•• Low costLow cost•• Intermediate efficiencyIntermediate efficiency•• Environmental benignEnvironmental benign

•• Possible solar paintPossible solar paint

Materials Sciences Division

Emerging PV

Grätzel, M. Nature 414, 2001.

Alivisatos et al. Science 2002, 295, 2425.

Why nanowires are important?

Materials Sciences Division

PV Performance Metrics

Efficiency PP

FF V JP

out

in

oc sc

in

= =× ×

FF J VJ V

M M

SC OC

=

Materials Sciences Division

)1( dA e αη −−=

DLdED e /−=η

IQE(λ) = ηA(λ) ηED ηCT ηCC

ηPCE = =FF x VOC

PinPin

Pout ∫q F(λ)IQE(λ)dλ

S. Forrest. MRS Bulletin, Jan 2005

Materials Sciences Division

Emerging PV

Use of solar at terawatt levels requires drop in $/Wp

3N: New materials, New designs, New tricks

“dirty” semiconductorsorganicsoxides

absorbersbiological subunits

quantum effects

carrier multiplication

frequency shifting

Interface engineering

dye-sensitized cells

bulk heterojunction cells(polymer, organic-inorganic)

Materials Sciences Division

MLCT

Wavelength(nm)

Abs

orba

nce

Dye-sensitized Photoelectrochemical Cell

surface area of 800 – 1000 cm2 per cm2

η of 5 -10% with TiO2 nanoparticles

electron transport via trap-mediated diffusion

Low efficiency at long wavelength

Grätzel, M. Nature 414, 2001.

DSC characteristics

Poor charge collectors?

electron diffusivity: 10-4 cm2/s

Materials Sciences Division

1) Find dyes that function efficiently across the visible and near-IR

2) Raise open-circuit voltage closer to its theoretical maximum

3) Increase the electron diffusion length in the oxide anode, Ld = (Deτ)1/2

speed up electron transport slow recombination

engineer the active interface

random, polycrystalline network oriented single-crystalline channels

slow diffusive transport fast band conduction (field-assisted)

efficient for films ~10 μm thick in principle, efficient for much thicker cells

high internal surface area smaller internal surface area

adopt a nanowire geometry

Nanoparticle DSC Nanowire DSC

The three ways to improve DSC efficiency

Materials Sciences Division

Nanowire DSC: Design Principle

high nanowire densitylong, thin nanowires

electrode length (μm) diameter (nm) density (x1010 cm-2) SA

nanoparticle 8 - 10 15 - 30 n/a 800 - 1000

ideal nanowire 20 60 3 1080

achieved NW 20 130 0.3 ~200

Materials Sciences Division

Nanowire densities of 1-40 billion cm-2

Single-crystalline wires in direct contact with the substrateInexpensive and environmentally benignCompatible with arbitrary substrates of any size

Large-Scale Nanowire Array Synthesis

1st: dip-coat to get ZnO quantum dots 2nd: grow nanowires from QD seeds

zinc salthydrolysis,

HMTA

60-90 °C

L. Greene et al. Angew Chem. Int. Ed. 42, 3031, 2003.

Materials Sciences Division

H2N-(CH2CH2N)x-(CH2CH2NH)y-]-

CH2CH2NH2

Poly-ethylenimine (PEI):

Control of Nanowire Aspect Ratio

0 5 10 15 200

50

100

150

200

250

300

diam

eter

(nm

)

length (microns)

without PEI with PEI

DSCHybrid

Hybrid: aspect ratio = 10 DSC: aspect ratio > 150

5 μm500 nm

Materials Sciences Division

Alignment Control

500 nm

200 nm

Greene, L.E., Law, M. et al. Nano Letters 5, 1231 (2005).

Materials Sciences Division

360 370 380 390 400

I/a.u.

λ /nm

5 K 25 K 45 K 65 K 85 K 105 K 125 K 145 K 165 K 185 K 215 K 245 K 275 K 300 K 350 360 370 380 390 400 410

I/a.u.

λ/nm

300 400 500 600

λ / nm

E / a.u. A / a.u.

High Optical Quality

TEM shows that the nanowires are single crystals

Wire surfaces are clean (Raman, EELS) after 400 °C treatment

Materials Sciences Division

Characterization of Nanowire Arrays Electrical: Ohmic wire-substrate contacts FETs: Wires have high e- mobility

Individual wires are electrically conductive ρ = 0.1 - 1 Ω cm mobility: 1-5 cm2V-1s-1

electron diffusitivity: Dn=0.05-0.5 cm2s-1 [D = kBTμ/e ]Ensure larger electron diffusion length, avoiding possible

interfacial recombination

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-40 V-20 V0 V

20 V

40 V

I SD (μ

A)VSD (V)

-50 -25 0 25 500

255075

100125

VSD = 100 mV

I SD (n

A)

VG (V)

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-40 V-20 V0 V

20 V

40 V

I SD (μ

A)VSD (V)

-50 -25 0 25 500

255075

100125

VSD = 100 mV

I SD (n

A)

VG (V)

Law, M., Greene, L. et al. Nature Mater. 4, 455 (2005).

Materials Sciences Division

ηPCE = 1.5% under AM 1.5 G conditions

Nanowire based DSC

Black = 12 nm TiO2 NPBlue = 30 nm ZnO NPGreen = 200 nm ZnO NPRed = ZnO nanowires

• NW cells are competitive with thin TiO2nanoparticle cells (ηcc ~ 100%)• NW cells outperform ZnO nanoparticle cells

Law, M., Greene, L. et al. Nature Mater. 4, 455 (2005).

Materials Sciences Division

Nanowire DSC

Faster electron injection in NW cell

Bi-exponential (<250fs, 3ps)

vs.

Tri-exponential (<250fs, 20ps, 200ps)

Materials Sciences DivisionGrätzel, M, MRS Bulletin, Jan 2005

Time Scale for Electron Injection and Transport

Materials Sciences Division

Engineer active interface to reduce recombination

Core-sheath Nanowire Cells

Physically separate electrons and holes

Form a tunneling barrier

Passivate recombination centers on oxide surface

Overcoat the nanostructured electrode with an insulating or semiconducting oxide

Reduce recombination

Shift band edge to increase Voc

Use an oxide with a higher band edge energy

Form dipole layer that bends band upwards

Substrate

DyeRedox

Gregg, B. NREL.

Materials Sciences Division

Oxides: Al2O3, TiO2, Ta2O5, Nb2O5, ZrO2, HfO2, SnO2, ZnO, La2O3, Y2O3, CeO2, Sc2O3, Er2O3, V2O5, SiO2, In2O3, ...Perovskites: SrTiO3, BaTiO3, LiNbO3, LaMnO3 …Nitrides: AlN, TaNx, NbN, TiN, MoN, ZrN, HfN, GaN, ... Fluorides: CaF2, SrF2, ZnF2, ...Metals: Pt, Ru, Ir, Pd, Cu, Fe, Co, Ni, ... Carbides: TiC, NbC, TaC, ...Mixed structures: AlTiNx, AlTiOx, AlHfOx, SiO2:Al, HfSiOx, ... Sulfides: ZnS, SrS, CaS, PbS, ...Nanolaminates: HfO2/Ta2O5, TiO2/Ta2O5, TiO2/Al2O3, ZnS/Al2O3, ATO (AlTiO) ...Doping: ZnO:Al, ZnS:Mn, SrS:Ce, Al2O3:Er, ZrO2:Y, ... rare earth metals (Ce3+, Tb3+ etc.) also co-doping

Planar Systems, Inc.

Example: ZnS

Atomic Layer Deposition (ALD)

Materials Sciences Division

Core-sheath Nanowire Dye-sensitized Solar Cells

Materials Sciences Division

]-S

C6H13

-]

Poly(3-hexylthiophene)

1) ultrahigh nanowire density2) short, thin nanowires3) nanowires normal to substrate

2LD

Target nanowire array

2LD ~ 20 nm

S

S

S

S

S

CH3CH3 CH3

CH3 CH3

S

S

S

S

CH3 CH3

CH3 CH3

S

S

S

S

S

CH3CH3 CH3

CH3 CH3

S

S

S

S

CH3 CH3

CH3 CH3

S

S

S

S

S

CH3CH3 CH3

CH3 CH3

S

S

S

S

CH3 CH3

CH3 CH3

)-

)-

ca

0

-2.5

-3.5

-4.5

vacuum

ITOZnO

AgP3HT

~2.1 eV

Nanowire-polymer Hybrid Cell

Materials Sciences Division

Nanowire-polymer Composite Film

200 nm

Aligned wiresInter-wire spacing is 10-50 nm

2LD for P3HT ~ 20 nmThickness 200-300 nm

Materials Sciences Division

The Ideal Nanowire Cell

• Fully interdigitated donor-acceptor interface

• Acceptor wire array: high density, smaller band gap

• Donor: polymer/nanoparticles, maximize absorption

• Interface engineering: reduce recombination.

• Applicable to DSC, hybrid, and conventional semiconductor cells. N. Lewis

•• Low costLow cost•• Intermediate efficiencyIntermediate efficiency•• Environmental benignEnvironmental benign

•• Possible solar paintPossible solar paint

Materials Sciences Division

Dr. Matt Law

Lori Geene

Dwaud Tan

Funding

DOE

ITRI

AcknowledgementAcknowledgement