11
Copyright reserved Please turn over T890(E)(N22)T NOVEMBER EXAMINATION NATIONAL CERTIFICATE MATHEMATICS N5 (16030175) 22 November 2016 (X-Paper) 09:00–12:00 Scientific calculators may be used. This question paper consists of 6 pages and a formula sheet of 5 pages.

N5 Mathematics November 2016 - Future Managers · 2019. 5. 15. · NOVEMBER EXAMINATION NATIONAL CERTIFICATE MATHEMATICS N5 (16030175) 22 November 2016 (X-Paper) 09:00–12:00 Scientific

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Copyright reserved Please turn over

    T890(E)(N22)T

    NOVEMBER EXAMINATION

    NATIONAL CERTIFICATE

    MATHEMATICS N5

    (16030175)

    22 November 2016 (X-Paper) 09:00–12:00

    Scientific calculators may be used.

    This question paper consists of 6 pages and a formula sheet of 5 pages.

  • (16030175) -2- T890(E)(N22)T

    Copyright reserved Please turn over

    DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

    NATIONAL CERTIFICATE MATHEMATICS N5

    TIME: 3 HOURS MARKS: 100

    INSTRUCTIONS AND INFORMATION 1. 2. 3. 4. 5. 6. 7. 8.

    Answer ALL the questions. Read ALL the questions carefully. Number the answers according to the numbering system used in this question paper. Show ALL intermediate steps and simplify where possible. ALL final answers must be rounded off to THREE decimal places Questions may be answered in any order, but subsections of questions must be kept together. Questions must be answered in blue or black ink. Write neatly and legibly.

  • (16030175) -3- T890(E)(N22)T

    Copyright reserved Please turn over

    QUESTION 1 1.1 Determine the following limits: 1.1.1

    (3) 1.1.2

    (2) 1.2 Determine whether is continuous at .

    (2)

    [7] QUESTION 2 2.1 Determine the derivative of from first principles. (5) 2.2 Determine if:

    2.2.1

    (4) 2.2.2 (3) 2.2.3 (3) 2.3 Given: A particle moves along a line such that displacement (in meters) in time

    (t seconds) is given by

    Determine the velocity at seconds with the aid of logarithmic differentiation.

    (5)

    2.4 Given:

    Make use of implicit differentiation to calculate .

    (4)

    [24]

    xxx

    x ln1

    lnlim --

    ¥®

    xxxx

    x 252lim 2

    3

    0 ---

    ®

    214)( -= xxf 1-=x

    3 2)( xxf =

    dxdy

    22 3ln3ln xexy x -=

    )2sin(arccos5 xxecy =

    )1(cos4 23 --= xxy

    ttts cos)( =

    4p

    =t

    2sinsin)cos( =+++ yxyx

    dxdy

  • (16030175) -4- T890(E)(N22)T

    Copyright reserved Please turn over

    QUESTION 3 3.1 Given: 3.1.1 Determine the coordinates of the turning points of (3) 3.1.2 Verify by using a table that the equation has a root

    between the points =1 and =2. Use values on the table:

    (2)

    3.1.3 Hence, make a neat sketch of the graph of the function (3) 3.1.4 If the positive root of is estimated as 1,7, use Taylor's/Newton's

    method to determine a better approximation of this root.

    (2) 3.2

    A farmer wants to enclose a field with length and breadth x meter and y meter respectively. The cost of fencing is R36,00/m for the length and R45,00/m for the breadth. He has an amount of R56 000,00 available.

    3.2.1 Give the formula of the area and the cost in terms of x and y. (2) 3.2.2 Calculate the dimensions of the field with maximum area. (5) 3.3 A fluid flows into a cylindrical tank of radius 1,5 m at a rate of 3 m3/s.

    Calculate how fast the surface is rising. HINT:

    (4) [21]

    2243)( 23 +--= xxxxf

    ).(xf

    22430 23 +--= xxxx x

    21 ££- x

    ).(xf

    )(xf

    mr 5,1=

    hrV .. 2p=

  • (16030175) -5- T890(E)(N22)T

    Copyright reserved Please turn over

    QUESTION 4

    4.1 Determine (2)

    4.2 Determine in each of the following cases:

    4.2.1 (3) 4.2.2

    (5)

    4.2.3

    (3) 4.2.4 (3) 4.3 Determine by resolving the integrand into partial fractions:

    (5) 4.4 Determine: (2) [23] QUESTION 5 5.1 Given: The curves and

    5.1.1 Sketch the TWO graphs. Shade the area enclosed by the two graphs and

    show the representative strip with dimensions

    (3) 5.1.2 Calculate the magnitude of the enclosed area towards the Y-axis. (4) 5.1.3 Calculate the volume generated when this area rotates about the Y-axis. (4)

    ò +--

    xxx2sin22cos1

    ò ydx

    dxex xò 2.2

    ò +- dx

    xx142 3

    dxxx

    ò 3sin3sin3

    dxxxò + .125 32

    ò ydx

    ò -+-14134

    2

    2

    xxx

    ò - dxx )sin(arcsin 1

    4yx 2 +-= yx 24 -=

    . and dyx

  • (16030175) -6- T890(E)(N22)T

    Copyright reserved

    5.2 Determine the second moment of mass of a rectangular lamina of mass (m) about the

    axis parallel to one side of the lamina, which bisects the lamina. The distance from the representative strip to the axis is x. The lamina’s length and breadth is a and b respectively. Y X

    (4) [15] QUESTION 6 6.1 Solve the differential equation

    (4)

    6.2 Determine the general solution of the differential equation:

    (6)

    [10]

    TOTAL: 100

    x

    yxyx edydxe 8532 . +-+ =

    42sin110.2 2

    42

    2

    -+=xdx

    yd x

  • (16030175) -1- T890(E)(N22)T

    Copyright reserved Please turn over

    MATHEMATICS N5 FORMULA SHEET Any applicable formula may also be used. TRIGONOMETRY sin2 x + cos2 x = 1 1 + tan2 x = sec2 x 1 + cot2 x = cosec2 x sin 2A = 2 sin A cos A cos 2A = cos2A - sin2A

    tan 2A =

    sin2 A = ½ - ½ cos 2A cos2 A = ½ + ½ cos 2A sin (A ± B) = sin A cos B ± sin B cos A cos (A ± B) = cos A cos B sin A sin B

    tan (A ± B) =

    sin A cos B = ½ [sin (A + B) + sin (A - B)] cos A sin B = ½ [sin (A + B) - sin (A - B)] cos A cos B = ½ [cos (A + B) + cos (A - B)] sin A sin B = ½ [cos (A - B) - cos (A + B)]

    AA2tan1

    tan2-

    !

    BABA

    tantan1tan±tan

    !

    xx

    xx

    xx

    xsec1

    =cos;cosec1

    =sin;cossin

    =tan

  • (16030175) -2- T890(E)(N22)T

    Copyright reserved Please turn over

    BINOMIAL THEOREM

    DIFFERENTIATION

    PRODUCT RULE y = u(x) . v(x)

    QUOTIENT RULE

    y =

    =

    CHAIN RULE y = f(u(x))

    !+-

    ++=+ -- 221!2)1()( hxnnhnxxhx nnnn

    )()(

    ' afafe -=

    ear +=

    dxdu.v

    dxdv.u

    dxdy

    +=

    '' uvvu ×+×=

    )()(xvxu

    2vdxdv.u

    dxdu.v

    dxdy -

    =

    2v'vu'uv ×-×

    dxdu

    dudy

    dxdy

    ×=

  • (16030175) -3- T890(E)(N22)T

    Copyright reserved Please turn over

    ______________________________________________________________________

    f(x)

    ______________________________________________________________________

    axn

    a 0 ax + c ex ex ex + c

    ax ax.lna

    logex __

    logax __

    sin x cos x - cos x + c

    cos x -sin x sin x + c

    tan x sec2 x ln (sec x) + c

    cot x -cosec2 x ln (sin x) + c

    sec x sec x·tan x ln [secx + tanx] + c

    cosec x -cosec x·cot x ln (cosecx - cotx) + c

    __

    __

    __

    __

    __

    __

    )(xfdxd

    dxxf )(∫

    1na -nx cnaxn

    ++

    +

    1

    1

    caa x

    +ln

    x1

    ax ln1

    x-1sin21

    1

    x-

    x-1cos21

    1-

    x-

    x-1tan 2+11x

    x-1cot 2x11

    +

    -

    x-1sec1

    12 -xx

    x-1cosec1xx

    12 -

    -

  • (16030175) -4- T890(E)(N22)T

    Copyright reserved Please turn over

    __________________________________________________________________

    f(x)

    __________________________________________________________________

    __

    __

    __

    __

    __

    __

    INTEGRATION

    f(x) g(x) - f '(x) g(x) dx

    APPLICATIONS OF INTEGRATION AREAS

    )(xfdxd

    dxxf )(∫

    22

    1

    xa -c

    ax

    +÷øö

    çèæ1-sin

    22 +1xa

    cax

    a+÷

    øö

    çèæ1-tan1

    22

    1

    axx -c

    ax

    a+÷

    øö

    çèæ1-sec1

    22 xa - cxaxaxa

    +-+÷øö

    çèæ 221-

    2

    2sin

    2

    221ax -

    caxaxln

    a+÷÷

    ø

    öççè

    æ+-

    21

    221xa -

    cxaxaln

    a+÷÷

    ø

    öççè

    æ-+

    21

    =ò xxx d)(g)f( ' ò

    cxfdxxfxf

    +)(ln=)()(

    ∫'

    cnxf

    dxxfxfn

    n +1+)]([

    =)()]([∫1+

    '

    dcxB

    baxA

    dcxbaxxf

    ++

    +=)+)(+(

    )(

    nn axZ

    axC

    axB

    axA

    axxf

    )+(+

    )+(+

    )+(+)+(

    =)+()(

    32 !

    dxyyAydxAb

    ax

    b

    ax )(; 21∫∫ -==

    dyxxAxdyAb

    ay

    b

    ay )(; 21 -== òò

  • (16030175) -5- T890(E)(N22)T

    Copyright reserved

    VOLUMES

    SECOND MOMENT OF AREA

    MOMENTS OF INERTIA Mass = density × volume M = DEFINITION: I = m r2

    GENERAL:

    ( )dxyyV;dxyV bax

    bax

    22

    21

    2 -== òò pp

    ( )dyxxV;dyxV bay

    bay

    22

    21

    2 -== òò pp

    dArI;dArIbay

    bax

    22 òò ==

    Vr

    dVrdmrIba

    ba

    22 òò == r