1
Nanostructured Ternary Metal Oxides as Electrode Materials for High-Performance Energy-Storage Systems Saad Gomaa Mohamed and Ru-Shi Liu * Department of Chemistry, National Taiwan University, Taipei 106, Taiwan Nano Science and Technology Program, TIGP, Academia Sinica and National Taiwan University Abstract In this work, we demonstrate an easy, two-step hydrothermal/calcination approach for growing uniform Mn, Fe, and Zn cobaltite (MCo 2 O 4 ) nanostructure (NS) on flexible binder- and conductive-agent-free Ni foam and carbon substrates, respectively. The hierarchical Mn, Fe, and Zn cobaltite nanowire- and nanoflake-based architectures onto conductive substrate allow enhanced electrolyte transport and charge transfer The hierarchical Mn, Fe, and Zn cobaltite nanowire- and nanoflake-based architectures onto conductive substrate allow enhanced electrolyte transport and charge transfer toward/from Mn, Fe, and Zn cobaltite NS surface with numerous electroactive sites. In addition, the direct growth and attachment of Mn, Fe, and Zn cobaltite NSs in supporting conductive substrates provide substantially reduced contact resistance and efficient charge transfer. These excellent features allow the use of Mn, Fe, and Zn cobaltite NS as lithium-ion battery and supercapacitors electrodes. Catalytic behaviors of MCo 2 O 4 nanorods (M = Mn, Fe, Ni, and Zn) as cathode material for lithium–O 2 battery are also been studied by synthesizing MnCo 2 O 4 , FeCo 2 O 4 , NiCo 2 O 4 , and ZnCo 2 O 4 nanorods through an easy hydrothermal method. These nanorod structures are porous, which further improve capacity and cycling performance. The mesoporous structure enables oxygen and electrolyte flow during discharge reaction and provides a suitable two-phase interface for catalysis. Topic I Lithium Ion Battery Supercapacitors Lithium Oxygen Battery Topic II Topic III Publications [1] S . G. Mohamed, Y. Q. Tsai, C. J. Chen, T. F. Hung, W. S. Chang and R. S. Liu, ACS Appl. Mater. Interfaces, in press, 2015. [2] S . G. Mohamed, C. J. Chen, C. K. Chen, S. F. Hu, and R. S. Liu, ACS Appl. Mater. Interfaces, 2014, 6, 22701. [3] S . G. Mohamed, T. F. Hung, C. J. Chen, C. K. Chen, S. F. Hu, and R. S. Li.u. RSC Adv., 2014, 4, 17230. [4] S . G. Mohamed, T. F. Hung, C. J. Chen, C. K. Chen, S. F. Hu, R. S. Liu, K. C. Wang, X. K. Xing, H. M. Liu, A. S. Liu, M. H. Hsieh and B. J. Lee. RSC Adv., 2013, 3, 20143. [5] T. F. Hung, S . G. Mohamed, C. C. Shen, Y. Q. Tsai, W. S. Chang and R. S. Liu. Nanoscale, 2013, 5, 12115 [6] M. Tatsuhiro, C. J. Chen, T. F. Hung,S . G. Mohamed, Y. Q. Lin, H. Z. Lin, J.C. Sung, S. F. Hu and R. S. Liu. Electrochimica Acta, 2015, 165, 166. [7] S . G. Mohamed, S. H. Chen, C. J. Chen, Y. T. Chen, M. Y. Lo, and R. S. Liu. J. Am. Chem. Soc., to be submitted Papers Patents [1] M. Tatsuhiro, C. J. Chen, T. F. Hung, S . G. Mohamed, R. S. Liu, S. F. Hu, H. Z, Lin, Y. Q. Lin, C. M. Sung, and B. J. Hwang. "Multilayer Si/Graphene Composite Anode Structure." Taiwan Patent No. I461555 (Nov. 21. 2014). (2) M. Tatsuhiro, C. J. Chen, T. F. Hung, S. G. Mohamed, R. S. Liu, S. F. Hu, H. Z, Lin, Y. Q. Lin, C. M. Sung, and B. J. Hwang. "Multilayer Si/Graphene Composite Anode Structure." US20150004494 (Jan. 1, 2015). SEM, XRD and TEM Electrochemical Performance, MnCo 2 O 4 NWs Electrochemical Performance, FeCo 2 O 4 NFs Felxible Battery, ZnCo 2 O 4 NWs Supercapacitance Behavior (MnCo O NWs) Cyclic Voltammetry Charging/Discahring and EIS MCo 2 O 4 , XRD MCo 2 O 4 , SEM, TEM, XPS and Charge/Discharge Supercapacitance Behavior (FeCo O NFs) Charging/Discahring and EIS

Nanostructured Ternary Metal Oxides as Electrode Materials ...rsliu/poster/2015/Saad... · Nanostructured Ternary Metal Oxides as Electrode Materials for High-Performance Energy-Storage

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanostructured Ternary Metal Oxides as Electrode Materials ...rsliu/poster/2015/Saad... · Nanostructured Ternary Metal Oxides as Electrode Materials for High-Performance Energy-Storage

Nanostructured Ternary Metal Oxides as

Electrode Materials for High-Performance

Energy-Storage SystemsSaad Gomaa Mohamed and Ru-Shi Liu*

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

Nano Science and Technology Program, TIGP, Academia Sinica and National Taiwan UniversityAbstract In this work, we demonstrate an easy, two-step hydrothermal/calcination approach for growing uniform Mn, Fe, and Zn cobaltite (MCo2O4) nanostructure (NS) on flexible

binder- and conductive-agent-free Ni foam and carbon substrates, respectively. The hierarchical Mn, Fe, and Zn cobaltite nanowire- and nanoflake-based architectures onto

conductive substrate allow enhanced electrolyte transport and charge transfer The hierarchical Mn, Fe, and Zn cobaltite nanowire- and nanoflake-based architectures onto

conductive substrate allow enhanced electrolyte transport and charge transfer toward/from Mn, Fe, and Zn cobaltite NS surface with numerous electroactive sites. In

addition, the direct growth and attachment of Mn, Fe, and Zn cobaltite NSs in supporting conductive substrates provide substantially reduced contact resistance and

efficient charge transfer. These excellent features allow the use of Mn, Fe, and Zn cobaltite NS as lithium-ion battery and supercapacitors electrodes. Catalytic behaviors of

MCo2O4 nanorods (M = Mn, Fe, Ni, and Zn) as cathode material for lithium–O2 battery are also been studied by synthesizing MnCo2O4, FeCo2O4, NiCo2O4, and ZnCo2O4

nanorods through an easy hydrothermal method. These nanorod structures are porous, which further improve capacity and cycling performance. The mesoporous structure

enables oxygen and electrolyte flow during discharge reaction and provides a suitable two-phase interface for catalysis.

Topic ILithium Ion Battery Supercapacitors Lithium Oxygen Battery

Topic II Topic III

Publications

[1] S. G. Mohamed, Y. Q. Tsai, C. J. Chen, T. F. Hung, W. S. Chang and R. S. Liu,

ACS Appl. Mater. Interfaces, in press, 2015.

[2] S. G. Mohamed, C. J. Chen, C. K. Chen, S. F. Hu, and R. S. Liu, ACS Appl.

Mater. Interfaces, 2014, 6, 22701.

[3] S. G. Mohamed, T. F. Hung, C. J. Chen, C. K. Chen, S. F. Hu, and R. S. Li.u.

RSC Adv., 2014, 4, 17230.

[4] S. G. Mohamed, T. F. Hung, C. J. Chen, C. K. Chen, S. F. Hu, R. S. Liu, K. C.

Wang, X. K. Xing, H. M. Liu, A. S. Liu, M. H. Hsieh and B. J. Lee. RSC Adv., 2013,

3, 20143.

[5] T. F. Hung, S. G. Mohamed, C. C. Shen, Y. Q. Tsai, W. S. Chang and R. S. Liu.

Nanoscale, 2013, 5, 12115

[6] M. Tatsuhiro, C. J. Chen, T. F. Hung, S. G. Mohamed, Y. Q. Lin, H. Z. Lin, J. C.

Sung, S. F. Hu and R. S. Liu. Electrochimica Acta, 2015, 165, 166.

[7] S. G. Mohamed, S. H. Chen, C. J. Chen, Y. T. Chen, M. Y. Lo, and R. S. Liu. J.

Am. Chem. Soc., to be submitted

Papers

Patents

[1] M. Tatsuhiro, C. J. Chen, T. F. Hung, S. G. Mohamed, R. S. Liu, S. F. Hu, H. Z,

Lin, Y. Q. Lin, C. M. Sung, and B. J. Hwang. "Multilayer Si/Graphene Composite

Anode Structure." Taiwan Patent No. I461555 (Nov. 21. 2014).

(2) M. Tatsuhiro, C. J. Chen, T. F. Hung, S. G. Mohamed, R. S. Liu, S. F. Hu, H.

Z, Lin, Y. Q. Lin, C. M. Sung, and B. J. Hwang. "Multilayer Si/Graphene Composite

Anode Structure." US20150004494 (Jan. 1, 2015).

SEM, XRD and TEM

Electrochemical Performance, MnCo2O4 NWs

Electrochemical Performance, FeCo2O4 NFs

Felxible Battery, ZnCo2O4 NWs

Supercapacitance Behavior (MnCo𝟐O𝟒 NWs)

Cyclic Voltammetry

Charging/Discahring and EIS

MCo2O4, XRD

MCo2O4, SEM, TEM, XPS and Charge/Discharge

Supercapacitance Behavior (FeCo𝟐O𝟒 NFs)

Charging/Discahring and EIS