49
Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs J. A. del Alamo Microsystems Technology Laboratories, MIT Purdue University, West Lafayette, IN; September 29, 2015 Acknowledgements: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao Sponsors: DTRA, Lam Research, Northrop Grumman, NSF, Samsung Labs at MIT: MTL, EBL

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs

to Vertical Nanowire MOSFETs

J. A. del AlamoMicrosystems Technology Laboratories, MIT

Purdue University,West Lafayette, IN; September 29, 2015

Acknowledgements:• D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao• Sponsors: DTRA, Lam Research, Northrop Grumman, NSF, Samsung• Labs at MIT: MTL, EBL

Presenter
Presentation Notes
Page 2: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Contents

1. Motivation: Moore’s Law and MOSFET scaling2. Planar InGaAs MOSFETs 3. InGaAs FinFETs4. Vertical nanowire InGaAs MOSFETs 5. Conclusions

2

Page 3: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

1. Moore’s Law at 50: the end in sight?

3

Page 4: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Moore’s Law

Moore’s Law = exponential increase in transistor density

4

Intel microprocessors

Page 5: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

What if Moore’s Law had stopped in 1990?

5

Cell phone circa 1990GPS handheld device circa 1990

Page 6: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

6

What if Moore’s Law had stopped in 1980?

Laptop computer circa 1981

Page 7: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

7

What if Moore’s Law had stopped in 1970?

TV set, circa 1970

Page 8: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

8

What if Moore’s Law had never happened?

Insulin pump circa 1960 “Personal calculator” circa 1960

1960

Page 9: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Moore’s Law

9

?

How far can Si support Moore’s Law?

Page 10: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Transistor scaling Voltage scaling Performance suffers

Transistor current density (planar MOSFETs):

Transistor performance saturated in recent years10

Page 11: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Moore’s Law: it’s all about MOSFET scaling

Enhanced gate control improved scalability

1. New device structures:

11

Page 12: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Moore’s Law: it’s all about MOSFET scaling

2. New materials:Si Strained Si SiGe InGaAs

Si Strained Si SiGe Ge InGaSb

Future CMOS might involve twodifferent channel materials with two different relaxed lattice constants!

del Alamo, Nature 2011 (updated)12

Page 13: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Measurements of electron injection velocity in HEMTs:

• vinj(InGaAs) increases with InAs fraction in channel• vinj(InGaAs) > 2vinj(Si) at less than half VDD

• ~100% ballistic transport at Lg~30 nm

Electron velocity: InGaAs vs. Si

13

del Alamo, Nature 2011

Page 14: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

III-V electronics in your pocket!

14

Page 15: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

del Alamo’s group at MIT: Current and future activities

N-type InGaAs MOSFETs:

P-type InGaSb MOSFETs:future

Jianqiang Lin Xin ZhaoAlon Vardi

Wenjie Lu

New students:Xiaowei CaiDongsung Choi

15

Page 16: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

2. Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

WMo

Lee, EDL 2014; Huang, IEDM 2014

selective MOCVD

Sun, IEDM 2013, 2014 Chang, IEDM 2013

reacted NiInAs

dry-etched recess

implanted Si + selective epi

16

Page 17: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Self-aligned Planar InGaAs MOSFETs @ MIT

Lin, IEDM 2012, 2013, 2014

Recess-gate process:• CMOS-compatible• Refractory ohmic contacts (W/Mo)• Extensive use of RIE

WMo

Jerome Lin17

Page 18: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Fabrication process

• Ohmic contact first, gate last • Precise control of vertical (~1 nm), lateral (~5 nm) dimensions • MOS interface exposed late in process

W/Mon+ InGaAs/InPInGaAs/InAsInAlAs

SiO2

InPδ-Si

Resist

MoPad

HfO2

Mo/W ohmic contact + SiO2 hardmask

SF6, CF4 anisotropic RIE CF4:O2 isotropic RIE

Cl2:N2 anisotropic RIE Digital etch

Waldron, IEDM 2007

Finished device

Lin, EDL 2014

O2 plasma H2SO4

18

Page 19: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Lin, IEDM 2013

Ti/Au pad

Spacer: OxideGate: Mo

Contact: Mo

Lg = 20 nm, Laccess= 15 nm MOSFET most compact III-V MOSFET made at the time

Lg=20 nm InGaAs MOSFET

n+ cap

Channel

Mo

W

Mo/HfO2

20 nm

Buffer

SiO2

InAs 0.0 0.1 0.2 0.3 0.4 0.50.00.20.40.60.81.0 Lg=20 nm

Ron=224 Ω.µm 0.4 V

I d (m

A/µm

)Vds (V)

Vgs-Vt= 0.5 V

20 nm

15 nm

19

Page 20: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

• Channel: In0.7Ga0.3As/InAs/In0.7Ga0.3As • Gate oxide: HfO2 (2.5 nm, EOT~ 0.5 nm)

Highest performance InGaAs MOSFET

• Record gm,max = 3.1 mS/µm at Vds= 0.5 V• Ron = 190 Ω.µm

-0.4 -0.2 0.0 0.20.00.51.01.52.02.53.03.5

gm,max= 3.1 mS/µm

Lg = 80 nmVds= 0.5 V

g m (m

S/µ m

)Vgs (V)

0.0 0.1 0.2 0.3 0.4 0.50.00.20.40.60.81.01.21.4

I d (m

A/µm

)

Vds (V)

Vgs = -0.3 to 0.4 V in 0.1 V stepLg = 80 nmRon=190 Ω.µm

Lg =80 nm, tc=9 nm

Lin, IEDM 201420

Page 21: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Excess OFF-state current

OFF-state current enhanced with Vds

Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013

-0.6 -0.4 -0.2 0.010-11

10-9

10-7

10-5 Lg=500 nm

Vds=0.3~0.7 Vstep=50 mV

I d(A/µ

m)

Vgs (V)

Transistor fails to turn off:

Vds ↑

21

Page 22: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

-0.4 -0.2 0.0 0.210-11

10-9

10-7

10-5 W/ BTBT+BJT W/O BTBT

Vds=0.3~0.7 Vstep=50 mV

I d (A/

µm)

Vgs (V)

Excess OFF-state current

Lg↓ OFF-state current ↑ additional bipolar gain effect due to floating body

Lin, EDL 2014

-0.6 -0.4 -0.2 0.010-11

10-9

10-7

10-5 Lg=500 nm

Vds=0.3~0.7 Vstep=50 mV

I d(A/µ

m)

Vgs (V)-0.6 -0.4 -0.2 0.0

10-8

10-7

10-6

10-5

10-4

500 nm280 nm

120 nm

T=200 KVds=0.7 V

I d (A/

µm)

Vgs-Vt (V)

Lg=80 nm

Vds ↑

Simulationsw/ BTBT+BJTw/o BTBT+BJT

Lg=500 nmLin, TED 2015

22

Page 23: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Impact of channel thickness scaling

• tc ↓ S ↓ but also gm,max ↓• Even at tc=3 nm, Lg,min~40 nm

planar MOSFET at limit of scaling

Lin, IEDM 2014Lin, TED 2015

0.01 0.1 1 100

1

2

3

g m,m

ax (m

S/µm

)Lg(µm)

4 nm

tc=9 nm

11 nm

12 nm7 nm

3 nm

8 nmVds=0.5 V

0.01 0.1 1 100

100

200

300

400

S min (m

V/de

c)

Lg(µm)

Vds=0.5 Vtc ↓

3 nm

Vds=0.5 V

tc=12 nm

23

Page 24: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Benchmarking: gm in MOSFETs vs. HEMTs

del Alamo, ESSDERC 2013 (updated)

MIT MOSFETs

Latest: 3.7 mS/µm!

– Very rapid recent progress in MOSFET gm

– Best MOSFETs now surpass best HEMTs– No sign of stalling more progress ahead!

gm of InGaAs MOSFETs vs. HEMTs (any VDD, any Lg):

24

Page 25: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

3. InGaAs FinFETs and Trigate MOSFETs

Kim, IEDM 2013

60 nm

dry-etched fins

SiWaldron, VLSI Tech 2014

Epi-grown fin inside trench

25

Page 26: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

InGaAs FinFETs @ MIT

Key enabling technologies: • BCl3/SiCl4/Ar RIE • digital etch

Zhao, EDL 2014; Vardi, DRC 2014

Alon Vardi

26

Page 27: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

0.0 0.1 0.2 0.3 0.4 0.50

5

10

15

20 Wf=12 nm

VGS=0 VI D [µ

A/µm

]

VDS [V]

VGS=0.5 V

Interface-state study on sidewalls of InGaAs FinFET

At sidewall: Dit,min ~ 3x1012 eV-1.cm-2

Lg=5 μm

Vardi, DRC 2014

Long-channel MOSFET characteristics (Wf=12~37 nm):

27

Page 28: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Sub-10 nm fin width InGaAs FinFETs

Wf=7 nm, Lg=3 µm MOSFETInGaAs doped channel: • 50 nm thick• ND~1018 cm-3

Oxide: Al2O3/HfO2 (EOT~3 nm)

Fin width: 5 ~ 35 nmFin height: 130 nm100 fins

Vardi, IEDM 2015 28

Page 29: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

4. Lateral vs. Vertical Nanowire MOSFETs

Yakimets, TED 2015Bao, ESSDERC 2014

• Nanowire MOSFET: ultimate scalable transistor• Vertical NW: uncouples footprint scaling from Lg and Lc scaling

power, performance and area gains wrt. Lateral NW

5 nm node

30% area reduction in 6T-SRAM19% area reduction in 32 bit multiplier

29

Page 30: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

InGaAs Vertical Nanowires on Si by direct growth

Björk, JCG 2012

Selective-Area Epitaxy

Au seed

Vapor-Solid-Liquid (VLS) Technique

InAs NWs on Si by SAE

Riel, MRS Bull 2014

30

Page 31: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Persson, DRC 2012Tomioka, Nature 2012Tanaka, APEX 2010

InGaAs VNW-MOSFETs by bottom-up techniques

Many device demonstrations:

31

Page 32: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT

Zhao, IEDM 2013

Top-down approach: flexible and manufacturable

n+ InGaAs, 70 nm

i InGaAs, 80 nm

n+ InGaAs, 300 nm

Starting heterostructure:

n+: 6×1019 Si doping

Xin Zhao

32

Page 33: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Key enabling technology I: RIE by BCl3/SiCl4/Ar chemistry

• Sub-30 nm resolution• Aspect ratio > 8• Smooth sidewall and surface• Substrate temperature critical during RIE

Zhao, EDL 2014

28 nm

240 nm

33

Page 34: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Key enabling technology II: digital etch

• Planar etching rate: ~1 nm/cycle• Shrinks NW diameter by 2 nm per cycle• Unchanged shape• Reduced roughness

Self-limiting O2 plasma oxidation + H2SO4 oxide removal

before after 5 cycles

Lin, EDL 2014Zhao, EDL 2014

0 200 400 6000.0

0.5

1.0

1.5

2.0ExperimentModel

Rate

(nm

/cyc

le)

Oxidation time (s)

34

Page 35: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Optimized RIE + Digital Etch

• Sub-20 nm resolution• Aspect ratio = 16, vertical sidewall• Smooth sidewall and surface

15 nm

240 nm

Zhao, EDL 2014

35

Page 36: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Process flowTomioka, Nature 2012Persson, DRC 2012

36

Page 37: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

NW-MOSFET I-V characteristics D=30 nm

Single nanowire MOSFET: • Lch= 80 nm • 4.5 nm Al2O3 (EOT = 2.2 nm)

At VDS=0.5 V:• gm,pk=280 μS/μm• Ron=759 Ω.μm

0.0 0.1 0.2 0.3 0.4 0.5Vds (V)

Vgs=-0.6 V to 0.8 V in 0.1 V stepRon=759 Ω.µm (at Vgs=1 V)

0

50

100

150

200

I d (µ

A/µm

)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

50

100

150

200

Vgs (V)0

50

100

150

200

250

300gm, pk(Vds=0.5 V)=280 µS/µm

Vds=0.5 V

I d (µ

A/µm

)

g m (µ

S/µm

)

Zhao, IEDM 201337

Page 38: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Impact of nanowire diameter

D↓ S ↓, DIBL ↓, gm ↓, Ron ↑

30 35 40 45 50

150

200

250

300

350

S (m

V/de

c)

Diameter (nm)

Vds=0.5 V

Vds=0.05 V30 35 40 45 50

150200250300350400450

Diameter (nm)

DIBL

(mV/

V)

30 35 40 45 50

200

400

600

800

g m (µ

S/µm

)

Diameter (nm)

Vds=0.5 V

30 35 40 45 50200

400

600

800

1000

1200

Vgs=1 V

R on (

Ω.µ

m)

Diameter (nm)

Error barsindicatedistributionof ~10 devices

38

Page 39: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Impact of digital etch

Digital etch S ↓, gm ↑ Better sidewall interface

Single nanowire MOSFET: D= 30 nm (final diameter)

Zhao, EDL 2014

39

Page 40: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

200 400 6000

200400600800

10001200

Vds=0.5 V

S(mV/dec)

g m,p

k(µS/

µm)

Tanaka, APEX 10 Tomioka, IEDM 11 Tomioka, Nature 12 Persson, DRC 12 Persson, EDL 10 This work (Top down)

Bottom up

This work

Benchmarking

• Trade-off: D↓ S↓ but also gm↓• Top-down approach as good as bottom-up approach

Persson, DRC 2012

Tomioka, Nature 2012 Tanaka, APEX 2010

Persson, EDL 2012

40

Page 41: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

InGaAs VNW MOSFET Concerns(a short list…)

• Relatively poor subthreshold behavior

small VDS

0 5 10 15 20 25 300

100

200

300

400

500

600

Lg/λeff

S [m

V/de

c]

0 5 10 15 20 25 300

100

200

300

400

Lg/λeffDI

BL [m

V/V]

Auth, EDL 1997Electrostatic characteristiclength for GAA NW

41

Page 42: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

InGaAs VNW MOSFET Concerns(a short list…)

• Excess Ioff due to BTBT + Floating BJT Quantization enhances bandgap Vertical bandgap engineering

Wang, ACSNano 2008

InAs NWs

42

Page 43: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

• InGaAs low DOS limits current Increase in injection velocity with carrier density more than compensates for this

Yu, TED 2008

InGaAs VNW MOSFET Concerns(a short list…)

D=5 nm (?) NW MOSFET

43

Page 44: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

• VT sensitivity to nanowire diameter very tight manufacturing tolerance

Agrawal, TED 2013

Wf=8 nm Trigate MOSFETs

InGaAs VNW MOSFET Concerns(a short list…)

Individual nanowires

Gray: nanowire array

Teherani, PhD MIT, 2015 44

Page 45: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

• Asymmetric device behavior: D down ≠ D up more restrictive circuit wiring

InGaAs VNW MOSFET Concerns(a short list…)

Drain at bottom Drain on top

0.0 0.1 0.2 0.3 0.4 0.50

100

200

300

400

500

I d (µ

A/µm

)

Vds(V)

Vgs = -0.6 to 0.6 V in 0.2 V stepD = 40 nm, Lg = 80 nm

45

Page 46: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

• Sensitivity to few defects

InGaAs VNW MOSFET Concerns(a short list…)

0.0 0.1 0.2 0.3 0.4 0.5Vds (V)

Vgs=-0.6 V to 0.8 V in 0.1 V stepRon=759 Ω.µm (at Vgs=1 V)

0

50

100

150

200I d

(µA/

µm)

D=7 nm, Lg=14 nm (5 nm design rules) Sg=540 nm2

Dit=2x1011 cm-2.eV-1 Nit~1 eV-1

46

Page 47: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

• Top contact resistance • Difficult to introduce mechanical stress• Self-heating• …

InGaAs VNW MOSFET Concerns(a short list…)

47

Page 48: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

Conclusions1. Great recent progress on planar, fin and nanowire III-V MOSFETs

2. Vertical Nanowire III-V MOSFET: superior scalability and power/performance characteristics

3. Vertical Nanowire n- and p-type III-V MOSFET: plausible path for co-integration on Si

4. Many demonstrations of InGaAs VNW MOSFETs by bottom-up and top-down approaches

5. Many issues to work out:

– sub-10 nm diameter nanowire fabrication, self-aligned contacts, device asymmetry, Introduction of mechanical stress, VT control, device variability, BTBT and parasitic HBT gain, trapping, self-heating, reliability, co-integration with p-type VNW on Si, …

48

Page 49: Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs · 2015-10-14 · Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical

A lot of work ahead but…exciting future for III-V electronics

49