73
Departamento de Engenharia Electrotécnica e de Computadores Guide to the study of MULTISTAGE DIFFERENTIAL AMPLIFIERS Franclim F. Ferreira Pedro Guedes de Oliveira Vítor Grade Tavares March 2004 MULTISTAGE DIFFERENTIAL AMPLIFIERS Multistage Differential Amplifiers http://paginas.fe.up.pt/%7Efff/eBook/MDA/MDA.html 1 of 73 09/30/2008 11:14 PM

MULTISTAGE DIFFERENTIAL AMPLIFIERS - audiofaidate.org · This last gain corresponds to an amplifier with differenti al signals both at the input and output (fig. 9). There is another

  • Upload
    dodat

  • View
    234

  • Download
    0

Embed Size (px)

Citation preview

Departa

mento

de E

ngenharia

Ele

ctro

técnic

a e

de C

om

puta

dore

s

Gu

ide to

the stu

dy o

f

MU

LT

IST

AG

E D

IFF

ER

EN

TIA

L A

MP

LIF

IER

S

Franclim

F. F

erreir

a

Pedro G

uedes d

e O

liveir

a

Vít

or G

rade T

avares

Marc

h 2

004

MU

LT

IST

AG

E D

IFF

ER

EN

TIA

L A

MP

LIF

IER

S

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

1 o

f 73

09/3

0/2

008 1

1:1

4 P

M

INS

TR

UC

TIO

NS

Read

the In

structio

ns to

know

how

you

can b

etter use th

is work

. Know

how

it is organ

ized

and

which

nav

igation

tools are av

ailable. S

ee how

you

can co

mp

lemen

t the stu

dy

with

the sim

ulatio

n o

f som

e of

the circu

its presen

ted h

ere.

IND

EX

See th

e table o

f conten

ts of th

is wo

rk. T

he tab

le is organ

ized

thro

ugh

a pop

do

wn

men

u rev

ealed w

hen

you

place th

e curso

r over th

e titles. Thro

ugh

the In

dex y

ou

can d

irectly access each

on

e of th

e sections

and exercises o

f this w

ork

.

AN

NE

XE

S

The m

ain text o

f this

work

is en

han

ced w

ith sev

eral com

plem

entary

texts, in o

rder to

help

the read

er

abou

t matters n

ot d

irectly stu

died

here. T

hese are m

atters wh

ich are su

pp

osed

to b

e studied

befo

re or

later. Thro

ugh

the m

ain text th

ere are several lin

ks to

these texts b

ut y

ou

can also

access them

thro

ugh

the tab

le of A

nnexes, o

rganiz

ed in

a similar w

ay as th

e main

Index.

1. In

trod

uctio

n

Op

erational am

plifiers

(Op

Am

ps)

with

negativ

e feed

back

allow

high

ly v

ersatile realisatio

ns, in

particu

lar high

ly stab

ilised gain

amp

lifiers. In fact, to

day

’s amp

lifiers are mostly

utilised

with

feedback

.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

2 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Tak

e th

e exam

ple

dep

icted in

fig. 1. T

his

invertin

g am

plifier h

as a

voltage gain

, vo / v

i , very

app

roxim

ately eq

ual to

–R

2 / R1 . T

o m

ake

this q

uan

tity a reaso

nab

le app

roxim

ation

it is simp

ly req

uired

a very

high

op

en lo

op

gain (i.e., A

>>

R2

/ R1 , alth

ough

it m

ay v

ary

significan

tly), a

high

inp

ut resistan

ce (R

i A >

> R

2 ), and

a sm

all

outp

ut resistan

ce (R

o <<

R2 ). (N

ote: A

, Ri a

nd

Ro a

re th

e O

pA

mp

equiv

alen

t model p

ara

meters)

fig. 1

- Inv

erting

mo

ntag

e

Tak

ing th

e basic B

JTs o

r FE

Ts am

plify

ing co

nfigu

rations as referen

ce, a natu

ral questio

n arises: H

ow

to

realise a

n a

mplifier to

atta

in su

ch g

oals (i.e., th

at sh

ow

s sufficien

tly hig

h g

ain

, hig

h in

put resista

nce, a

nd

sma

ll outp

ut resista

nce)?

Fro

m th

e set of b

asic single tran

sistor am

plifiers, th

e

BJT

’s co

mm

on

emitter

(CE

) to

polo

gy [o

r F

ET

’s

com

mon

so

urce

(C

S)]

is

th

e co

nfigu

ration

th

at

simu

ltaneo

usly

allow

s th

e h

ighest v

oltage

gain w

ith

a Ri n

ot to

o sm

all.

Thu

s, the am

plifier ab

ove co

uld

be realised

with

a

single tran

sistor as in

dicated

in fig. 2

.

Resisto

rs R

2 an

d R

1 d

efine

the

gain. B

y d

irect

analy

sis, it can easily

be sh

ow

n th

at the gain

is given

by

vo / v

i @ -9

,1 (v

erify it as

an exercise), w

hich

is

reasonab

ly clo

se to - R

2 / R1 =

- 10.

fig. 2

- Co

mm

on

emitter co

nfig

uratio

n

Nev

ertheless, it is n

oto

rious th

at the C

E co

nfigu

ration, b

y itself, d

oes n

ot b

ring to

gether th

e conditio

ns

to a satisfacto

ry O

pA

mp

characteristics.

For exam

ple, it d

oes n

ot im

plem

ent a d

ifferential in

put (co

nseq

uen

tly, th

e CE

amp

lifier do

es not allo

w

the n

on-in

vertin

g imp

lemen

tation), it h

as a relatively

small in

put resistan

ce and

a high

outp

ut resistan

ce

(Ri @

rp

and R

o @

10

0 kW

// 10 kW

).

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

3 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Insertin

g a

resistor b

etween

the em

itter termin

al and

ground

will b

oost th

e in

put resistan

ce. Yet, th

is

pro

cedure

reduces

the gain

(and

increases

the o

utp

ut resistan

ce, although

margin

ally). A

lternativ

ely,

FE

Ts can

be u

sed at th

e inp

ut - at th

e cost o

f low

er gm

and

conseq

uen

tly lo

wer gain

s. Noneth

eless, no

jugglin

g will co

nfer a sy

mm

etrical differen

tial inp

ut to

the C

E to

polo

gy.

The

solu

tion

resorts

to a

com

po

sed im

plem

entatio

n (w

ith m

ore

than

one

transisto

r) to

obtain

a

differen

tial inp

ut called

the d

ifferential p

air.

Note, h

ow

ever, th

at oth

er Op

Am

p ch

aracteristics should

be search

ed fo

r, such

as: very

high

gain, h

igh

inp

ut an

d lo

w o

utp

ut resistan

ce, low

voltage an

d cu

rrent o

ffsets. Sim

ultan

eously

, one sh

ould

not lo

ose

site for o

ther ch

aracteristic imp

rovem

ents, su

ch as b

and w

idth

and m

aximum

slew-rate.

2. D

iffere

ntia

l pa

ir

Con

sider fig. 3

setting

where

a d

ifferential p

air is

imp

lemen

ted w

ith tw

o B

JTs.

If, vB

1 = v

B2 =

vC

M (co

mm

on

mo

de

voltage), th

e

voltages v

C1 an

d v

C2 w

ill not ch

ange ev

en w

hen

vC

M

varies

(with

in certain

limits

set by

the n

eed to

keep

the tran

sistors in

active m

ode).

On

the o

ther h

and, if v

B1 ¹

vB

2 , the v

oltages v

C1 an

d

vC

2 will n

o lo

nger b

e equal.

Thu

s, we m

ay say

that th

e differen

tial pair (id

eally)

responds

to

differen

tial

signals

(i.e.,

th

e

inp

ut

voltage

differen

ce) an

d rejects

the

com

mo

n m

ode,

i.e., does n

ot react to

iden

tical signals at b

oth

inp

uts.

fig. 3

– B

ipo

lar differen

tial pair

2.1

. Cu

rren

t va

riatio

n

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

4 o

f 73

09/3

0/2

008 1

1:1

4 P

M

2.1

.1. B

JT

The to

tal emitter cu

rrent is k

ept co

nstan

t by

the cu

rrent so

urce I. T

herefo

re, when

the in

put d

ifferential

voltage v

D =

vB

2 – v

B1 ch

anges in

time, so

me o

f the cu

rrent o

f a given

transisto

r will b

e transferred

to

the o

ther. T

his ch

ange in

transisto

r curren

t with

inp

ut d

ifferential v

ariation can

be o

bserv

ed in

fig. 4.

The

expressio

n fo

r the

curren

t can b

e

foun

d to

be:

The

differen

tial

pair

op

eration

is

app

roxim

ately

linear

fo

r

small

differen

tial

inp

ut

voltages.

T

his

corresp

onds

to a

region

in th

e grap

h

where

th

e

exponen

tial

exhib

its

an

app

roxim

ate linear b

ehav

iour. In

fact, it

can

be

sh

ow

n

that

fo

r

vD

= V

T @

25 m

V,

th

e

gain

chan

ges

abou

t 20%

.

fig. 4

– B

JT d

ifferential p

air curren

ts

On

the o

ther h

and, a ±

100 m

V in

pu

t differen

tial voltage is en

ough

for alm

ost all th

e curren

t to b

e draw

n

by

one o

f the tran

sistors.

2.1

.2. F

ET

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

5 o

f 73

09/3

0/2

008 1

1:1

4 P

M

The

basic

sch

ematic

is

sim

ilar

to

a

bip

olar

differen

tial pair

and

is sh

ow

n in

fig. 5 (JF

ET

examp

le).

The

analy

sis is

very

similar

to th

e d

ifferential

bip

olar case. H

avin

g in m

ind th

at:

nam

ing

and m

akin

g

we get:

fig. 5

– JF

ET

differen

tial pair

This

curren

t chan

ges as

a fu

nctio

n o

f vid

and

is

sh

ow

n in

fig.

6. T

he

F

ET

’s

param

eters u

sed in

this

examp

le is

also

show

n o

n th

e graph.

The

m

ain

remark

s,

relatively

to

th

e

bip

olar d

ifferential p

air, are, on

one h

and,

the

larger vid

valu

e sp

read, an

d, o

n th

e

oth

er han

d, th

e sm

aller ch

aracteristics

slop

e around th

e origin

.

fig. 6

– JF

ET

differen

tial pair cu

rrents

The M

OSF

ET

differen

tial pair an

alysis (see fig. 7

, where it is sh

ow

n a M

OSF

ET

differen

tial pair w

ith

enhan

cemen

t MO

SF

ET

S –

chan

nel n

) is not o

nly

similar to

a JFE

T, b

ut also

the sam

e conclu

sions are

driv

en.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

6 o

f 73

09/3

0/2

008 1

1:1

4 P

M

In fact, th

e M

OSF

ET

curren

t functio

n is

the sam

e

of th

e JF

ET

, how

ever is

com

mon

ly w

ritten in

a

differen

t form

as:

Con

sequen

tly, th

e cu

rrent v

ersus

vd

is th

e sam

e,

how

ever w

ith a d

ifferent fo

rm:

fig. 7

– M

OS

FE

T d

ifferential p

air

2.2

. Sm

all sig

na

l op

era

tion

Tak

e the B

JT d

ifferential p

air as reference. If aro

und v

D =

0 w

e find:

we get

An altern

ative p

oin

t of v

iew to

get the sam

e result is to

observ

e fig. 8 sch

ematic fo

r small sign

als.

The in

put d

ifferential resistan

ce is

Rid =

2 r

p

, becau

se lo

okin

g in

to th

e b

ase o

f any

transisto

r we see

rp

+ (1

+b

) re =

2rp

.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

7 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Hav

ing in

min

d, fo

r examp

le, that:

for th

e three p

ossib

le outp

uts th

e follo

win

g differen

tial gains resu

lt:

fig. 8

– S

mall sig

nal o

peratio

n

This

last gain co

rresponds to

an am

plifier w

ith d

ifferential sign

als

both

at the in

put an

d o

utp

ut (fig. 9

).

There is an

oth

er way

to lo

ok in

to th

is pro

blem

:

If we co

nsid

er the am

plifier as an

ideal d

ifferential am

plifier (w

here

essentially

the

com

mon

mode

gain is

null), acco

rdin

g to

fig. 10

circuit, th

e response to

a signal v

i can b

e analy

sed w

ith th

e base o

f

T2 co

nnected

to gro

un

d: T

he co

llector o

f T2 d

oes n

ot in

fluen

ce T1 .

This

last transisto

r is in

com

mon

emitter co

nfigu

ration

with

an

emitter

resistance

RE

equal to

re2 =

1/g

m2 . T

hen

, the

gain is

app

roxim

ately:

How

ever, if th

e oth

er outp

ut is in

tended

, it is enough

to th

ink

that

both

co

llector

cu

rrents

(sign

al)

are

necessarily

eq

ual,

an

d,

conseq

uen

tly, th

e gain w

ill be sy

mm

etric of th

e indicated

abov

e.

fig. 9

– D

ifferential in

pu

t and

ou

tpu

t amp

lifier

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

8 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Non

etheless, it

is called

the

attentio

n u

pon

the

fact th

at th

is

configu

ration

corresp

onds

to a

varian

t o

f a

circuit

know

n as

casco

de th

at it will b

e studied

ahead

.

fig. 1

0 –

Altern

ative m

etho

d fo

r

evalu

ating

the d

ifferential

pair g

ain

Exe

rcise 1

: If in fig

. 3 sch

ematic, em

itter resisto

rs a

re in

serted, a

s o

bserv

ed in

fig. 1

1,

find th

e gain

an

d th

e differen

tial in

put resista

nce.

fig. 1

1 –

Differen

tial pair w

ith em

itter resistances

An

swe

r

Solu

tion

A sm

all signal an

alysis can

also b

e done tak

ing th

e equiv

alence b

etween

the d

ifferential p

air and

the C

E

configu

ration.

Even

assum

ing th

at the b

iasing so

urce

is n

ot id

eal (see fig. 1

2), in

rigoro

us term

s an

d in

differen

tial

op

eration, i.e., v

B1 =

vd / 2

and

vB

2 = - v

d / 2, th

e com

mon

no

de at th

e emitters can

be rep

resented

by

a

virtu

al ground, w

here a tran

sistor “

gets” a + v

d / 2 sign

al and

the o

ther a - v

d / 2. T

hus, each

transisto

r is

equiv

alent to

a CE

con

figuratio

n w

ith a gro

un

ded

emitter, as sh

ow

n in

fig. 13.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

9 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Fro

m fig. 1

3 w

e get:

or, if tran

sistor’s

ro

cannot b

e

igno

red:

Sin

ce Ad

1 = v

c1 / vd it resu

lts:

fig

. 12

– N

on

ideal b

iasing

sou

rce fig. 1

3 –

Eq

uiv

alent C

E m

on

tage

and

, natu

rally, A

d2 =

- Ad

1 e Ad

d = 2

Ad

1 .

A sim

ilar analy

sis can b

e perfo

rmed

on

a FE

T d

ifferential p

air. The so

le relevan

t differen

ce is the lin

ear

op

eration

span

which

is significan

tly b

igger in a F

ET

differen

tial pair. It m

ay reach

som

e volts w

hile a

bip

olar p

air is restricted aro

und ±

25 m

V.

Thu

s, we get:

, an

d

If it is not p

ossib

le to ign

ore r

o , we h

ave to

chan

ge RD

by

the p

arallel RD

// ro .

2.3

. Co

mm

on

mo

de

op

era

tion

The co

mm

on m

ode o

peratio

n is illu

strated in

fig. 14.

Due to

sym

metry

and

to th

e equality

vB

1 = v

B2 , h

alf circuit an

alysis is su

fficient, as sh

ow

n in

fig. 15

(note

that, fo

r co

mm

on

mode sig

nals, resisto

r R

can

be su

bstitu

ted b

y tw

o 2

R resisto

rs, in p

ara

llel,

which

allo

ws u

s the a

nalysis o

f each

transisto

r in sep

ara

te).

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

10 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig

. 14

– C

om

mo

n m

od

e op

eration

fig. 1

5 –

Co

mm

on

mo

de eq

uiv

alent

CE

mo

ntag

e

If RC

« r

o , we get:

and b

y an

alogy

an

d

The co

mm

on m

ode rejectio

n ratio

is, by

defin

ition,

such

that, fo

r each u

niq

ue o

utp

ut (v

c1 or v

c2 ), we get

.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

11

of 7

309/3

0/2

008 1

1:1

4 P

M

For th

e d

ifferential o

utp

ut C

MR

R =

¥, o

bvio

usly

except th

e case where th

e sym

metry

is not p

erfect.

Verify

th

at,

for

exam

ple,

if

R

C1 =

RC

an

d

RC

2 = R

C +

D R

C, w

e get:

Fig. 1

6 illu

strates a com

mon

mode in

put resistan

ce

defin

ition.

Con

siderin

g only

half-circu

it, the resistan

ce seen b

y

vC

M is 2

RiC

M .

fig. 1

6 –

Co

mm

on

mo

de in

pu

t resistance

Exe

rcise 2

: Sh

ow

that

and

expla

in w

hy in

this

con

text (where

R is

gen

erally

very

hig

h) it m

ak

es sen

se n

ot to

forg

et rm

, in g

enera

l ignored

for b

eing v

ery hig

h.

Solu

tion

2.4

. Op

era

tion

with

arb

itrary

inp

ut v

olta

ge

s

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

12 o

f 73

09/3

0/2

008 1

1:1

4 P

M

It is

conven

ient

at th

is stage

to (re)in

troduce

the

inp

ut

signals

deco

mp

ositio

n issu

e, vB

1 and v

B2 , in

to tw

o n

ew v

ariables:

vD

= v

B1 –

vB

2 and v

CM

= (v

B1 +

vB

2 )/2 (fig. 1

7).

Evid

ently

, this co

nvey

s into

vB

1 = v

CM

+ v

D /2

and

vB

2 = v

CM

– v

D

/2. L

et v1 an

d v

2 be th

e signal co

mp

onen

ts of v

B1 an

d v

B2 . In

general,

the d

ifferential p

air inp

ut v

oltages, v

1 and

v2 , co

rresponds n

either to

a differen

tial nor to

a com

mon m

ode.

fig. 1

7 –

Inp

ut sig

nals

Fro

m w

hat w

as said ab

ove, w

e hav

e:

and

The o

utp

ut can

be exp

ressed as v

o = A

1 v

1 + A

2 v2 as lo

ng as th

e signals m

agnitu

de is su

ch th

at linear

op

eration can

be co

nsid

ered, w

hich

can fu

rther b

e man

ipulated

into

:

We w

ill hav

e then

Ad =

(A1 –

A2 )/2

and A

cm =

A1 +

A2 .

Rew

riting v

o expressio

n w

e get:

(where C

MR

R is exp

ressed in

non-lo

garithm

ic form

) which

then

show

s that, if th

e CM

RR

is sufficien

tly

high

, the o

utp

ut sign

al dep

ends so

lely o

n th

e inp

ut d

ifferential co

mp

on

ent.

Becau

se the d

esirable o

peratio

n is p

recisely th

is, the term

constitu

tes the erro

r of th

e differen

tial circuit m

odel.

2.5

. Oth

er n

on

-ide

al ch

ara

cteristics

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

13 o

f 73

09/3

0/2

008 1

1:1

4 P

M

2.5

.1. In

pu

t offse

t vo

ltag

e

If the d

ifferential p

air is perfectly

sym

metric, w

ith th

e outp

ut v

oltage tak

en b

etween

the tw

o co

llectors

(or tw

o d

rains) an

d co

nnectin

g b

oth

inp

uts

to th

e gro

und, th

en v

O =

0. B

ecause

perfect sy

mm

etry is

imp

ossib

le, in fact v

O ¹ 0

is verified

.

Thu

s, an in

put o

ffset voltage can

be d

efined

as:

The asy

mm

etry can

result fro

m th

e lo

ad resisto

r and/o

r, transisto

r characteristics

dissim

ilitud

e. If the

load

resistors d

iffer by

DR

C (o

r DR

D), th

at is, if

or

results fo

r the B

JT p

air:

and fo

r a MO

SF

ET

pair:

The relev

ant tran

sistor ch

aracteristics resp

onsib

le fo

r inp

ut o

ffset voltage, are

the rev

erse satu

ration

curren

t IS fo

r the B

JT case, an

d th

e K

factor (o

r IDS

S ) and

the th

reshold

voltage

Vt (o

r VP) fo

r FE

Ts

case.

Thu

s, for a B

JT p

air, the o

ffset result is:

and fo

r a MO

SF

ET

pair: an

d

respectiv

ely.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

14 o

f 73

09/3

0/2

008 1

1:1

4 P

M

2.5

.2. B

ias cu

rren

t an

d in

pu

t offse

t curre

nt

Giv

en its

very

sm

all valu

es, in

put

cu

rrents

are

non-relev

ant

fo

r th

e F

ET

s d

ifferential

p

airs.

Con

sequen

tly w

e will o

nly

consid

er the case o

f a BJT

differen

tial pair.

In a sy

mm

etric pair, th

e inp

ut cu

rrents at rest are eq

ual to

:

This co

mm

on

valu

e is called th

e inp

ut b

ias curren

t (IB). D

ue to

the in

evitab

le inp

ut asy

mm

etry, th

e bias

curren

ts are in fact d

ifferent. T

his d

ifference is called

inp

ut o

ffset curren

t.

In p

articular, if tran

sistor gain

s b d

iffer by

Db

, the o

ffset is:

Up

to h

ere w

e h

ave in

dicated

a sy

mbolic

curren

t source

to b

ias th

e d

ifferential p

air. It maters

now

to

see how

can th

at curren

t source b

e realised.

Discrete circu

its are goin

g to b

e distin

guish

ed fro

m in

tegrated cu

rrent so

urce circu

its.

3. B

ias circu

its for d

iffere

ntia

l pa

irs

3.1

. Discre

te circu

its

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

15 o

f 73

09/3

0/2

008 1

1:1

4 P

M

A d

iscrete co

mp

onen

t ty

pical

co

nstan

t cu

rrent

so

urce

(C

CS)

realisation is illu

strated in

fig. 18 fo

r a BJT

case.

A p

ractical examp

le w

ill allow

us an

easier router to

evalu

ate an

d

pro

ject CC

S circu

it.

We w

ill assum

e V

BB =

12 V

and

–V

EE =

-12

V, an

d th

at IC =

1 m

A

is

need

ed.

Sup

pose

th

at

the

tran

sistor

has

a

b

= 1

00

an

d

VA =

100 V

.

Tak

ing V

B =

-8 V

, for IE

@ 1

mA

, results R

3 = 3

.3 kW

.

Then

, assum

ing IB

@ 0

, we get:

fig. 1

8 –

Discrete d

ifferential p

air

bias circu

it

and R

1 = 5

R2

Cho

osin

g a curren

t at R1 an

d R

2 as bein

g app

roxim

ately 1

0%

of IC

, (so th

at IB can

be n

eglected) w

e get:

then

R2 =

40 kW

and R

1 = 2

00 kW

.

Exe

rcise 3

: Fin

d th

e source o

utp

ut resista

nce, R

, hav

ing

in m

ind

the v

alu

e of r

o and

that

the tra

nsisto

r has a

n em

itter resistor R

3 .

An

swe

r

Solu

tion

3.2

. Inte

gra

ted

circuits

The resisto

r valu

es required

by

the p

revio

us settin

g are imp

ractical for in

tegrated circu

its. On

the o

ther

han

d, go

od

match

ing tran

sistors

are easy

and

econo

mic

to fab

ricate. Furth

ermore, in

tegrated circu

its

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

16 o

f 73

09/3

0/2

008 1

1:1

4 P

M

usin

g exclusiv

ely M

OS tech

nolo

gy (in

particu

lar CM

OS) really

excuse th

e use o

f resistors.

This

way

, a co

mm

on

techniq

ue u

tilised in

integrated

circuits

to realise

CC

S is

the cu

rrent m

irror. T

he b

asic cu

rrent m

irror w

ith M

OSF

ET

is

show

n in

fig. 19.

If bo

th tran

sistors

are exactly

match

ed, an

d sin

ce V

GS is

the sam

e fo

r

both

transisto

rs, their cu

rrents w

ill be eq

ual. In

fact, takin

g into

accoun

t

the

ch

annel

len

gth

modulatio

n,

th

is

equality

is

only

verified

if

VD

S2 =

VD

S1 =

VG

S . This

way

, the m

irror’s

outp

ut resistan

ce, ro

2 , is a

quality

param

eter.

If bo

th th

reshold

voltages are th

e same, b

ut d

ifferent K

factors are u

sed,

then

fig. 1

9 –

MO

SF

ET

basic

curren

t mirro

r

and

results in

:

This exp

ression

show

s that ratio

s differen

t from

the u

nit tran

sfer curren

t IO / IR

EF

ratio are attain

ed b

y

a simp

le actuatio

n o

ver th

e transisto

rs’ geom

etry.

The

basic

BJT

curren

t mirro

r con

figuratio

n is

sho

wn

in fig. 2

0,

where:

Assu

min

g T

1 º T

2 , neglectin

g th

e effects

of b

and

ro , an

d sin

ce

VB

E1 =

VB

E2 , resu

lts IO =

IRE

F .

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

17 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 2

0 –

BJT

basic cu

rrent

mirro

r

If the effect o

f b is tak

en in

to acco

unt, it is easily

verified

that:

which

show

s that th

e error is m

ade sm

aller with

bigger b

.

Sim

ultan

eously

, when

used

as a

CC

S th

e circu

it’s o

utp

ut resistan

ce is

only

ro , a

valu

e th

at can b

e

insu

fficiently

high

. Hen

ce, the m

od

ifications u

sually

mad

e to th

e basic cu

rrent m

irror aim

to o

verco

me

the lim

itations resu

lting fro

m fin

ite b an

d r

o .

The u

se of an

extra transisto

r (T3 , in

fig. 21

) or th

e use o

f Wilso

n an

d W

idlar co

nfigu

rations, sh

ow

n in

figs. 22 an

d 2

3 resp

ectively

, are way

s to im

pro

ve th

e referred ch

aracteristics.

fig. 2

1 –

Base cu

rrent co

mp

ensatio

n

curren

t mirro

r

fig. 2

2 –

Wilso

n’s m

irror

fig. 2

3 –

Wid

lar’s sou

rce

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

18 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Exe

rcise 4

: Fin

d Io a

nd/o

r Ro fo

r the fo

llow

ing co

nfig

ura

tions:

a) fig

. 21

b) fig

. 22

c) fig. 2

3.

An

swe

r

Solu

tion

The cu

rrent m

irrors

outp

ut resistan

ce m

ade w

ith M

OS

can also

be in

creased u

sing W

ilson

or casco

de

configu

rations.

4. Im

pro

vin

g th

e b

an

dw

idth

Recall th

at the am

plifier b

andw

idth

refers to th

e frequen

cy ran

ge with

in w

hich

the gain

remain

s almost

constan

t. We call (lo

wer an

d u

pp

er) cut-o

ff frequen

cies to

those ran

ge lim

its. The criterio

n u

tilised to

defin

e these freq

uen

cies corresp

ond

s to th

e measu

re of th

e po

int w

here th

e maxim

um

gain d

ecreases by

3 d

B, i.e., ab

out 3

0%

gain v

alue

decrease

(3 d

B m

eans

halv

ing

the

electric p

ow

er, which

from

the

voltage p

oin

t of v

iew co

rresponds to

1 /

@ 0

.70

7).

At th

e low

er limit, i.e., at lo

w freq

uen

cies, capacitiv

e coup

ling u

tilisation

is responsib

le for th

e gain. S

o,

when

direct co

up

ling is u

sed, su

ch as w

ith in

tegrated O

pA

mp

s, usu

ally th

ere is no

gain d

ecrease at low

frequ

encies, acco

rdin

gly th

e low

er cut-o

ff frequen

cy is z

ero.

How

ever, at

high

frequen

cies, du

e to

transisto

r’s in

trinsic

capacitiv

e effect

the

gain d

ecrease is

unav

oid

able. O

therw

ise infin

ite frequen

cies would

imp

ly electro

ns (o

r oth

er carriers, such

as holes in

p

typ

e sem

iconducto

rs) infin

ite acceleratio

ns, an

d th

erefore

infin

ite fo

rces w

ould

be p

resent, w

hich

are

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

19 o

f 73

09/3

0/2

008 1

1:1

4 P

M

obvio

usly

imp

ossib

le in

Natu

re. The

up

per cu

t-off freq

uen

cy d

epen

ds

not o

nly

on

the

transisto

rs

characteristics an

d q

uiescen

t poin

t but as w

ell on th

e chosen

circuit co

nfigu

ration.

Then

, in a d

irect coup

ling am

plifier, th

e ban

dw

idth

coin

cides w

ith th

e up

per cu

t-off freq

uen

cy.

4.1

. CE

con

figu

ratio

n b

an

dw

idth

The C

E b

ehav

iour at h

igh freq

uen

cies is of sp

ecial interest to

study

the d

ifferential p

air, becau

se, as we

hav

e seen

befo

re, the d

ifferential p

air is so

meh

ow

equiv

alent to

a C

E m

ontage. F

rom

the th

ree b

asic

configu

rations, it is

precisely

the C

E th

at has

the sm

allest ban

dw

idth

, i.e., it has

the sm

allest up

per

cut-o

ff frequen

cy.

The

reason

for th

is p

oorer b

ehav

iour at h

igh freq

uen

cies can

easily b

e fo

un

d th

rough

a sim

plified

analy

sis o

f the h

igh freq

uen

cy eq

uiv

alent circu

it of fig. 2

4, w

here

ro w

as ign

ored

and, fo

r the sak

e o

f

simp

licity, w

e hav

e also o

mitted

the b

ase biasin

g mesh

.

fig. 2

4 - C

E h

igh

frequ

ency

equ

ivalen

t circuit

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

20 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Part o

f the an

swer, in

dicated

in E

xercise 5

, can b

e o

btain

ed in

a sim

plified

man

ner w

ith th

e h

elp o

f

Miller’s th

eorem

to th

e Cm

capacito

r, consid

ering th

e mid

ban

d gain

valu

e (AM

F ).

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

21

of 7

309/3

0/2

008 1

1:1

4 P

M

Indeed

, observ

ing fig. 2

5, o

ne can

notice th

at the gain

, in

spite

decreasin

g w

ith freq

uen

cy, little

differs

from

the

mid

ban

d v

alue in

the v

icinity

of th

e first pole. T

herefo

re,

this v

alue can

be u

sed to

give an

app

roxim

ate valu

e of th

e

first pole freq

uen

cy. O

n th

e oth

er han

d, it sh

ould

be clear

that it is

an ab

surd

to u

se th

e m

idban

d v

alue fo

r high

er

frequ

encies.

fig. 2

5 –

Mid

ban

d g

ain an

d first p

ole

Thu

s, the resu

lting sch

ematic (fig. 2

6) is v

alid o

nly

to d

etermin

e the b

andw

idth

(wH

@ w

p1 ), an

d n

ot

the freq

uen

cy resp

onse in

total. B

esides, it is n

oto

rious th

at the z

ero d

isapp

ears in th

is analy

sis.

Fro

m fig. 2

6 w

e get

, an

d

The K

valu

e is easily o

btain

ed:

Sin

ce it is a large negativ

e valu

e,

results:

and

fig. 2

6 –

HF

equ

ivalen

t circuit o

f the C

E m

on

tage sim

plified

by

app

lication

of M

iller’s theo

rem

Then

, the tim

e constan

ts associated

with

both

indep

enden

t capacito

rs are:

and

with

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

22 o

f 73

09/3

0/2

008 1

1:1

4 P

M

and co

rrespondin

g poles

and

Sin

ce in gen

eral, w1 <

< w

2 , the b

and lim

it may

be co

nsid

ered co

incid

ent w

ith w

1 :

On

the o

ther h

and, th

e m

iddle-freq

uen

cy gain

app

roxim

ation

used

does n

ot allo

w th

e id

entificatio

n o

f

w2 as th

e second p

ole o

f the o

riginal circu

it.

A m

ore a

ccura

te estimatio

n fo

r the first p

ole a

nd

also

for th

e second

one ca

n b

e obta

ined

, alth

ough

more

onero

usly, u

sing th

e time co

nsta

nts m

ethod.

Note, as

reference, th

at C

p

and

Cm

hav

e ty

pical v

alues

in th

e o

rder

of ten

s an

d u

nities

of p

F,

respectiv

ely. B

esides

the fact th

at Cm

is sm

all, its actu

al contrib

utio

n is

large b

ecause

the cap

acitor

valu

e is multip

lied b

y th

e configu

ration gain

. This is k

now

n as th

e Miller m

ultip

licative effect.

Let u

s m

ake a

reference

to th

e z

ero. In

fig. 24

schem

atic, the o

utp

ut v

oltage

is an

nulled

when

the C

m

capacito

r curren

t is equal to

the cu

rrent so

urce cu

rrent, i.e., w

hen

the cu

rrent in

RC

is zero

. Then

,

This is th

e frequen

cy o

f the z

ero, w

hich

coin

cides w

ith th

e calculated

valu

e in E

xercise 5. H

ow

ever, o

ne

shou

ld n

ote th

at, given

the cap

acitor v

alues an

d assu

min

g gm

in th

e ord

er of 1

00

mA

/V, th

e zero

will b

e

situated

at a freq

uen

cy m

uch

high

er than

the p

oles. A

t the p

resent p

oin

t this

does

not seem

of great

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

23 o

f 73

09/3

0/2

008 1

1:1

4 P

M

imp

ortan

ce how

ever, atten

tion

sho

uld

be called

up

on

the fact th

at the z

ero is lo

cated o

n th

e right h

and

side o

f the S

plan

e (it is real and

po

sitive). U

nexp

ectedly

, this z

ero in

troduces a p

hase d

elay an

d n

ot a

delay

advan

ce. In th

is persp

ective b

ehav

es as a pole o

n th

e left han

d sid

e of th

e S p

lane.

In th

e com

mon

base an

d co

mm

on

collecto

r configu

rations th

e Miller m

ultip

licative effect d

oes n

ot exist.

The last h

as th

e C

p

capacito

r betw

een tw

o n

odes

with

slightly

less th

an o

ne p

ositiv

e gain

, and

the

form

er has

both

capacito

rs to

grou

nd: th

e M

iller effect is th

en o

ut o

f the q

uestio

n. In

this

way

, both

configu

rations p

resent m

uch

high

er up

per cu

t-off freq

uen

cies. It is kno

wn

that in

a given

configu

ration

the gain

ban

dw

idth

pro

duct is ap

pro

ximately

constan

t - if the gain

increases th

e ban

dw

idth

dim

inish

es.

Fro

m all co

nsid

ered co

nfigu

rations, o

nly

the C

E co

nfigu

ration

show

s both

bigger th

an o

ne cu

rrent an

d

voltage

gains. T

he C

C co

nfigu

ration

has

un

it voltage

gain an

d B

C h

as a

unit cu

rrent gain

. Thus, in

a

certain w

ay, it is “

natu

ral” that th

e existence o

f two large gain

s mak

e the b

andw

idth

dim

inish

.

Fro

m th

is an

alysis

results

a relativ

ely p

oor h

igh freq

uen

cy b

ehav

iour fo

r the C

E co

nfigu

ration

(thus,

also fo

r the d

ifferential p

air), which

need

s to b

e imp

roved

.

One co

nfigu

ration w

ith a C

E eq

uiv

alent v

oltage gain

but larger b

andw

idth

is the casco

de p

air.

4.2

. CE

-CB

Ca

scod

e p

air

Fig. 2

7 (a) rep

resents a b

iasing sch

eme fo

r the casco

de p

air and

in (b

) the eq

uiv

alent circu

it for sign

als,

where R

B =

R1 // R

2 .

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

24 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 2

7 - C

E-C

B casco

de p

air; (a) bias circu

it; (b) sm

all sign

al equ

ivalen

t circuit

Low

frequen

cy an

alysis o

f fig. 27 sch

ematic giv

es:

which

insigh

ts that an

equiv

alent C

E v

o / vi gain

can b

e built w

ith an

equal tran

sistor b

iased at th

e same

DC

op

erating p

oin

t.

How

ever a d

ifference is in

favour o

f the casco

de co

nfigu

ration.

In fact, a

large R

C is

adop

ted w

hen

a large

gain is

need

ed. If R

C is

sufficien

tly large, th

e r

o >>

RC

app

roxim

ation m

ay n

o lo

nger b

e acceptab

le. Then

for a C

E w

e should

consid

er:

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

25 o

f 73

09/3

0/2

008 1

1:1

4 P

M

If RC

>>

ro , th

e maxim

um

gain is giv

en b

y –

gm

ro .

To

examin

e w

hat

takes

place

with

the

cascode

configu

ration

, let u

s d

etermin

e

Gm

and

Ro

relatively

to th

e eq

uiv

alent

mod

el of fig. 2

7 (a) an

d rep

resented

in fig.

28.

Calcu

lating G

m, giv

es:fig

. 28

- Casco

de p

air equ

ivalen

t circuit

To calcu

late Ro , fig. 2

9 is u

sed.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

26 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 2

9 - E

valu

ation

of o

utp

ut resistan

ce Ro ; (a) D

eactivatin

g th

e ind

epen

den

t sou

rces; (b) C

ircuit sim

plificatio

n

A d

eactivatio

n co

nditio

n w

as imp

osed

to th

e indep

enden

t sou

rces in fig. 2

9 (a), w

hich

annuls th

e fonte

gm

1 vp

1

curren

t so

urce. G

iven

that

ro

1 >>

rp

2

, then

the

parallel is

app

roxim

ately r

p2

. Fin

ally,

app

lyin

g th

e T

hév

enin

’s th

eorem

results

in fig. 2

9 (b

) schem

atic, where

the

outp

ut resistan

ce can

imm

ediately

be fo

und to

be:

where it w

as consid

ered r

o = r

o1 =

ro

2 (equ

al transisto

rs with

the sam

e op

erating p

oin

t). Then

for th

e

voltage gain

we get:

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

27 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Hen

ce the m

aximum

gain v

alue w

ill be –

gm

b r

o , wh

ich is co

nsid

erably

larger than

the co

mm

on

emitter

gain.

As m

entio

ned

above, th

e cascode b

andw

idth

is larger than

the eq

uiv

alent co

mm

on

emitter. L

et us ch

eck

why

with

a simp

lified q

ualitativ

e analy

sis.

The casco

de seco

nd

stage is a com

mon

base am

plifier, w

hich

frequen

cy resp

onse is v

ery go

od. S

o, it is

the first stage, a

com

mon

emitter, th

at will p

rimarily

conditio

n th

e h

igh freq

uen

cy resp

onse. T

he C

E

low

er cut o

ff frequen

cy resu

lts from

the M

iller multip

licative effect o

ver th

e Cm

1 capacito

r. How

ever,

becau

se the first stage lo

ad is th

e second

stage low

inp

ut resistan

ce (re ), th

e Miller m

ultip

licative facto

r

will b

e solely

:

This w

ay, th

e up

per cu

t-off freq

uen

cy o

f the circu

it will b

e consid

erably

larger than

the u

pp

er cut-o

ff

frequ

ency

of a C

E.

4.3

. CE

-CB

com

ple

me

nta

ry ca

scod

e

Fig. 3

0 (a) rep

resents

the b

iasing sch

eme o

f a co

mp

lemen

tary casco

de p

air and

in (b

) the eq

uiv

alent

circuit fo

r signal an

alysis.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

28 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 3

0 - C

E-C

B co

mp

lemen

tary casco

de; (a) B

ias circuit; (b

) Sm

all sign

al equ

ivalen

t circuit

This co

nfigu

ration

utiliz

es a npn

and

pnp

transisto

rs, which

signals eq

uiv

alent m

odel is th

e same as last

configu

ration

(the n

on

-com

plem

entary

transisto

r cascode). H

ence, th

e schem

atic of figs. 2

8 e 2

9 ap

ply

here.

Recall th

e fact th

at no

thin

g ch

anges

in term

s o

f signal fu

nctio

nality

which

ever th

e tran

sistor is

pnp

or

npn. T

he so

le chan

ge relates with

the n

eed fo

r a dc cu

rrent to

source th

e collecto

r of T

1 and

the em

itter

of T

2 sim

ultan

eously

. The ch

ange

to th

e sign

al circuit p

arameters

is m

inim

al and

negligib

le sin

ce th

e

resistance

associated

with

the cu

rrent so

urce

is gen

erally m

uch

larger than

re2

with

which

will b

e in

parallel to

ground. H

ow

ever it m

ay h

app

en th

at IE1 ¹ IE

2 w

hich

can lead

to d

ifferent p

arameters

for

both

transisto

rs.

Regard

ing ev

eryth

ing else, all th

e remin

din

g signal an

alysis is th

en still v

alid.

This co

nfigu

ration

presen

ts anoth

er advan

tage of great in

terest to th

e multistage am

plifiers arch

itecture,

such

as th

e case

of O

pA

mp

s: the d

isplacem

ent lev

el betw

een th

e in

put an

d o

utp

ut, o

bserv

ed in

the

cano

nical casco

de, can

be an

nulled

. In fact, th

is last presen

ts a disp

lacemen

t level o

f:

, while th

e com

plem

entary

cascode is so

lely:

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

29 o

f 73

09/3

0/2

008 1

1:1

4 P

M

4.4

. CC

-CB

com

ple

me

nta

ry ca

scod

e

This co

nfigu

ration

utiliz

es a npn

and

pnp

transisto

rs, which

signals eq

uiv

alent m

od

el is represen

ted in

fig. 31.

Assu

min

g tran

sistors

with

iden

tical characteristics, b

iased

at the sam

e static op

erating p

oin

t, the an

alysis lead

s to:

fig. 3

1 –

CC

-CB

com

plem

entary

cascod

e –

small sig

nal eq

uiv

alent circu

it

then

, th

at is, the

gain is

positiv

e (n

on-in

vertin

g circu

it) with

half a

valu

e o

f the

CE

-CB

cascode gain

.

How

ever, n

ote th

at in co

mp

ensatio

n th

e inp

ut resistan

ce doub

les the C

E-C

B casco

de in

put resistan

ce

valu

e: .

Let u

s calculate n

ow

the m

aximum

gain p

ossib

le. The G

m calcu

lation is triv

ial and lead

s to:

.

Fig. 3

2 w

ill be u

tilised fo

r the R

o calculatio

n. T

wo

essential step

s to fin

d th

e outp

ut resistan

ce of fig. 3

1

circuit, u

sing th

e circuit tran

sform

ations m

ethod, are rep

resented

in fig. 3

2. It is assu

med

that th

e source

resistance, R

s , is n

egligible

in face

to r

p1

. If this

is n

ot tru

e, rp

1

need

s to

be rep

laced b

y R

s + r

p1

,

which

will resu

lt in a sligh

tly larger o

utp

ut resistan

ce. Thus, th

e valu

e found

bello

w sh

ould

be faced

as a

low

er limit o

f a more gen

eral outp

ut resistan

ce valu

e.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

30 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 3

2 - E

valu

ation

of o

utp

ut resistan

ce Ro ; (a) D

eactivatin

g th

e ind

epen

den

t sou

rces;

(b) C

ircuit sim

plificatio

n

Exe

rcise 6

: Fin

d th

e o

utp

ut resista

nce, R

o , u

sing

the tra

ditio

nal m

ethod

to ca

lcula

te a

resistance b

etween

two n

odes.

Solu

tion

Und

er these co

nditio

ns th

e maxim

um

gain w

ill be A

v = g

m r

o , which

is equiv

alent to

the co

mm

on

emitter

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

31

of 7

309/3

0/2

008 1

1:1

4 P

M

gain.

Concern

ing b

andw

idth

, one m

ight ev

aluate

it in a

simp

le way

. Note th

at capacito

r Cm

1 is con

nected

to th

e ground, as w

ell as Cp

2 and C

m2 (see fig. 3

3).

On

the

oth

er han

d, cap

acitor C

p1

connects

two

nodes w

ith a gain

that can

easily b

e found to

be ½

.fig

. 33

– C

apacities in

the C

C-C

B m

on

tage

This gain

is indep

end

ent o

f frequen

cy an

d m

eans th

at the M

iller’s th

eorem

can b

e ap

plied

rigoro

usly

,

i.e., with

out th

e usu

al restriction

that resu

lts from

the ap

pro

ximatio

n to

the m

idban

d gain

. In th

is way

,

the fo

llow

ing fig. 3

4 sch

ematic resu

lts.

fig. 3

4 –

CC

-CB

mo

ntag

e equ

ivalen

t circuit ap

ply

ing

Miller’s th

eorem

to C

p

1

Sin

ce - C

p1

and

Cp

2

annul each

oth

er, the circu

it on

ly p

resents

two

indep

end

ent cap

acitances, w

hich

time co

nstan

ts are:

and

Which

corresp

ondin

g p

oles

will b

e d

om

inan

t or, at least, w

hich

will h

ave

the

low

est frequen

cy, is

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

32 o

f 73

09/3

0/2

008 1

1:1

4 P

M

dep

enden

t on

circuit p

arameters. H

ow

ever, it is n

oto

rious th

at any

of th

em o

ccur at a h

igher freq

uen

cy

than

the co

mm

on em

itter and ev

en h

igher th

an th

e CE

-CB

con

figuratio

n.

One

migh

t reach th

is co

nclu

sion

qualitativ

ely. In

reality, th

e C

C-C

B co

nfigu

ration

is m

ade

of tw

o

stages, both

with

very

good

high

frequen

cy resp

onses. In

particu

lar, the first stage, a co

mm

on

collecto

r,

has a u

pp

er cut-o

ff frequen

cy larger th

an th

e low

-gain co

mm

on

emitter, su

ch as th

e case of th

e CE

-CB

cascode. E

qually

the seco

nd stage is a co

mm

on b

ase with

a very

high

cut-o

ff frequen

cy.

4.5

. Ca

scod

e d

iffere

ntia

l pa

ir

The

good

frequen

cy resp

onse

pro

perties

found

in a

com

plem

entary

cascode

are u

tilized

in th

e

differen

tial pair casco

de, w

hich

schem

atic can b

e seen in

fig. 35. T

his co

nfigu

ration

is used

as an in

put

stage, e.g, in th

e 741 O

pA

mp

.

fig. 3

5 - D

ifferential casco

de p

air; (a) Sim

plified

bias circu

it; (b) S

mall sig

nal eq

uiv

alent circu

it

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

33 o

f 73

09/3

0/2

008 1

1:1

4 P

M

To fin

d th

e voltage gain

note th

at:

then

and

from

which

we co

nclu

de th

at the gain

is half o

f that o

ne fo

und

in a sim

ple d

ifferential p

air. On

the

oth

er han

d th

e inp

ut resistan

ce is do

uble:

.

The u

se of a casco

de d

ifferential p

air imp

roves th

e general ch

aracteristics of th

e pair, alth

ough

it seems

to red

uce th

e gain. N

ote, h

ow

ever, th

at the m

aximum

gain lim

it is the sam

e of a sim

ple d

ifferential p

air.

This d

iscussio

n ab

out th

e gain raises a q

uestio

n ab

ou

t the gain

allow

ed b

y th

e differen

tial pair an

d if it

is sufficien

t to attain

the ty

pical v

alues p

resented

by

a general p

urp

ose O

pA

mp

.

5. M

ax

imisin

g th

e d

iffere

ntia

l pa

ir vo

ltag

e g

ain

Con

sider th

e sim

ple

differen

tial pair w

ith sin

gle o

utp

ut (fig. 3

6) as

reference.

The o

pen

circuit d

ifferential gain

, as seen b

efore is:

The

use

of large

valu

e p

assive

resistors

are n

ot p

ractical so, in

general, R

C <

< r

o , then

:

fig. 3

6 –

Ev

aluatio

n o

f the b

asic

differen

tial pair g

ain

5.1

. Diffe

ren

tial p

air w

ith a

simp

le a

ctive

loa

d

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

34 o

f 73

09/3

0/2

008 1

1:1

4 P

M

The gain

can b

e co

nsid

erably

increased

if an activ

e lo

ad is

used

instead

of a p

assive o

ne, i.e., a cu

rrent so

urce setu

p w

ith o

utp

ut

resistance R

o , which

, as seen b

efore, can

be sev

eral times larger

than

ro (fig. 3

7).

The an

alysis lead

s to a gain

valu

e of:

Thu

s, for exam

ple, if R

o = 4

ro , w

e get:

fig. 3

7 –

Sm

all sign

al equ

ivalen

t circuit

for th

e differen

tial pair w

ith

sing

le active lo

ad

5.2

. Diffe

ren

tial p

air w

ith cu

rren

t mirro

r activ

e lo

ad

A larger v

alue fo

r the gain

can b

e obtain

ed if a cu

rrent m

irror is

used

as load

, like fig. 3

8 sh

ow

s.

The m

irror effect lead

s to:

and

if ro

2 = r

o4 =

ro co

mes:

which

is larger than

what can

be fo

und w

ith a sim

ple activ

e load

.

This

valu

e can

be fu

rther im

pro

ved

usin

g a

mirro

r with

high

er

outp

ut resistan

ce (fig. 39).

fig. 3

8 –

Sm

all sign

al equ

ivalen

t circuit

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

35 o

f 73

09/3

0/2

008 1

1:1

4 P

M

for

the d

ifferential p

air with

curren

t

mirro

r active lo

ad

fig. 3

9 - D

ifferential p

air with

curren

t mirro

r active lo

ad; (a) sy

mm

etric Wid

lar's mirro

r;

(b) b

ase curren

t com

pen

sation

curren

t mirro

r

Eith

er usin

g the W

idlar’s sy

mm

etric mirro

r (fig. 39

(a)), or th

e base cu

rrent co

mp

ensatio

n m

irror (fig. 3

9

(b)), w

e get:

bein

g ro

2 = r

o4 =

ro , b

ecause R

o4 >

ro , th

en:

For exam

ple, if R

o4 =

4 r

o , then

:

Hen

ce, we m

ay co

nclu

de th

at the o

pen

circuit m

aximum

gain (it lo

wers w

ith th

e load

), is in th

e ord

er of

gm

ro / 2

(it migh

t only

be sligh

tly larger). S

ince

then

, for exam

ple, if w

e consid

er VA

= 1

00 V

, com

es:

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

36 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Alth

ough

it migh

t be raised

by

a small am

ou

nt, th

is valu

e is well b

ellow

the u

sual ten

s or h

undred

s of

thou

sands gain

valu

es characteristics o

f Op

Am

ps.

Even

indep

enden

tly o

f oth

er consid

erations, su

ch as th

e ones relativ

e to th

e outp

ut resistan

ce, it is clear

that a d

ifferential p

air is insu

fficient to

realize an

amp

lifier with

Op

Am

p lik

e characteristics. A

second

stage (at least) is need

ed to

attain th

e desired

gain lev

el.

The seco

nd

stage n

eeds to

hav

e a

reasonab

le large

valu

e o

f gain (at least so

me ten

s) and

a large

inp

ut

resistance to

avoid

gain d

egradatio

n o

f the first stage am

plifier. A

low

outp

ut resistan

ce, as it is required

by

an O

pA

mp

structu

re, is also

desirab

le. Note

how

ever th

at this

stage d

oes

not n

eed to

hav

e a

differen

tial inp

ut.

5.3

. On

e C

MO

S d

iffere

ntia

l pa

ir with

activ

e lo

ad

Fig. 4

0 sh

ow

s an

examp

le o

f a C

MO

S d

ifferential p

air with

active lo

ad.

The o

utp

ut d

c v

oltage

is, norm

ally, estab

lished

by

the n

ext

stage as can b

e seen in

the O

pA

mp

intern

al circuits.

The

circuit

is an

alogo

us

to th

e b

ipolar

versio

n. T

hus, th

e

curren

t signal is: w

here

The o

utp

ut v

oltage is:

With

fig

. 40

- CM

OS

differen

tial pair w

ith

active lo

ad

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

37 o

f 73

09/3

0/2

008 1

1:1

4 P

M

the v

oltage gain

com

es:

To

get high

gains, o

ne d

ifferential casco

de an

d o

ne casco

de cu

rrent m

irror can

be u

sed. H

ow

ever, th

is

low

ers the o

utp

ut sign

al excursio

n p

ossib

le.

The u

se o

f FE

Ts is

specially

interestin

g b

ecause

of th

e v

ery h

igh in

put resistan

ces th

at is allo

wed

to

get. The o

ffset voltage is in

the sam

e ord

er (som

e miliv

olts) o

f the b

ipolar d

ifferential p

airs but, th

e bias

curren

ts at the in

put are m

uch

smaller th

an w

hat is p

ossib

le to m

ake w

ith b

ipolar tran

sistors.

The m

ajor F

ET

s in

conven

ience

is th

e lo

w tran

scon

ductan

ce an

d, co

nseq

uen

tly, th

e lo

wer larger gain

possib

le.

Now

aday

s, integrated

Op

Am

ps are fab

ricated u

sing C

MO

S tech

nolo

gy. T

he gen

eral characteristics are

good

and v

ery lo

w p

ow

er voltages (1

V!) can

be u

sed w

ith v

ery lo

w p

ow

er consu

mp

tion.

6. H

igh

vo

ltag

e g

ain

an

d in

pu

t resista

nce

stag

es

6.1

. Th

e D

arlin

gto

n p

air –

CC

-CC

con

figu

ratio

n

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

38 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Let’s co

nsid

er the circu

it of fig. 4

1, w

here th

e biasin

g com

po

nen

ts

are om

itted.

If we su

pp

ose th

at T1 º

T2 an

d th

at they

are equally

biased

, let’s

com

pute th

e voltage gain

and in

put resistan

ce:

fig. 4

1 - S

imp

lified sch

ematic o

f

the D

arling

ton

pair

that lead

s to

If b »

2, w

e hav

e:

and if g

m R

E >

> 1

, we m

ay w

rite the ap

pro

ximate v

alue o

f Av :

which

is the sam

e expressio

n w

e get for th

e single tran

sistor em

itter follo

wer.

But th

e inp

ut resistan

ce, if b >

> 1

and

RE >

> 1

1/g

m is:

much

larger than

the v

alue b

RE, th

at is the ap

pro

ximate v

alue w

e get for a sin

gle transisto

r.

In th

e same w

ay, th

e short-circu

it curren

t gain is (b

+1) 2 m

uch

larger than

(b +

1) th

at the sin

gle stage

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

39 o

f 73

09/3

0/2

008 1

1:1

4 P

M

has.

Fin

ally, th

e outp

ut resistan

ce is the sam

e in b

oth

cases (1/g

m), if th

e first base is co

nnected

to gro

un

d.

Pro

bab

ly, th

e m

ost in

teresting

result is

that th

e tw

o tran

sistor m

ontage

can b

e seen

as o

ne

only

transisto

r where

the th

ree term

inals

(B, C

, E) are

respectiv

ely, th

e first b

ase, both

collecto

rs an

d th

e

second

emitter an

d d

isplay

s a

large cu

rrent gain

, typ

ically b

2. How

ever, th

is is

not co

mp

letely tru

e

becau

se in

general th

e tw

o tran

sistors

are v

ery d

ifferent b

eing co

mm

on

that th

e first is

a h

igh b

small

signal tran

sistor w

hile th

e second is a lo

w b

pow

er transisto

r.

6.2

. Co

mm

on

Em

itter D

arlin

gto

n co

nfig

ura

tion

In sp

ite of w

hat h

as just b

een said

, we w

ill adm

it, for th

e sake

of

sim

plicity

,

that

both

tran

sistors

hav

e

the

sam

e

characteristics

and

biasin

g p

oin

t. Then

, let’s co

nsid

er th

e

schem

atic of fig. 4

2.

Inp

ut resistan

ce:

Voltage gain

:

fig

. 42

- Sm

all sign

al equ

ivalen

t circuit o

f

CE

Darlin

gto

n co

nfig

uratio

n

and

We m

ay co

nclu

de th

at this circu

it has ap

pro

ximately

the sam

e voltage gain

as a simp

le CE

, but a m

uch

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

40 o

f 73

09/3

0/2

008 1

1:1

4 P

M

larger inp

ut resistan

ce (b tim

es larger).

How

ever, as th

e intern

al oup

ut resistan

ce is halv

ed (r

o / 2), th

e maxim

um

possib

le gain is sm

aller than

what w

e can get w

ith o

ne o

nly

transisto

r.

Therefo

re, this

circuit

has

the

required

characteristics

for th

e in

termed

iate stage

of an

Op

Am

p.

How

ever, th

e high

frequen

cy resp

onse is d

eficient. In

fact, Cm

of T

1 is subject to

a very

strong M

iller

effect.

6.3

. CC

-CE

con

figu

ratio

n

Fig. 4

3 rep

resents

the C

C-C

E circu

it and

its sm

all signal eq

uiv

alent. T

his

is v

ery sim

ilar to th

e circu

it

we ju

st analy

sed (th

e Darlin

gton m

ontage) excep

t for th

e fact that th

e two co

llectors are n

ot co

nnected

.

fig. 4

3 - C

C-E

C co

nfig

uratio

n; (a) sim

plified

schem

atic; (b) sm

all sign

al equ

ivalen

t circuit

Again

, for th

e sake o

f simp

licity, w

e will ad

mit th

at T1 an

d T

2 are equal an

d eq

ually

biased

.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

41

of 7

309/3

0/2

008 1

1:1

4 P

M

Inp

ut resistan

ce:

Voltage gain

:

and

This circu

it presen

ts the sam

e gain

and

inp

ut resistan

ce as th

e C

E D

arlingto

n tran

sistor. H

ow

ever th

e

maxim

um

voltage gain

is twice as large, sin

ce the o

utp

ut resistan

ce (ro ) is d

oubled

.

Tho

ugh

, the m

ost sign

ificant ch

ange

concern

s th

e b

andw

idth

. As th

e first stage

(CE

) has

a go

od

high

frequ

ency

response, as

we h

ave seen

befo

re, and

the M

iller effect up

on

Cm

of th

e seco

nd

transisto

r

does

not lim

it much

since

it is ch

arged b

y th

e lo

w o

utp

ut resistan

ce o

f the

emitter fo

llow

er the

frequ

ency

beh

avio

ur o

f the circu

it is quite go

od.

This is w

hy

this m

ontage is q

uite co

mm

on in

the in

termed

iate stage of gen

eral purp

ose O

pA

mp

s.

We h

ave b

een referrin

g to th

e com

mon

configu

rations o

f general p

urp

ose O

pA

mp

s. In gen

eral they

still

hav

e a last stage that sh

ould

satisfy tw

o req

uirem

ents: to

hav

e a high

inp

ut resistan

ce not to

degrad

e the

voltage gain

of p

revio

us stages an

d h

ave a lo

w o

utp

ut resistan

ce to b

e able to

driv

e the o

utp

ut lo

ad. T

he

voltage

gain d

oes

not n

eed to

be h

igh, sin

ce th

e tw

o p

revio

us stages

are ab

le to

pro

vid

e it. T

herefo

re,

these are th

e characteristics w

e expect to

find

in an

emitter fo

llow

er circuit.

7. O

utp

ut sta

ge

s

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

42 o

f 73

09/3

0/2

008 1

1:1

4 P

M

The b

asic emitter fo

llow

er presen

ts the ch

aracteristics we h

ave p

revio

usly

referred to

as bein

g desirab

le

for an

outp

ut stage

bu

t has

a serio

us d

rawb

ack: it h

as a

very

low

efficiency

which

is im

portan

t when

we are d

ealing w

ith p

ow

er stages.

In fact, th

e activ

e d

evices

in th

is circu

it, as in

all the o

thers

that w

e h

ave stu

died

so far, are

alway

s

active fo

r the w

hole

excursio

n o

f the in

put sign

al (the w

hole

perio

d, if th

e sign

al is p

eriodic): th

is is

what w

e call th

e C

lass A

beh

avio

ur (as

op

posin

g o

ther situ

ations in

which

the d

evices

can b

e cu

t-off

durin

g part o

f the p

eriod).

Class A

has th

e advan

tage of p

resentin

g the sm

allest disto

rtion b

ut its m

aximum

efficiency

is only

25%

,

as we w

ill see later on

, although

in certain

special co

nfigu

ration

s it can b

e imp

rov

ed u

p to

50%

.

This

low

efficiency

is v

ery in

conv

enien

t for th

e o

utp

ut stage

in p

ow

er amp

s o

nce

the m

ain p

ow

er

dissip

ation is p

recisely in

the o

utp

ut stage.

This

is w

hy

the o

utp

ut stages

are n

orm

ally p

rojected

to w

ork

in C

lass B

where

the tran

sistors

are

active, fo

r a sinuso

idal sign

al, durin

g half p

eriod. T

his en

ables th

e efficiency

to b

e increased

to a v

alue

close to

78.5

% (p

/ 4 ´

100%

).

Natu

rally, a

circuit w

ith o

nly

one tran

sistor w

ork

ing in

class B

would

increase

the d

istortio

n in

such

way

that it w

ould

be m

ore o

r less useless. W

e will see h

ow

to m

inim

ize th

e disto

rtion.

The tran

sistors can

still functio

n in

oth

er classes of w

hich

we sh

all now

refer two:

Class

AB

is ch

aracterised b

y k

eepin

g th

e d

evices

active

for m

ore

than

half

the

perio

d (in

sinuso

idal regim

e).

In C

lass C

the d

evices

are activ

e fo

r less th

an h

alf the p

eriod. N

aturally

, disto

rtion

is v

ery h

igh

but efficien

cy can

reach m

ore

than

90%

. Th

erefore, th

is is

only

interestin

g w

hen

app

lied in

narro

w b

and am

plifiers, th

at is

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

43 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Usin

g a

load

imp

edan

ce tu

ned

for

central freq

uen

cy, it

is p

ossib

le to

reduce

disto

rtion

consid

erably

. A ty

pical ap

plicatio

n o

f th

is ty

pe

of tech

niq

ue

is in

pow

er rad

io-freq

uen

cy

amp

lifiers.

7.1

. Vo

ltag

e fo

llow

er co

mp

lem

en

tary

pa

ir

The

typ

ical configu

ration

used

in O

pA

mp

outp

ut stages

is a

voltage

fo

llow

er p

air th

at uses

co

mp

lemen

tary tran

sistors,

sym

metrically

connected

.

Each

transisto

r work

s in class B

bu

t the w

ay th

ey are co

nnected

assures th

at there is a co

ntin

uous cu

rrent flo

w in

the lo

ad.

Alth

ough

this

configu

ration

may

app

ear with

slight d

ifferences,

the sch

ematic sh

ow

n in

fig.44 is v

ery ty

pical.

To

understan

d h

ow

this

circuit w

ork

s, we

will start w

ith an

idealiz

ed v

ersion fo

r the co

mp

onen

ts.

fig. 4

4 –

Ty

pical sch

ematic o

f the

vo

ltage

follo

wer co

mp

lemen

tary

pair

7.1

.1. Id

ea

l situa

tion

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

44 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Let’s co

nsid

er the circu

it dep

icted in

fig. 45

where T

1 and

T2 are

iden

tical, except fo

r the fact th

at on

e is npn an

d th

e oth

er pnp.

We sh

all sup

pose th

at the co

ntin

uo

us v

alue V

I of v

I is such

that

VO

= 0

and

that th

e tran

sfer characteristics

of b

oth

transisto

rs

are iden

tical (see fig.46

).

When

vi =

0 b

oth

transisto

rs are

cut-o

ff (ic1 =

ic2 = 0

) an

d

therefo

re iO =

io = 0

and v

O =

vo =

0.

fig. 4

5 –

Idealized

schem

atic of th

e

vo

ltage

follo

wer co

mp

lemen

tary

pair

Sin

ce iO

= iC

1 – iC

2 a

curren

t will alw

ays flo

w in

the lo

ad.

Pro

vid

ed th

at none o

f the tran

sistors

goes

to satu

ration, th

e

outp

ut w

ill be a rep

lica of th

e inp

ut.

Bearin

g

in

min

d

that

an

d

, both

voltages

will h

ave

a sin

uso

idal

variatio

n id

entical to

vO

around th

e mean

valu

e VC

C.

Fig. 4

7 sh

ow

s the relev

ant v

oltage an

d cu

rrent w

avefo

rms.

fig. 4

6 –

Real an

d id

eal

transisto

r

transfer

characteristics

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

45 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 4

7 –

Vo

ltage an

d cu

rrent w

avefo

rms o

f the v

oltag

e follo

wer co

mp

lemen

tary p

air

It is thus clear th

at this sp

ecial con

figuratio

n w

ill allow

, in th

e ideal case, th

at the circu

it beh

aves lik

e a

voltage

follo

wer, alth

ough

each tran

sistor is

in C

lass B

, bein

g cu

t-off fo

r half o

f the cy

cle. Due to

the

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

46 o

f 73

09/3

0/2

008 1

1:1

4 P

M

alternate co

nductio

n o

f the tran

sistors, th

is configu

ration is also

know

n as p

ush

-pull.

7.1

.2. C

ircuit b

eh

av

iou

r with

rea

l com

po

ne

nts

For th

e real circuit th

e situatio

n is d

ifferent: it is n

ecessary th

at vB

E gets ab

ove a certain

valu

e Vg (ab

out

0.5

5 V

for lo

w p

ow

er Si tran

sistors) so

that th

e collecto

r curren

t beco

mes sign

ificant.

We sh

all take, to

mak

e the an

alysis sim

pler, a p

iece-wise ap

pro

ximatio

n to

the ch

aracteristic, as show

n

in fig. 4

8.

Und

er these

conditio

ns, th

e tran

sfer characteristic

of th

e fo

llow

er pair w

ill hav

e a

dead

zone as

in fig.

49.

fig. 4

8 –

Piece-w

ise apro

xim

ation

to th

e transfer

characteristic o

f a transisto

r

fig. 4

9 –

Tran

sfer characteristic o

f the v

oltag

e

follo

wer co

mp

lemen

tary p

air

As

a co

nseq

uen

ce, un

der a

sinuso

idal regim

e, the

outp

ut w

ill not b

e a

sine

wav

e, hav

ing

a stro

ng

disto

rtion aro

und z

ero, k

now

n as th

e crosso

ver d

istortio

n (fig. 5

0).

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

47 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 5

0 - C

rosso

ver d

istortio

n in

the v

oltag

e follo

wer co

mp

lemen

tary p

air

In o

rder to

reduce it, b

oth

transisto

rs should

be at cu

t-in fo

r a zero

voltage in

put. T

o b

e precise, in

this

situatio

n th

e tran

sistors

are in

Class

AB

but so

close

to class

B th

at the efficien

cy is

only

slightly

smaller th

an in

class B.

7.1

.3. C

om

pe

nsa

ting

the

crosso

ve

r disto

rtion

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

48 o

f 73

09/3

0/2

008 1

1:1

4 P

M

There

is a

num

ber o

f possib

le so

lutio

ns to

bias

the fo

llow

er

pair at cu

t-in. O

ne o

f the m

ore

po

pular an

d v

ersatile o

nes

is

the so

called V

BE m

ultip

lier (fig. 51).

If the b

ase cu

rrent o

f T3 is

much

smaller th

an th

e cu

rrent in

R1 an

d R

2 ,

Thro

ugh

the ch

oice

of R

1 an

d R

2 w

e can

obtain

the d

esired

valu

e for V

.

fig. 5

1 - V

BE

mu

ltiplier

Exe

rcise 7

: Ev

alu

ate th

e va

lues o

f VB

E a

nd

IC fo

r transisto

rs T1 a

nd

T2 in

the circu

it of

fig. 5

1, if yo

u h

av

e I =

200

mA

, b =

200, Is3 =

10 –

14 A

, Is1 = Is2 =

3´ 1

0 –

14 A

, and

R1 =

R2 =

7.5

kW.

An

swe

r

Solu

tion

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

49 o

f 73

09/3

0/2

008 1

1:1

4 P

M

A d

ifferent v

ersion

of th

e V

BE

mu

ltiplier, freq

uen

t in IC

Op

Am

p

circuits (n

amely

in th

e very

com

mo

n 7

41) is d

epicted

in fig. 5

2.

fig. 5

2 - A

no

ther V

BE

mu

ltiplier

7.1

.4. U

nd

ersta

nd

ing

the

VBE

mu

ltiplie

r

We h

ave seen

that th

e role o

f the V

BE

amp

lifier is to su

ply

the b

iaising v

oltage to

the o

utp

ut tran

sistor

pair, i.e. th

e role o

f a constan

t voltage so

urce. T

his ro

le is better p

layed

if the resistan

ce seen b

etween

the m

ultip

lier termin

als is very

small. T

his m

eans th

at, from

a signal p

oin

t of v

iew, th

e two

bases are

short-circu

ited.

Let’s n

ow

com

pute its v

alue fo

r the circu

it of fig. 5

1. T

he eq

uiv

alent circu

it to co

mp

ute th

e resistance

valu

e is given

in fig. 5

3.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

50 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 5

3 - E

valu

ation

of th

e VB

E m

ultip

lier ou

tpu

t resistance

The v

alue o

f the resistan

ce is

and

its evalu

ation

is left as an exercise. W

ith th

e valu

es given

for E

xercise 7 th

e result is R

o @

432

W.

This is a sm

all valu

e when

com

pared

with

rp

for tran

sistors T

1 and T

2 .

Exe

rcise 8

: Com

pute

the v

alu

e o

f the resista

nce

seen b

etween

the term

inals

of th

e V

BE

multip

lier from

fig. 5

2, if b

= 2

00, IC

4 = 1

6 m

A, IC

3 = 1

60

mA

and

R =

40

kW , u

sing

the sim

plified

p m

odel fo

r the tra

nsisto

rs.

An

swe

r

Solu

tion

So, it is an

acceptab

le app

roxim

ation

to co

nsid

er the V

BE

multip

lier as an id

eal constan

t voltage so

urce

and

the v

oltage fo

llow

er pair b

ehav

es like a sim

ple em

itter follo

wer an

d so

its voltage gain

Av @

1 an

d

Ri =

rp

+ (b

+ 1

) RL.

In fact, th

e situ

ation

dep

arts fro

m th

is id

eal result m

ainly

becau

se th

e o

utp

ut stage

has

frequen

tly to

han

dle

large sign

als w

hich

mean

s th

at both

the v

oltage

gain an

d th

e in

put resistan

ce v

ary sign

ificantly

alon

g the sign

al swin

g, becau

se both

rp

and b

are a functio

n o

f the co

llector cu

rrent.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

51

of 7

309/3

0/2

008 1

1:1

4 P

M

How

ever, as th

e inp

ut resistan

ce variatio

n affects th

e voltage gain

of th

e preced

ing stage in

the in

verse

sense, th

e chan

ge of r

p

is fairly co

mp

ensated

; there rem

ains th

e variatio

n o

f b b

ut th

is is norm

ally m

uch

less significan

t.

Cascad

ing th

e three stages th

at we h

ave an

alysed

(the d

ifferential p

air, the h

igh v

oltage gain

stage – e.g.

CC

-CE

– an

d th

e v

oltage

com

plem

entary

pair, w

e o

btain

a co

mp

lete am

plifier th

at has

the n

ecessary

characteristics to

build

an O

pA

mp

(fig. 54).

fig. 5

4 - B

lock

diag

ram o

f an am

plifier o

f the O

pA

mp

typ

e

How

ever, o

ne o

f the ch

aracteristics that w

e hav

e on

ly scratch

ed is th

e inp

ut resistan

ce that sh

ould

be

high

for each

stage that w

e analy

sed. In

the fo

llow

ing ch

apter w

e will go

furth

er in th

is respect.

8. G

ettin

g a

hig

h in

pu

t imp

ed

an

ce

Let u

s start by

review

ing so

me b

asic transisto

r configu

rations th

at can lead

to h

igh in

put im

ped

ance.

The

BJT

CE

as w

ell as th

e F

ET

CG

configu

ration

s are

to b

e exclu

ded

, due

to th

e fact th

at Ri is

inev

itably

low

(@ 1

/gm

).

In th

e remain

ing co

nfigu

rations, w

hen

there is th

e gate of an

FE

T as in

put term

inal, R

i is very

high

but,

due to

a smaller g

m, th

e FE

Ts, in

general, d

isplay

a smaller gain

.

The C

C co

nfigu

ration

presen

ts a high

inp

ut resistan

ce but a u

nit v

oltage gain

. Therefo

re, when

ever w

e

need

a high

er voltage gain

it is frequ

ently

associated

to a C

E.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

52 o

f 73

09/3

0/2

008 1

1:1

4 P

M

The C

E co

nfigu

ration

with

an em

itter resistor h

as also a h

igher R

i and

a moderate v

oltage gain

and

it is

som

etimes

a u

seful m

ontage

when

the

circuit

requirem

ents

are n

ot v

ery d

eman

din

g. Am

ong

the

configu

rations

we

hav

e b

een seein

g to

beh

ave

as in

put

stages w

ith m

oderate

gain, in

the

CE

configu

ration, R

i equals

rp

. Hav

ing a

differen

tial pair in

creases it to

2 rp

and

even

with

a d

ifferential

cascode it is at m

ost 4

rp . Is th

is enough

?

8.1

. Th

e C

E in

pu

t resista

nce

The v

alue o

f rp

is

which

mean

s th

at its v

alue d

epen

ds u

pon

the co

llector cu

rrent. If w

e k

eep IC

low

enough

, rp

can b

e

fairly h

igh.

Let’s tak

e as an exam

ple b

= 2

00 an

d IC

= 1

0 m

A, an

d w

e will h

ave:

If we h

ave a d

ifferential p

air in w

hich

both

transisto

rs hav

e the ab

ove static v

alues, R

id = 1

MW

.

We sh

ould

bear in

min

d th

at we h

ave alw

ays ign

ored

rm. T

hat can

be d

one if R

L is

not v

ery large.

How

ever, if w

e w

ant to

hav

e v

ery h

igh v

oltage

gain, R

L m

ay b

e v

ery large

and

rm m

ay h

ave to

be

consid

ered. T

ake th

e examp

le of fig. 5

5 to

evalu

ate Ri .

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

53 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 5

5 - E

valu

ation

of th

e com

mo

n em

itter inp

ut resistan

ce

The v

alue w

e get is

which

is left to b

e obtain

ed as an

exercise. In an

y case

becau

se gm

R’L

is high

. Indeed

, if for in

stance IC

= 1

0 m

A, V

A =

10

0 V

, b =

200

and

RL

is high

, close

to r

o , gm

R’L

= 2

000.

Then

It can b

e show

n th

at rm

³ b

ro an

d fo

r modern

IC B

JTs, r

m

@ 1

0 b

ro .

Tak

ing again

, for sim

plicity

, RL =

ro , w

e get:

and so

,

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

54 o

f 73

09/3

0/2

008 1

1:1

4 P

M

How

ever, fo

r the m

inim

um

valu

e of r

m

, i.e., rm

= b

ro , we get:

and

We m

ay co

nclu

de th

at when

we h

ave a v

ery h

igh gain

, the M

iller effect over r

m

may

redu

ce the in

put

resistance b

y an

app

reciable am

oun

t.

It should

be stressed

, how

ever, th

at this

effect is n

ot p

resent in

oth

er configu

rations, n

amely

in th

e

cascode.

8.2

. De

crea

sing

the

inp

ut re

sistan

ce o

f the

em

itter fo

llow

er d

ue

to th

e b

ase

bia

sing

resisto

rs

The

top

ic th

at w

e w

ill now

discu

ss is

not m

uch

relevan

t in

integrated

Op

Am

ps, w

here

the

biasin

g sch

eme

is n

orm

ally

obtain

ed w

ith cu

rrent so

urces

and

curren

t mirro

rs. In d

iscrete

circuits, h

ow

ever, circu

its are

com

monly

biased

thro

ugh

voltage

div

iders.

Let’s co

nsid

er the circu

it in fig. 5

6, w

here T

is a simp

le transisto

r

but w

hich

, in o

ther circu

its, migh

t be a D

arlingto

n co

nfigu

ration.

fig. 5

6 - F

ollo

wer em

itter inp

ut resistan

ce

The tran

sistor in

put resistan

ce, RiT

, is

and

may

be

very

high

. For in

stance, if

b =

100

, IC =

1 m

A an

d R

E =

10

kW, w

e w

ill hav

e:

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

55 o

f 73

09/3

0/2

008 1

1:1

4 P

M

How

ever, th

e “real” in

put resistan

ce for th

e circuit is:

which

mean

s that to

hav

e Ri @

RiT

, we h

ave to

cho

ose R

B >

> R

iT . If, fo

r instan

ce, RB =

10 M

W, R

1

and R

2 had

to b

e extremely

large and

the T

hév

enin

vo

ltage

wou

ld h

ave q

uite an

unusu

al valu

e!

Let’s

now

consid

er the circu

it of fig. 5

7(a) as

well as, in

fig. 57(b

), its sm

all signal eq

uiv

alent, w

here

RB =

R1 // R

2 .

fig. 5

7 - F

ollo

wer em

itter with

bo

otstrap

efect; (a) simp

lified sch

ematic;

(b) sm

all sign

al equ

ivalen

t

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

56 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Ap

ply

ing

the

Miller’s

theo

rem to

R3

we

get the resu

lt dep

icted in

fig. 58, w

here

Av

is th

e v

oltage

gain, sligh

tly sm

aller th

an

one, i.e.,

.

Therefo

re

will

be

very

high

and R

i @ R

iT.

fig. 5

8 - A

pp

lyin

g th

e Miller’s th

eorem

to th

e fig. 5

7 (b

) schem

atic

This effect, w

hen

Av ®

+1, is k

now

n as b

oo

tstrap.

It should

also b

e noted

that th

e valu

e of th

e gain an

d th

e inp

ut resisto

r should

take in

to acco

unt th

at the

effective em

itter load

is not o

nly

RE, b

ut also

RB

and

. T

his last v

alue is also

very

high

and ... n

egative!

Let’s

now

recall that w

hen

we h

ave th

e p

arallel of R

, a fin

ite an

d p

ositiv

e resistan

ce, with

R’, w

hich

may

vary

from

‑¥ to

, its valu

e varies acco

rdin

g to fig. 5

9.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

57 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 5

9 - V

ariation

of th

e parallel o

f a po

sitive an

d fin

ite resistance w

ith an

arbitrary

on

e

So, as

RE // R

B h

as n

orm

ally a

mod

erate v

alue, its

parallel w

ith a

very

high

negativ

e resistan

ce is

only

slightly

larger than

RE

// RB .

We sh

ould

also n

ote

that p

ositiv

e an

d n

egative resistan

ce is

quite

norm

al if we are

talkin

g o

f dy

nam

ic

valu

es o

r imp

edan

ce in

stead o

f resistance. A

n in

finite

imp

edan

ce is

obtain

ed, fo

r instan

ce, with

a

parallel reso

nan

t L / C

circuit, w

hich

is an illu

stration

of th

is if we tak

e Z in

stead o

f R.

By

bootstra

ppin

g th

e biasin

g resistors w

e achiev

e a very

high

inp

ut resistan

ce, similar to

the o

ne w

e see

at te base o

f the em

itter follo

wer.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

58 o

f 73

09/3

0/2

008 1

1:1

4 P

M

It is in

teresting to

see h

ow

far can w

e go

in

increasin

g th

e in

put resistan

ce. If R

E is

the

emitter resisto

r, we h

ave th

e circuit o

f fig. 60

.

We can

then

write

where

it can b

e seen

that r

m

puts

a lim

it to

the m

aximum

valu

e of th

e inp

ut resistan

ce.

fig. 6

0 –

Inp

ut resistan

ce of a co

mm

on

collecto

r with

bo

otstrap

effect

Fro

m th

e preced

ing an

alysis w

e can d

raw a n

um

ber o

f conclu

sions co

ncern

ing th

e pro

cedure to

adop

t to

achiev

e a high

resistance at th

e differen

tial inp

ut o

f an am

plifier w

ith a ty

pical O

pA

mp

structu

re:

Usin

g BJT

s at the in

put stage, to

achiev

e a high

inp

ut resistan

ce we sh

ou

ld u

se very

low

biasin

g

curren

ts. In th

e 741 O

pA

mp

, this v

alue is ap

pro

ximately

10 m

A.

The u

se o

f small em

itter resistors

also in

creases th

e in

put resistan

ce, but it red

uces

the v

oltage

gain. H

ow

ever in

precisio

n O

pA

mp

s, which

no

rmally

hav

e a second

differen

tial amp

lifier, the u

se

of em

itter resistors

is q

uite

com

mon. A

noth

er alternativ

e is

to u

se D

arlingto

n co

nfigu

rations at

the in

put b

ut it h

arms th

e ban

dw

idth

.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

59 o

f 73

09/3

0/2

008 1

1:1

4 P

M

A sim

ilar solu

tion

is used

in th

e secon

d

differen

tial

stage

of

p

recision

Op

Am

ps, an

d it co

nsists

of attack

ing

it w

ith em

itter fo

llow

ers w

ith activ

e

load

s (fig. 61).

This

w

ay

we

get

a

high

in

pu

t

resistance

as

w

ell

as

a

bro

ad

ban

dw

idth

.

Fin

ally, u

sing

FE

Ts

instead

of B

JTs

pro

vid

es

a

much

high

er

inp

ut

resistance

and

it is co

mm

on

that ev

en

in b

ipolar tech

nolo

gy, to

hav

e JF

ET

s

at the in

put o

f the O

pA

mp

.

fig. 6

1 - E

xam

ple o

f a secon

d d

ifferential stag

e used

in

precisio

n O

pA

mp

s

9. A

na

lysis o

f a ty

pica

l thre

e sta

ge

Op

Am

p (m

A7

41

)

One o

f the m

ost ty

pical th

ree stage

bip

olar O

pA

mp

s is

certainly

the m

A741

dev

elop

ed b

y F

airchild

but p

roduced

, today

, by

a large nu

mber o

f differen

t bran

ds. It is a gen

eral-purp

ose h

igh gain

Op

Am

p,

usefu

l for lo

w freq

uen

cy ap

plicatio

ns.

Its intern

al architectu

re disp

lays m

ost o

f the co

nven

tional IC

stages that w

e hav

e been

study

ing.

The first stage

is a

differen

tial pair u

sing co

mp

lemen

tary casco

de m

ontages

(T1 to

T4 ) h

avin

g as

an

active lo

ad a n

pn cu

rrent m

irror w

ith b

ase curren

t com

pen

sation (T

5 to T

7 ).

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

60 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 6

2 –

Intern

al schem

atic of th

e mA

74

1 O

pA

mp

The C

C-C

B casco

de co

nfigu

ration p

rovid

es a large ban

dw

idth

with

small in

put cap

acitance.

The in

put resistan

ce is

also h

igher (ap

pro

ximately

the d

ouble) th

an w

hat w

ou

ld resu

lt from

a sim

ple

differen

tial pair w

ith id

entical b

ias curren

ts.The in

termed

iate stage uses a C

C-C

E m

ontage (T

16 to

T1

7 )

hav

ing h

igh in

put resistan

ce, high

gain an

d a go

od

frequen

cy resp

onse. T

he 3

0 p

F cap

acitor co

nnected

betw

een in

put an

d o

utp

ut o

f this

stage p

rovid

es, as w

ill be

seen later o

n, a

Miller (p

ole

splittin

g)

com

pen

sation, gu

aranty

ing an

unco

nditio

nal stab

ility.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

61

of 7

309/3

0/2

008 1

1:1

4 P

M

The o

utp

ut stage

has

the ad

equate

high

inp

ut resistan

ce an

d lo

w o

utp

ut o

ne as

well as

good

curren

t

source an

d sin

k cap

acity.

In th

is way

, the fu

ndam

ental cell o

f this stage is th

e emitter fo

llow

er com

plem

entary

pair (T

14 to

T2

0 )

with

crosso

ver d

istortio

n co

mp

ensatio

n (T

18 , T

19 an

d R

10 ). T

his

stage is

preced

ed b

y an

oth

er single

transisto

r CE

(T2

3 ) that is u

sed as a b

uffer b

etween

the seco

nd

and th

e outp

ut stages.

Circu

it bias cu

rrents are, as u

sual, p

rovid

ed b

y a set o

f curren

t mirro

r configu

rations. T

11 , T

12 an

d R

5

establish

the v

alue o

f the cu

rrent th

at is mirro

red b

y T

10 . T

he co

nnectio

n to

the b

ase of T

3 and

T4 an

d

the T

8 -T9 m

irror, estab

lish th

e curren

ts in th

e differen

tial pair th

rough

a feedback

loop

.

The referen

ce curren

t is also m

irrored

from

T1

2 to th

e double co

llector tran

sistor T

13 w

hich

can b

e seen

as two in

dep

enden

t transisto

rs T1

3A

and T

13

B.

The 7

41

Op

Am

p h

as still a

set of extra

transisto

rs (T

15 , T

21 , T

22 an

d T

24 ) th

e ro

le o

f which

is to

pro

tect the d

evice fro

m d

amagin

g ou

tput sh

ort circu

its.

Term

inal A

and

B are

used

for o

ffset com

pen

sation

, by

mean

s o

f a 1

0 k W

poten

tiom

eter connected

betw

een A

and B

and th

e mid

dle p

oin

t connected

to

.

In th

e remain

ing an

alysis, w

e will tak

e, for all th

e transisto

rs (except T

21 , T

22 an

d T

24 th

at hav

e a three

times larger area), IS =

10

-14A

.

The to

tal area of T

3 is still the sam

e but sp

lit unev

enly

betw

een th

e two

com

ponen

ts: three fo

urth

s to

T1

3B

and th

e remain

ing fo

urth

to T

13

A. T

herefo

re

IS1

3A

= 0

.25 ´

10

-14 A

and IS

13

B =

0.7

5 ´

10

-14 A

.

Furth

ermore, w

e will tak

e, for n

pn tran

sistors,

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

62 o

f 73

09/3

0/2

008 1

1:1

4 P

M

b =

200 an

d V

A =

125 V

and fo

r pnp

b =

50 an

d V

A =

50 V

Fin

ally b

oth

for D

C an

d A

C an

alysis, alth

ough

we o

nly

loo

k at th

e in

ternal circu

it, we w

ill alway

s

adm

it that a n

egative feed

back

loop

is closed

so th

at the D

C o

utp

ut v

oltage is essen

tially z

ero an

d all

the tran

sistors are in

the activ

e region.

9.1

. DC

an

aly

sis

Let th

e sup

ply

voltages b

e ± 1

5 V

and

both

inp

uts co

nnected

to gro

und.

Fro

m fig. 6

3

and I1

1 = IR

EF .

which

results in

Sy

mm

etrically IC

1 = IC

2 = I an

d as b

N >

> 1

we h

ave:

fig. 6

3 - R

eference cu

rrent

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

63 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Fro

m fig. 6

4 w

e may

conclu

de I9

@ I8

@ 2

I

and

and fin

ally I1 =

I2 @

I3 = I4 =

9.5

mA

.

Tran

sistors

T1

to T

4 , T8

and

T9

establish

a n

egative

feedb

ack

loop

that stab

ilises I to a v

alue ap

pro

ximately

equal to

I10 / 2

. In

fact, if for so

me reaso

n I in

creases, we’ll su

ccessively

hav

e

I8

Þ I9

and as I1

0 has a co

nstan

t valu

e

IB

3 = I

B4

Þ I3 =

I4 = I1 =

I2 = I

fig. 6

4 - B

ias curren

t of th

e differen

tial pair

The

curren

ts in

the

mirro

r that lo

ads

the

differen

tial

pair

are I5 @

I6 @ I, as

can b

e seen

in fig. 6

5 an

d

disregard

ing b

oth

IB1

6 and IB

7 .

On th

e oth

er han

d:

where

This sh

ow

s that IB

7 is indeed

very

small.

fig. 6

5 - C

urren

ts in th

e mirro

r

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

64 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Let’s n

ow

analy

se the seco

nd stage (fig. 6

6).

Igno

ring IB

23 ,

we h

ave I1

7 @

I13

B

and as I1

3A +

I13

B =

IRE

F an

d IS

B =

3 ´

ISA

,

I13

B @

0.7

5 IR

EF =

550 m

A =

I17 th

e result o

f which

is

and

Again

, accord

ing to

ou

r app

roxim

ations, w

e hav

e IB1

6 <<

I. fig

. 66

- Cu

rrents in

the seco

nd

stage

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

65 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Fin

ally, let’s

see th

e cu

rrents

in th

e o

utp

ut stage

(fig. 67

where, b

ecause

of th

eir v

ery sm

all valu

e, we

igno

red th

e

resistors R

6 e R7 ).

If IB

14

and

IB2

0 are

app

roxim

ately z

ero w

e w

ill hav

e

I23 @

0.2

5 IR

EF =

180

mA

, and

therefo

re IB

23 =

3.6

mA

,

which

is really m

uch

smaller th

an I1

7 = 5

50 m

A.

Fro

m

we get

and

VB

E1

8 = 5

88 m

V, I1

8 = 1

65 m

A, IR

10 =

14.7

mA

and

I19 =

15.5

mA

. fig

. 67

- Cu

rrents in

the o

utp

ut stag

e

Then

and th

e poten

tial betw

een th

e base T

14 an

d o

f T2

0 is VB

B =

0.5

88 +

0.5

29 =

1.1

17 V

As

we can

see that I1

4 = I2

0 = 1

52 m

A.

9.2

. Sm

all sig

na

l an

aly

sis

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

66 o

f 73

09/3

0/2

008 1

1:1

4 P

M

In th

e small sign

al analy

sis we w

ill evalu

ate the d

ifferential v

oltage gain

, the in

put d

ifferential resistan

ce

as w

ell as th

e o

utp

ut resistan

ce. To

com

pute

the gain

we su

pp

ose

that th

e O

pA

mp

is lo

aded

with

RL =

2 kW

, since th

is is the u

sual situ

ation fo

r the gain

specificatio

n in

the d

ata sheets.

Fig. 6

8 sh

ow

s the eq

uiv

alent circu

it for lo

w freq

uen

cy sm

all signals w

here th

e active lo

ad effect o

f the

curren

t mirro

r, on th

e differen

tial pair, is rep

resented

by

a con

trolled

source v

d / 4 r

e .

fig. 6

8 –

Sm

all sign

al equ

ivalen

t circuit o

f the m

A7

41

Op

Am

p

Let’s

also rem

ark th

at the fo

llow

er pair is

represen

ted b

y a

CC

configu

ration

in w

hich

the tran

sistor

labelled

T1

4,2

0 represen

ts the co

rrespondin

g set of tran

sistors, w

hich

is a fairly accu

rate app

roxim

ation.

How

ever, th

e follo

wer p

air has to

cop

e with

large signals an

d th

erefore its gain

varies alo

ng th

e cycle.

Moreo

ver th

e fact th

at one

of th

e tran

sistors

is an

npn

while

the

oth

er is a

pnp

, is a

reason

for

asym

metry

. Let’s an

alyse h

ow

much

the gain

may

vary

:

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

67 o

f 73

09/3

0/2

008 1

1:1

4 P

M

If we h

ave IC

= 5

mA

, then

ro

14 =

25 kW

, ro

20 =

10 kW

and r

e = 5

W, fo

r both

transisto

rs, we get

A1

4 = 0

.997 an

d A

20 =

0.9

97

Whilst fo

r IC =

150 m

A, w

ith r

o1

4 = 8

33 kW

, ro

20 =

333 kW

and

re =

167 W

, for b

oth

transisto

rs, the

result w

ill be

A1

4 = 0

.923 an

d A

20 =

0.9

23

As w

e can see, tak

ing A

14

,20 @

1 is still a go

od ap

pro

ximatio

n.

T2

3 is

an em

itter follo

wer th

at responds o

nly

to sm

all signals, b

ut w

ith a

vary

ing lo

ad. T

he lo

ad m

ay

vary

as follo

ws:

Ri2

0 = 8

5 kW

- T2

0 hav

ing a co

llector cu

rrent IC

= 5

mA

and

Ri1

4 = 4

35 kW

- T1

4 with

IC =

15

0 m

A.

As R

o1

3A =

ro

13

A =

27

8 kW

, ro

23 =

278 kW

and r

e23 =

139 W

, we’ll h

ave

Therefo

re,

Ri1

4,2

0 = 8

5 kW

will resu

lt in A

23 =

0.9

97

while fo

r

Ri1

4,2

0 = 4

35 kW

leads to

A2

3 = 0

.999.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

68 o

f 73

09/3

0/2

008 1

1:1

4 P

M

Again

A2

3 @ 1

is a good ap

pro

ximatio

n.

The lim

iting situ

ations are

Ri2

3 = 5

1 (1

39+

139k//8

5k

) = 2

.70 M

W

and

Ri2

3 = 5

1 (1

39+

139k//4

35

k) =

5.4

0 M

W

Let’s tak

e the sm

allest valu

e that so

meh

ow

com

pen

sates for th

e unit gain

app

roxim

ation.

For T

17 , th

at is a CE

with

emitter resistan

ce configu

ration,

where R

o1

3B =

ro

13

B =

90.9

kW an

d r

e17 =

45 W

.

To co

mp

ute th

e resistance R

o1

7 , we n

eed th

e resistance R

o1

6 and, to

com

pute th

is one, R

o4 an

d R

o6 .

To

com

pute

Ro

4 , the b

ase n

ode o

f T3 an

d T

4 is

con

sidered

as a

virtu

al ground. T

his

is o

nly

possib

le

once th

e differen

tial gain is b

eing co

nsid

ered.

So, tak

ing in

to acco

un

t that g

m4 =

38

0 m

A/V

, rp

4

= 1

32

kW an

d r

o4 =

5.2

6

MW

,

fig. 69 sh

ow

s how

, by

stepw

ise circuit tran

sform

ations, w

e get:

Ro

4 = 5

M26+

5M

13+

2k57

@ 1

0.4

MW

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

69 o

f 73

09/3

0/2

008 1

1:1

4 P

M

fig. 6

9 - E

valu

ation

of th

e ou

tpu

t resistance R

o4

The v

alue o

f Ro

6 can again

be ev

aluated

in th

e same w

ay. In

fact, the b

ase circuit resistan

ce of T

6 , i.e.

the resistan

ce o

f the extern

al circuit is

only

19

W (co

mpute

this

valu

e a

s a

n exercise), w

hich

is v

ery

small w

hen

com

pared

to rp

6 . S

o, sin

ce gm

6 = 3

80

mA

/V, rp

6 =

526

kW an

d r

o6

= 1

3.2

MW

,

it results th

at

Ro

6 = 1

8.2

MW

.

We can

now

com

pute R

o1

6 , which

is the o

utp

ut resistan

ce of a C

C, w

ith a b

ase resistance R

o4 // R

o6 an

d

rp16

= 3

09 kW

:

Fin

ally, to

com

pute R

o1

7 , takin

g into

accoun

t that

gm

17 =

22 m

A/V

, rp17 =

9.0

9 kW

and r

o1

7 = 2

27 kW

,

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

70 o

f 73

09/3

0/2

008 1

1:1

4 P

M

and

that th

e b

ase resistan

ce is

é R

o1

6 // 50k

= 1

9.9

kW, fig. 7

0 sh

ow

s h

ow

, again b

y step

wise

circuit

transfo

rmatio

ns, w

e get:

Ro

17 =

100+

157k

+227k =

384 kW

fig. 7

0 - E

valu

ation

of th

e ou

tpu

t resistance R

o1

7

Therefo

re A1

7 = -4

93 V

/V.

We also

wan

t to get th

e valu

e of

Ri1

7 = 9

k09+

20

1´100 =

29.2

kW

T1

6 is

a C

C m

ontage, b

ut as

the co

llector cu

rrent is

very

small, w

ill disp

lay a

high

valu

e fo

r re . W

e

shou

ld m

ake su

re that th

e valu

e doesn

’t dep

art very

much

from

unity

:

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

71

of 7

309/3

0/2

008 1

1:1

4 P

M

where r

o1

6 = 7

.72 M

W an

d r

e16 =

1.5

4 kW

,

therefo

re A1

6 = 0

.923.

The in

put resistan

ce is:

Ri1

6 = 2

01 [1

k5

4+

(7M

72

//50k//2

9k2)] =

4.0

0 M

W

Fin

ally, fo

r the d

ifferential p

air we h

ave:

where r

e = 2

.63 kW

(app

roxim

ately co

mm

on to

T1 –

T4 ).

It results th

at A1 =

-474 V

/V

and fin

ally

Ad =

-474 ´

0.9

23 ´

(-493

) = -2

16

000 V

/V.

To co

mp

ute R

id is trivial. R

eportin

g to fig. 6

8, w

e can see th

at

Rid =

4 (b

N +

1) r

e = 2

.1 M

W.

On

the o

ther h

and, co

mp

utin

g Ro , i.e., th

e outp

ut resistan

ce of th

e com

plem

entary

sym

metry

follo

wer

pair, can

only

be o

btain

ed as

an av

erage v

alue. In

fact, as th

e co

mp

lemen

tary p

air work

s w

ith large

signals

the

outp

ut resistan

ce w

ill dep

end

up

on

wh

ich tran

sistor is

conductin

g as

well as

up

on

its

curren

t.

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

72 o

f 73

09/3

0/2

008 1

1:1

4 P

M

If T2

0 is sup

ply

ing th

e curren

t

where

As r

o1

8 is very

small co

mp

ared to

ro

13

A (2

78 kW

), we w

ill hav

e

Ro =

re2

0 + 3

4 +

27

The v

alue o

f re2

0 dep

ends critically

on th

e curren

t.

For IC

= 1

50 m

A r

e = 1

67 W

while fo

r IC =

5 m

A r

e = 5

W, as seen

abo

ve.

Therefo

re, the v

alue can

vary

betw

een 6

6 an

d 2

28 W

. The d

ata sheets sp

ecify th

e valu

e 75 W

.

free

hit c

ou

nte

rs

Multistage

Diff

ere

ntial A

mplifi

ers

http

://pagin

as.fe.u

p.p

t/%7E

fff/e

Book/M

DA

/MD

A.h

tml

73 o

f 73

09/3

0/2

008 1

1:1

4 P

M