25
Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010 HELIOS HELIOS

Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

  • Upload
    dean

  • View
    34

  • Download
    0

Embed Size (px)

DESCRIPTION

HELIOS. Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010. Goal:. CO 2 + H 2 O  CH 3 OH + O 2. h v. O 2. H 2 O. CH 3 OH. visible light. Conversion in a single integrated system (terawatt scale) Inorganic system  robust. CO 2. CO 2 - PowerPoint PPT Presentation

Citation preview

Page 1: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Nanostructured Water Oxidation Photocatalysts

Heinz Frei

February 3, 2010

HELIOSHELIOS

Page 2: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

• Conversion in a single integrated system (terawatt scale)

• Inorganic system robust

CO2 + H2O CH3OH + O2

Goal:

visible light

H2O

H2O

O2

O2

CO2

CH3OH

H2O oxidation

CO2 reduction

hv

Topics today:

Robust inorganic nanoclusters as water oxidation catalysts

All inorganic photocatalytic units in nanoporous silica scaffolds

Page 3: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Turnover frequencies (TOF) for oxygen evolution at Co and Mn oxide materials reported in the literature

Oxide TOF Overvoltage, η pH T Quantum Reference(sec-1) (mV) (oC) yield

Co3O4 0.035 325 5 RT 58% Harriman (1988) [1]

Co3O4 > 0.0025 350 14 30 -- Tamura (1981) [2]

Co3O4 > 0.020 295 14 120 -- Wendt (1994) [3]

Co3O4 > 0.0008 414 14.7 25 -- Tseung (1983) [4]

Co3O4 > 0.006 235 14 25 -- Singh (2007) [5]

Co,P film > 0.0007 410 7 25 -- Nocera (2008) [6]~ 0.1 7 60 -- Nocera (2009) [7]

MnO2 > 0.013 440 7 30 -- Tamura (1977) [8]

Mn2O3 0.055 325 5 RT 35% Harriman (1988) [1]

[1] Harriman, A.; Pickering, I.J.; Thomas, J.M.; Christensen, P.A. J. Chem. Soc., Farad. Trans. 1 1988, 84, 2795-2806.[2] Iwakura, C.; Honji, A.; Tamura, H. Electrochim. Acta 1981, 26, 1319-1326. [3] Schmidt, T.; Wendt, H. Electrochim. Acta 1994, 39, 1763-1767. [4] Rasiyah, P.; Tseung, A.C.C. J. Electrochem. Soc. 1983, 130, 365-368. [5] Singh, R.N.; Mishra, D.; Anindita; Sinha, A.S.K.; Singh, A. Electrochem. Commun. 2007, 9, 1369-1373. [6] Kanan, M.W.; Nocera, D.G. Science 2008, 321, 1072-1075. [7] Nocera, D.G. Symposium Solar to Fuels and Back Again, Imperial College, London, 2009. [8] Morita, M.; Iwakura, C.; Tamura, H. Electrochim. Acta 1977, 22, 325-328.

Page 4: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Nanostructured Co oxide cluster in mesoporous silica scaffold

35 nm bundles 65 nm bundles(4 % loading) (8 % loading)

free nanorodbundle

Synthesis of Co oxideclusters in SBA-15 usingwet impregnation method

• Co oxide clusters are 35 nm bundles of parallel nanorods (8 nm diameter) interconnected by short bridges

• XRD, Co K-edge EXAFS and reveal spinel structure

Co3O4 bulkSBA-15/Co3O4 (8%)SBA-15/Co3O4 (4%)

EXAFS

XRD

SBA-15/Co3O4 (4%)

SBA-15/Co3O4 (8%)

Co3O4

Page 5: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Co L-edge XAS spectrum

• Co L-edge absorption spectrum confirms Co3O4 structure

Page 6: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

F. Jiao, H. Frei, Angew. Chem. Int. Ed. 49, 1841 (2009)

SBA-15/Co3O4

35 nm bundle

65 nm bundle

O2 evolution

• Visible light water oxidation in aqueous SBA-15/Co3O4 suspension using Ru2+(bpy)3 + S2O8

2- method. Mild conditions: 22oC, pH 5.8, overvoltage 350 mV

• High catalytic turnover frequency: 1140 O2 molecules per second per cluster TOF of catalyst per projected area = 1 s-1nm-2 mesoporous silica membrane, 150 μ thick: TOF = 100 s-1nm-2

Co3O4micron sized particles

O2

SBA-15/NiO (8%)

Mass spectroscopic monitoring

Efficient oxygen evolution at Co3O4 nanoclusters in mesoporous silica SBA-15 in aqueous suspension

TOF 1140 s-1 per cluster

Page 7: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

• Co3O4 structure in silica scaffold stable under water oxidation catalysis

Co K-edge: No sign of Co oxidation state change after photolysis

• O2 yield is 1600 times larger than for 35 nm bundle catalyst compared to μ-sized Co3O4

• Surface area of nanorod bundle cluster = factor of 100, catalytic efficiency of surface Co centers = factor of 16

EXAFS: No sign of structural change after photolysis

Page 8: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

• Rate and size of the SBA-15/Co3O4 catalyst driven by visible light are comparable to Nature’s Photosystem II and are in a range that is adequate for the keeping up with solar flux (1000 W m-2)

• Abundance of the Co metal oxide, stability of the nanoclusters under use, modest overpotential and mild pH and temperature make this a promising catalyst for use in integrated artificial solar fuel systems

TOF 300 s-1

TOF 1140 s-1

Page 9: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Efficient oxygen evolution at nanostructured Mn oxide clusters supported on mesoporous silica KIT-6

TEM

MnO1.51

KIT-6 (3D channels)

• Spherical Mn oxide nanoclusters, 70-90 nm diameter, mixed phase (calcination T)• The phase composition was determined by component analysis of XANES spectra

XAFS

calcined 600 oC

MnO2 Mn2O3 Mn3O4

400 oC 64% 36% -

500 oC 95% 5% -

600 oC 6% 80% 14%

700 oC - 81% 19%

800 oC - 70% 30%

900 oC - 51% 49%

Page 10: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Efficient oxygen evolution in aqueous solution using Ru2+(bpy)3-persulfate visible light sensitization system

• Most active catalyst: MnO1.51 with TOF = 3,320 O2 s-1, which corresponds to 0.6 sec-1 nm-2 projected area 200 μm membrane with TOF of 100 s-1nm-2 meets solar flux• Very stable upon photochemical use, no leaching of Mn • Silica scaffold provides:

• high, stable dispersion of nanostructured catalysts• sustained catalytic activity by protecting the active Mn centers from deactivation by surface restructuring

O2 evolution

TOF 900 s-1

per cluster

Mass Spec

Mild conditions:

pH 5.8, 22 oCovervoltage 350 mV

TOF 3,320 s-1

per cluster

F. Jiao, H. Frei, submitted

Page 11: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Mn oxide core/ silica shell construct

Co3O4 or MnOx core

silica shell

Reverse microemulsion method (Ying, J.Y., Langmuir 24, 5842 (2008))

F. Jiao

Co or Mn oxide/ silica core shell constructs

Page 12: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Hammarstrom, Chem. Soc. Rev. 30, 36 (2001)

Precise matching of redox potentials of the componentsin organic molecular systems

Page 13: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

200 nm

nanoporous silica support

Approach: Well-defined all-inorganic polynuclear photocatalysts arranged in robust 3-D nanoporous scaffold

• Photocatalytic site consists of a hetero-binuclear unit acting as visible light charge transfer pump driving a multi-electron transfer catalyst

• 3-D nanoporous support for arranging and coupling photoactive units

• High surface area required to avoid wasting of solar photons (one photocatalytic site nm-2 assuming rate of 100 sec-1)

• Nanostructured support for achieving separation of redox products

MCM-41SBA-15

Page 14: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Ti

O O O

Si

O CrIII

O O

Al Si

Si Si

MMCT (visible light)

O

Si

h

e-

• Cr EPR, XAFS K-edge, EXAFS, FT-Raman and optical spectroscopy allows step-by-step monitoring of oxidation state and coordination geometry changes of the Cr center upon TiOCr formation

Selective assembly of binuclear MMCT units for driving water oxidation catalysts:TiOCrIII

CrVI(=O) + TiIII CrV-O-TiIV

Selective redox coupling

Han, Frei, J. Phys. Chem. C 112, 8391 (2008)

CrV EPRX-ray K-edge

3200 3300 3400 3500

-0.5

0.0

0.5

Rel

ativ

e in

ten

sity

Magnetic field (G)

103

TiCrAl-MCM41

CrVIAl-MCM41

CrV

Sp: g=1.977, g//=1.964

6000 60400

1

2

No

rma

lize

d A

bs

orp

tio

n

Energy (eV)

Cr-AlMCM-41, cal 630C

as-syn TiCr-AlMCM-41

400 600 8000.0

0.3

0.6

0.9

1-R

Wavelength (nm)

TiCr-AlMCM-41

CrIII-AlMCM-41

TiIV-O-CrIII TiIII-O-CrIV

DRS

0 1 2 3 4 5 6 70

2

4

62.00Å(CrIII-O)

FT M

agni

tude

Distance R (Å)

1.59Å(CrVI=O)

2.70Å(CrIII-O-Ti)

TiCr-AlMCM-41

Cr-AlMCM-41

0 1 2 3 4 5 6 70

2

4

62.00Å(CrIII-O)

FT M

agni

tude

Distance R (Å)

1.59Å(CrVI=O)

2.70Å(CrIII-O-Ti)

TiCr-AlMCM-41

Cr-AlMCM-41

EXAFS

Page 15: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

0 2 4 6 80

4

8

R (Å)

|

(R)|

-4)

B

Selective assembly of binuclear MMCT units for driving water oxidation catalysts:TiOCrIII

Cr EXAFS curve fitting:

Cr-O N DW

1.97 A 3.8 0.003

0 2 4 6 80

4

8

|(R

)| (

Å-4

)

R (Å)

B

CrIII TiOCrIII

Cr-O

Cr--Ti

• Second shell peaks confirm oxo bridge structure of MMCT unit• Cr-O bond of Ti-O-Cr bridge is shorter than for Cr-O-Si, indicating partial charge transfer character of ground state

Cr-O

Cr-O N DW Cr---Ti N DW Cr----Si N DW

2.01 A 3 0.001 3.14 1 0.007 2.89 3 0.003

1.72 A 1 0.003

Page 16: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Binuclear TiOCrIII pump drives H2O oxidation catalyst under visible light

• Efficient visible light water oxidation in aqueous suspension observed

Han, Frei, J. Phys. Chem. C 112, 16156 (2008)

Nakamura, Frei, J. Am. Chem. Soc. 128, 10689 (2006)

O2 evolution using Clark electrode

Quantum yield = 14% (lower limit!)

-0.5 0.0 0.5 1.0 1.5 2.00

3

6

9

O2(m

g/L

)

Time (hour)

Level of saturated O2 in water

IrxO

y-TiCr-AlMCM-41

Light on

10 nm10 nm

HR-TEM of Ir oxidenanoclusters insilica channels

Page 17: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

• Electron donation from IrOx catalyst competes successfully with back electron transfer from Ti III • Flexibility of donor metal selection for matching redox potential of charge-transfer chromophore and catalyst

EPR and FT-Raman spectroscopy show formation of TiIV…O2- complex

3200 3250 3300

0.0

0.5

1.0103

Rel

ativ

e in

ten

sity

Magnetic field (G)

g1 = 2.034

g2 = 2.010

g3= 2.005

superoxide

before photolysis

after photolysis

simulated spectrum

3200 3300 3400 3500

0.0

0.5

1.0

photolysis of IrxO

y-TiCr-AlMCM-41+H

2O

Inte

ns

ity

photolysis of IrxO

y-Cr-AlMCM-41+H

2O

superimposed EPR spectrum of simulate Ti III and CrV

Magnetic field (G)

TiIIITiIV…O2-

TiIV-O-CrIII/IrOx TiIII-O-CrIV/IrOxMMCT

hv

1100 1000 900

after photolysis in H2

18O

after photolysis in H2

16O

Raman shift (cm-1)

Ra

ma

n in

ten

sit

y (

a.u

.)

994

9619300.0005

16O18O-

O2-

18O2-

O2 trapped by transient TiIII

O2- detected in aqueous solution

18O labeling of superoxide when using H2

18O

EPR

FT-Raman

Page 18: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

• Transient absorption spectroscopy of MMCT units using index-matching liquids (mineral oil, silicone oil, or CHCl3)

• 5 nanosecond resolution

Elucidation of electron transfer pathways and kinetics of binuclear charge-transfer chromophore by transient absorption spectroscopy

TiMnII-MCM-41

DRS

L-edge X-ray absorption

Ti

MnII

Page 19: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Excitation of TiOMn, 400-600 nm

Albery model for dispersive 1st order kinetics:(Albery et al., J. Am. Chem. Soc. 1985, 107, 1854)k = k’exp(γx), Gaussian distribution in ln(k)mean time constant 1/k’ = 1.8 μsec

Transient bleach of MMCT transition observed

• Recovering bleach is due to back electron transfer of excited Ti IIIOMnIII → TiIVOMnII

• Spread of first order rate constants indicates structural heterogeneity of the silica environment of the binuclear sites

TiMn-SBA-15

T. Cuk, W. Weare, H. Frei, J. Phys. Chem. C, submitted

Pump Dependence:Kinetic and Spectral

Pump Spectral Dependence: DRS Comparison

-8

-6

-4

-2

0

O

D (

10-3

)

1086420Time (s)

Probe: 400nmPump

425 nm 445 nm 475 nm 535 nm

-10

-5

0

O

D (

10-3

)(t=

0, t

avg)

600550500450400Pump (nm)

t=0 Albery Fits, normalized data tavg, unnormalized data DRS Static Spectra

1/k' = 1.8 ± 0.3s = 2 ± 0.2

(a) (b)

Page 20: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

MMCT

Ti(IV)OMn(II)

Ti(III)OMn(III)

e0(Ti)t2g3(Mn)eg

2(Mn) S= 5/2

e1(Ti)t2g3(Mn)eg

1(Mn) S= 5/2

S = 3/2

G

Unusually slow back electron transfer

• Substantial structural rearrangement of coordination sphere in excited MMCT state and polarization of the silica environment imposes barrier to back electron transfer • Lifetime long → MMCT units suitable for driving MET catalysts with visible light

hv

Page 21: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Si

O

Si

Ti

O O

O

Si Si

O

Si

Ce

O O

Si Si

III

• Selective assembly due to higher acidity of TiOH vs. SiOH• MMCT excitation by visible light generates donor centers (CeIV, CoIII) of sufficiently positive potential for driving H2O oxidation catalyst

TiIV-O-CoII TiIII-O-CoIII

300 400 500 600 7000.0

0.2

0.4

0.6

1-R

Wavelength (nm)

300 400 500 600 700

MMCT

TiCe-MCM-41

Ti-MCM-41

Ce-MCM-41

DRS

TiIV-O-CeIII TiIII-O-CeIV

400 600 8000.0

0.2

0.4

1-R

Wavelength (nm)

TiCo-MCM-41

Ti-MCM-41 + Co-MCM-41

Co-MCM-41

MMCT

5730 57600

1

2

3

4

No

rmal

ized

Ab

sorp

tio

n

Energy (eV)

5727

5728

E = +1 eV

A

a

b

5720 5760 58000.0

0.8

1.6

2.4

No

rmal

ized

Ab

sorp

tio

n

Energy (eV)

5729 5737

a'

b'

B

Ce L-edge

CeIII

TiCeIII

CeIV

TiCeIV

Han, Frei, J. Phys. Chem C 112, 8391 (2008);Microporous Mesoporous Mater. 103, 265 (2007)Nakamura, J. Am. Chem. Soc. 129, 9596 (2007)

XAFS

EPR

Selective assembly of binuclear MMCT units for driving water oxidation catalysts:TiOCoII, TiOCeIII

2000 3000 40000.0

0.5

1.0

1.5

Rel

ativ

e In

ten

sity

Magnetic Field (G)

103

a

b

g = 5.250

g = 5.107g

// = 2.034

g// = 2.032

CoII

CoII linked to Ti is high spin, tetrahedral

Page 22: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

• Coupling of fuel generating photocatalytic sites (green) with O2 evolving sites (purple) across nanoscale wall • Separation of oxygen from methanol

CO2 + H2O CH3OH + O2visible light

Coupling polynuclear photocatalysts in nanoporous silica scaffoldsto achieve separation of reduced products from evolving oxygen

Two photon system

envisioned integrated system

(L)

(L = inorg. or C-based conducting linker)

Long term goal:

CO2

CH3OH

H2OO2

H2OO2

CO2

reductionH2O oxidation

Page 23: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Mn oxide core/ silica shell construct

Co3O4 or MnOx core

silica shell

Reverse microemulsion method (Ying, J.Y., Langmuir 24, 5842 (2008))

F. Jiao

Co or Mn oxide/ silica core shell constructs with nanowires penetrating SiO2 shell

Page 24: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Conclusions

• Development of all-inorganic photocatalytic units on nanoporous silica supports consisting of heterobinuclear charge-transfer chromophore coupled to multi-electron catalyst; selective, flexible synthetic methods (abundant elements, scalable synthetic approach)

• MMCT chromophores absorb deep in the visible region, possess donor and acceptor centers with selectable potentials → key to thermodynamic efficiency of photocatalyst

• Long lifetime (microsec) of MMCT states uncovered

• H2O oxidation to O2 under visible light (TiOCrIII chromophore driving an IrOx nanocluster catalyst) at > 14 % quantum efficiency, hydroperoxide intermediate observed

• Co3O4 and MnO1.51 nanocluster catalysts of abundant materials for water oxidation, TOF in range suitable for keeping up with solar flux

HELIOSHELIOS

Page 25: Nanostructured Water Oxidation Photocatalysts Heinz Frei February 3, 2010

Drs. Vittal Yachandra, Junko YanoFacilities: NCEM-LBNL, SSRL

US Department of Energy, Office of Basic Energy Sciences,

Division of Chemical, Geological and Biosciences

Helios Solar Energy Research Center, funded by DOE-BES

Postdoctoral Fellows:

Feng JiaoWalter WeareHongxian HanTania Cuk (Miller fellowship)N. SivasankarMarisa MacNaughtan

AcknowledgmentsHELIOSHELIOS