16
Filippo Giannazzo NanoInnovation 2020, Roma, September 16, 2020 Filippo Giannazzo Nanoscale probing the electronic transport in transition metal dichalcogenides by conductive atomic force microscopy * [email protected] CNR-Institute for Microelectronics and Microsystems, Catania, Italy

Nanoscale probing the electronic transport in transition metal … · 2020. 10. 22. · Filippo Giannazzo –NanoInnovation 2020, Roma, September 16, 2020 Bright-field TEM and diffraction

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Filippo Giannazzo

    Nanoscale probing the electronic transport in transition

    metal dichalcogenides by conductive atomic force

    microscopy

    * [email protected]

    CNR-Institute for Microelectronics and Microsystems,

    Catania, Italy

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    The 2D materials family

    A. Geim, I. Grigorieva, Nature 499, 419–425 (2013)

    1.7 eV1.5 eV1.9 eV1.8 eVEg(1L), direct

    1.2 eV1.1 eV1.4 eV1.2 eVEg(bulk), indirect

    WSe2MoSe2WS2MoS2

    1.7 eV1.5 eV1.9 eV1.8 eVEg(1L), direct

    1.2 eV1.1 eV1.4 eV1.2 eVEg(bulk), indirect

    WSe2MoSe2WS2MoS2

    Layered materials with the formula MX2M transition metal: Mo, W,..

    X chalcogen: S, Se,...

    Q.H.Wang, K.Kalantar-Zadeh, A.Kis, J.N.Coleman and M.S.Strano, Nature Nanotechnology 7, 699–712 (2012).

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Field effect transistors based on TMDs

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nature Nanotechnology 6, 147 (2011)

    -ultrathin, uniform channel thickness

    for excellent gate control

    -On/Off current ratio >107

    -nearly ideal subthreshold swing

    (SkT log(10))

    μ=217 cm2V–1s-1

    Production methods for electronic quality TMDs

    Exfoliation from bulk crystals Chemical vapour deposition

    • Direct deposition on insulating or semiconductor

    substates (SiO2, sapphire, GaN)

    • Growth temperature range: 700 – 900 °C

    Y.-H. Lee, et al., Advanced Materials 24, 2320-2325 (2012)

    • Micrometer size flakes

    Electronic properties of state of the art TMDs strongly affected by electrically

    active point and extended defects

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Nanoscale defects in exfoliated MoS2

    F. Giannazzo, E. Schilirò, G. Greco, F. Roccaforte, Conductive Atomic Force Microscopy of Semiconducting

    Transition Metal Dichalcogenides and Heterostructures, Nanomaterials 10, 803 (2020)

    P. Bampoulis, et al. Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts.

    ACS Appl. Mater. Interfaces 9, 19278–19286 (2017).

    S. Das, et al., High Performance Multi-layer MoS2 Transistors with Scandium Contacts, Nano Lett. 13, 100

    (2013).

    Fermi level pinning below Ec

    cMoS2=4.0 eV

    Ideal band alignment of common

    elementary metals to MoS2

    Ev

    EC

    MoS2 surface after exfoliation

    C-AFM

    STM of a nanometer defect and a S vacancy

    LFM and AFM (insert)

    Origin of the contact resistance typically

    observed at the interface between metals

    and MoS2

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Dark Field-TEMBright-field TEM and diffraction

    A. M. van der Zande, et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nature Materials

    12, 554–561 (2013).

    2D polycrystalline material: grain boundaries (GBs)

    Extended defects in CVD grown MoS2

    Transport model

    T. H. Ly, et al., Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries,

    Nature Communications 7, 10426 (2016).

    Impact of GBs on the electronic transport in MoS2 transistors

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Nanoscale resolution electrical investigation of exfoliated

    and CVD MoS2 by conductive atomic force microscopy

    (C-AFM)

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Nanoscale Schottky barrier distribution on exfoliated MoS2 surface

    CAFM

    F. Giannazzo, G. Fisichella, A. Piazza, S. Agnello, F. Roccaforte, Phys. Rev. B 92, 081307(R) (2015).

    -2 -1 0 1 2

    -0.4

    -0.2

    0.0

    0.2

    0.4

    Vtip

    (V)

    Curr

    ent (

    A)

    0.0 0.5 1.010

    -10

    10-9

    10-8

    10-7

    Vtip

    (V)

    B,n

    =0.32 eV

    n=1.05

    I (

    A)

    Array of 5x5 local I-V curves, 50 nm spacing

    Evaluation of the local Schottky barrier

    height by thermionic emission model

    0.2 0.3 0.4 0.5 0.6 0.7 0.80

    50

    100

    Counts

    (%

    )

    B,n

    (eV)

    MoS2 Schottky barrier map and histogram

    nkT

    qV

    kTTAAI

    tipnB

    tip expexp,2*

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Soft O2 plasma functionalization of MoS2 surface

    Remote O2 plasma source and no accelerating bias, to avoid physical

    etching of MoS2

    F. Giannazzo, et al., ACS Appl. Mater. Interfaces 9, 23164−23174 (2017).

    -Partial oxidation of the MoS2 surface: Mo6+ and substoichiometric Mo(6-x)+ states

    - Negative shift of S 2p, Mo 3d and S 2s peaks: Fermi level shift towards the valence band (MoS2 p-type doping)

    XPS of pristine and O2 functionalized MoS2 surface

    hν = 1486.6 eV

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Inhomogeneous distribution of patches with low Schottky

    barrier height for holes (high for electrons)MoS2MoS2

    Si

    SiO2

    MoS2Metal

    MoS2

    APt tipO2 plasma

    functionalization

    O2 plasma, t=600 s

    Nanoscale investigaton of Schottky barrier distribution: O2 plasma functionalized MoS2

    Array of 5x5 local I-V curves,

    50 nm spacingBoth I-V curve shapes of

    Schottky contacts on n-type

    and p-type semicondutors

    0.0 0.5 1.010

    -10

    10-9

    10-8

    10-7

    Vtip

    (V)

    B,n

    =0.45 eV

    n=1.5 eV

    I (A

    )

    -1.0 -0.5 0.010

    -10

    10-9

    10-8

    10-7

    Vtip

    (V)

    |I| (A

    )

    B,p

    =0.49 eV

    n=1.15 eV

    0.2 0.3 0.4 0.5 0.6 0.7 0.80

    50

    100

    Counts

    (%

    )

    B,n

    (eV)

    Thermionic emission model

    nkT

    qV

    kTTAAI

    tipnB

    tip expexp,2*

    nkT

    qV

    kTTAAI

    tippB

    tip expexp,2*

    F. Giannazzo, et al., ACS Appl. Mater. Interfaces 9, 23164−23174 (2017).

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Pristine MoS2 field effect transistor

    Transfer characteristics

    F. Giannazzo, et al., Phys. Status Solidi –RRL 10, 797 (2016)

    n-type behavior

    MoS2 FET with selective O2 plasma functionalization under the contacts

    VG>0: electron injection through n-type MoS2 regions

    VG

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    Growth conditionsSulfur T1=170°C

    T2 = 785°C

    Flows= 3 sccm N2Powders: 50 mg MoS2 + 75 mg MoO3 powders were placed in the quartz boat

    CVD growth of MoS2 onto a SiO2/Si substrate

    Y. Okuno, O. Lancry, A. Tempez, C. Cairone, M. Bosi, F. Fabbri, M. Chaigneau, Nanoscale 10, 14055-14059 (2018).

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    360 390 420 450 480

    0

    2000

    4000

    6000(A

    1g-E

    2g)= 21 cm

    -1

    A1g

    E2g

    Inte

    nsity

    (a.

    u.)

    Raman shift (cm-1)

    Morphological and spectroscopic characterization

    Optical Microscopy Tapping mode AFM

    1.2 1.4 1.6 1.8 2.0 2.2

    0

    20000

    40000

    60000

    PL in

    tensi

    ty (

    a.u

    .)

    Energy (eV)

    PL Raman spectroscopy

    Strong emission at 1.85 eV:

    excitonic direct bandgap of MoS2monolayer

    • E2g in-plane and A1g out-

    of-plane phonon modes

    of MoS2.

    • Vertical dashed lines:

    nominal E2g and A1g positions for bulk MoS2.

    • Wavenumber difference

    between the peaks’

    positions =21 cm-1:

    mono- or bilayer MoS2domains

    • Large triangular

    MoS2 domains (up

    to 50 m).

    • Domains

    coalescence:

    presence of GBs

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    -40 -20 0 20 40

    0

    50

    100

    150

    200

    I D

    (n

    A)

    VG (V)

    VDS

    =3V

    -40 -20 0 20 40

    0

    1

    2

    3g

    m,peak

    Vth

    g

    m (

    nS

    )

    0 2 4 6 8 10

    0

    100

    200

    300

    400

    500

    600

    700

    I D (

    nA

    )

    VDS

    (V)

    VG (V)

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    Monolayer MoS2 field effect transistor

    L7 m, W5 m

    tox

    consistent with typical

    values =0.1 - 2 cm2V-1s-1

    for 1L MoS2 onto a SiO2substrate, without high-k

    dielectric capping.

    Field effect mobility

    B. Radisavljevic, et al. Nature

    Nanotechnol. 6, 147–150 (2011).

    F. Giannazzo, M. Bosi, F. Fabbri, E. Schilirò, G. Greco, F. Roccaforte, Phys. Status Solidi RRL 1900393 (2019)

    Output characteristics

    Transfer characteristic

    DSox

    peak,m

    VC

    g

    W

    L0.12 cm2V-1s-1

    •Linear behavior at intermediate

    VDS values, followed by saturation

    at higher VDS.

    •Non-linear current onset at low

    bias (VDS

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    D1

    D2

    D1

    D2

    D1 D2

    D1

    D2

    Nanoscale current mapping by conductive atomic force microscopy (CAFM)

    CAFM powerful tool to probe local current injection in 2D materials

    F. Giannazzo, G. Greco, F. Roccaforte, C. Mahata, M. Lanza, Conductive AFM of 2D Materials and Heterostructures for

    Nanoelectronics, Chapter 10 of “Electrical Atomic Force Microscopy for Nanoelectronics“. Editor U. Celano. Springer Nature,2019.

    Morphology Current map

    F. Giannazzo, M. Bosi, F. Fabbri, E. Schilirò, G. Greco, F. Roccaforte, Phys. Status Solidi RRL 14, 1900393

    (2019)

  • Filippo Giannazzo – NanoInnovation 2020, Roma, September 16, 2020

    D1

    D2

    2 4 6 8 101.5

    2.0

    2.5

    3.0

    3.5

    Rs2

    =559+/-5 M

    I (nA)

    RS1

    =70+/-1 M

    H(V

    )

    D1

    D2

    Local Schottky barrier height and resistance within individual MoS2 domains

    Local current-voltage analyses CAFM tip on the MoS2 domains D1 and D2

    D1

    D2

    •Rectifying behavior of the tip/MoS2 contact

    •For Vtip>0 at low bias (from 0 to 0.5 V):

    •H function from the I-Vtip characteristics

    at higher current:

    nkT

    qVexp

    kT

    qexpT*AAI

    tipB2

    tip

    Similar values of B on domains D1 and D2

    Evaluation of local resistance on individual domains

    2*tip TAA

    Iln

    q

    nkTVH

    • The H function depends on Rs as

    H= nB+IRs

    Rs2>>RS1 due to the grain

    boundary resistance RGB

    F. Giannazzo, M. Bosi, F. Fabbri, E.

    Schilirò, G. Greco, F. Roccaforte,

    Phys. Status Solidi RRL 14, 1900393

    (2019)

  • SummaryElectronic properties of TMDs strongly affected by electrically active point and

    extended defect

    Acknowledgments

    Conductive Atomic Force Microscopy powerful technique to investigate current

    injection mechanism in TMDs and lateral conductivity:

    • Local Schottky barrier height mapping

    • Resistance contribution of grain boundaries in monolayer CVD MoS2

    http://etmos.imm.cnr.it

    ETMOS

    JTC-2019

    E. Schilirò, S. E. Panasci, G. Greco, I. Deretzis, G. Nicotra, A. La Magna,

    R. Lo Nigro, P. Fiorenza, F. Roccaforte, C. Spinella

    Parma, Italy

    M. Bosi

    Pisa, Italy

    F. Fabbri

    Catania, Italy

    Univ. Palermo, Italy

    S. Agnello, F. M. Gelardi