56
Multiscale analysis of dislocations Adriana Garroni Sapienza, Universit` a di Roma ”Mathematical challenges motivated by multi-phase materials: Analytic, stochastic and discrete aspects” Anogia, Crete June 22 - 26, 2009 Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 1 /21

Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

Multiscale analysis of dislocations

Adriana Garroni

Sapienza, Universita di Roma

”Mathematical challenges motivated by multi-phase materials:Analytic, stochastic and discrete aspects”

Anogia, CreteJune 22 - 26, 2009

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 1 /21

Page 2: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

Elastic vs Plastic deformations

Single crystal Elastic deformation (reversible)

Elasto-plastic deformation Permanent deformation

The plastic deformation is due to slips on slip planes

In terms of the displacement u we can write

Du = ∇uL3 + ([u]⊗ n) dH2 Σ

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 2 /21

Page 3: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

Elastic vs Plastic deformations

Single crystal Elastic deformation (reversible)

Elasto-plastic deformation Permanent deformation

The plastic deformation is due to slips on slip planes

In terms of the displacement u we can write

Du = ∇uL3 + ([u]⊗ n) dH2 Σ

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 2 /21

Page 4: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS

NOTE: The slip in general is not uniform ⇐⇒ DEFECTS (dislocations)

Dislocations are line defects in crystals (topological defects)At the microscopic level:

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21

Page 5: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS

NOTE: The slip in general is not uniform ⇐⇒ DEFECTS (dislocations)

Dislocations are line defects in crystals (topological defects)At the microscopic level:

Dislocation coreBurgers circuit

Burgers vector

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21

Page 6: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS

NOTE: The slip in general is not uniform ⇐⇒ DEFECTS (dislocations)

Dislocations are line defects in crystals (topological defects)At the microscopic level:

Dislocation coreBurgers circuit

Burgers vector

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21

Page 7: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS

NOTE: The slip in general is not uniform ⇐⇒ DEFECTS (dislocations)

Dislocations are line defects in crystals (topological defects)At the microscopic level:

Dislocation coreBurgers circuit

Burgers vector

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21

Page 8: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS

NOTE: The slip in general is not uniform ⇐⇒ DEFECTS (dislocations)

Dislocations are line defects in crystals (topological defects)At the microscopic level:

Dislocation coreBurgers circuit

Burgers vector

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21

Page 9: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS

NOTE: The slip in general is not uniform ⇐⇒ DEFECTS (dislocations)

Dislocations are line defects in crystals (topological defects)At the microscopic level:

Dislocation coreBurgers circuit

Burgers vector

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21

Page 10: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

TOPOLOGICAL SINGULARITIES OF THE STRAIN

We can identify dislocations using the decomposition of the deformationgradient

Du = ∇uL3 + ([u]⊗ n) dH2 Σ = βe + βp

- where [u] is the jump of the displacement along the slip plane Σ- ∇u is the absolutely continuous part of the gradient

In presence of dislocations

Curl∇u = −(∇τ [u] ∧ n) dH2 Σ = µ 6= 0

µ is the dislocations density

Then dislocations can be understood as

I singularities of the Curl of the elastic strain

I regions where the slip is not uniform

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 4 /21

Page 11: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

TOPOLOGICAL SINGULARITIES OF THE STRAIN

We can identify dislocations using the decomposition of the deformationgradient

Du = ∇uL3 + ([u]⊗ n) dH2 Σ = βe + βp

- where [u] is the jump of the displacement along the slip plane Σ- ∇u is the absolutely continuous part of the gradient

In presence of dislocations

Curl∇u = −(∇τ [u] ∧ n) dH2 Σ = µ 6= 0

µ is the dislocations density

Then dislocations can be understood as

I singularities of the Curl of the elastic strain

I regions where the slip is not uniform

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 4 /21

Page 12: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

TOPOLOGICAL SINGULARITIES OF THE STRAIN

We can identify dislocations using the decomposition of the deformationgradient

Du = ∇uL3 + ([u]⊗ n) dH2 Σ = βe + βp

- where [u] is the jump of the displacement along the slip plane Σ- ∇u is the absolutely continuous part of the gradient

In presence of dislocations

Curl∇u = −(∇τ [u] ∧ n) dH2 Σ = µ 6= 0

µ is the dislocations density

Then dislocations can be understood as

I singularities of the Curl of the elastic strain

I regions where the slip is not uniform

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 4 /21

Page 13: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

Why dislocations are importantDislocations in crystals favor the slip =⇒ Plastic behaviour

(Caterpillar, Lloyd, Molina-Aldareguia 2003)

(Crease on a carpet, Cacace 2004)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 5 /21

Page 14: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DIFFERENT SCALES ARE RELEVANT

Microscopic- Atomistic description

Mesoscopic- Lines carrying an energy

- Interaction, LEDS, Motion...

Macroscopic- Plastic effect

- Dislocation density, Strain gradient theories...

Objective: 3D DISCRETE −→ CONTINUUM POSSIBLE DISCRETE MODELS

Ariza - Ortiz, ARMA 2005

Luckhaus - Mugnai, preprint.

Collaborations: S. Cacace, P. Cermelli, S. Conti, M. Focardi, C. Larsen, G. Leoni,

S. Muller, M. Ortiz, M. Ponsiglione.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 6 /21

Page 15: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DIFFERENT SCALES ARE RELEVANT

Microscopic- Atomistic description

Mesoscopic- Lines carrying an energy

- Interaction, LEDS, Motion...

Macroscopic- Plastic effect

- Dislocation density, Strain gradient theories...

Objective: 3D DISCRETE −→ CONTINUUM POSSIBLE DISCRETE MODELS

Ariza - Ortiz, ARMA 2005

Luckhaus - Mugnai, preprint.

Collaborations: S. Cacace, P. Cermelli, S. Conti, M. Focardi, C. Larsen, G. Leoni,

S. Muller, M. Ortiz, M. Ponsiglione.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 6 /21

Page 16: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DIFFERENT SCALES ARE RELEVANT

Microscopic- Atomistic description

Mesoscopic- Lines carrying an energy

- Interaction, LEDS, Motion...

Macroscopic- Plastic effect

- Dislocation density, Strain gradient theories...

Objective: 3D DISCRETE −→ CONTINUUM POSSIBLE DISCRETE MODELS

Ariza - Ortiz, ARMA 2005

Luckhaus - Mugnai, preprint.

Collaborations: S. Cacace, P. Cermelli, S. Conti, M. Focardi, C. Larsen, G. Leoni,

S. Muller, M. Ortiz, M. Ponsiglione.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 6 /21

Page 17: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DIFFERENT SCALES ARE RELEVANT

Microscopic- Atomistic description

Mesoscopic- Lines carrying an energy

- Interaction, LEDS, Motion...

Macroscopic- Plastic effect

- Dislocation density, Strain gradient theories...

Objective: 3D DISCRETE −→ CONTINUUM POSSIBLE DISCRETE MODELS

Ariza - Ortiz, ARMA 2005

Luckhaus - Mugnai, preprint.

Collaborations: S. Cacace, P. Cermelli, S. Conti, M. Focardi, C. Larsen, G. Leoni,

S. Muller, M. Ortiz, M. Ponsiglione.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 6 /21

Page 18: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

We have an almost complete analysis under different scales (mesoscopicand macroscopic) for special geometries.

MESOSCOPICI Cilindrical geometry (dislocations are points)

I Screw dislocations - Burgers vector parallel to the dislocation line -(Ponsiglione, ’06)

I Edge dislocations - Burgers vector orthogonal to the dislocation line -(Cermelli and Leoni ’05)

I Only one slip plane (dislocations are lines on a given slip plane)I A phase field approach for a generalized Nabarro-Peierls model (the

phase is the jump along the slip plane and the energy is a Cahn-Hilliardtype energy with non-local singular perturbation and infinitely manywells potential)(G.- Muller ’06, Cacace-G ’09, Conti-G.-Muller preprint)

All the results above are based on the analysis of a ”semi-discrete” model.

El Hajj, Ibrahim and Monneau for the 1D multiscale analysis for the dynamics.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 7 /21

Page 19: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

THE DISCRETE MODEL (Ariza-Ortiz, ARMA 2005)

For simplicity we consider the cubic lattice.

E(u, βp) =3X

i,j=1

Xl, l′∈lattice bonds

1

2Bij(l − l ′)(dui (l)− βp i (l))(duj(l ′)− βpj(l ′))

- u = displacements of the atoms;- du(l) = discrete gradient along the bond l ;- βp = eigen-deformation induced by dislocations (defined on bonds).

βp = b ⊗m

where b ∈ Z3 (Burgers vectors) and m ∈ Z3 (normal to the slip plane)

Four-point interaction energy with interaction coefficients Bij(l − l ′) with finite range.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 8 /21

Page 20: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PARTICULAR CASE: Anti-plane problem (screw dislocations)

Scalar (vertical) displacement u : Z2 ∩ Ω→ R. Take atwo-point interaction discrete energy

Ediscr(u, βp) =X<i,j>

|u(i)− u(j)− βp(< i , j >)|2

Dislocations are introduced through the plastic strainβp : bonds → Z.

Minimizing w.r.t. βp

minβp

Ediscr(u, βp) = Ediscr(u) =X<i,j>

dist2(u(i)− u(j),Z)

Note: βp corresponds to the projection of du on integers.

Remark: βp in general is not a discrete gradient. We candefine a discrete Curl of βp, denoted by dβp, and

α = dβp

is the discrete dislocation density

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 9 /21

Page 21: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PARTICULAR CASE: Anti-plane problem (screw dislocations)

Scalar (vertical) displacement u : Z2 ∩ Ω→ R. Take atwo-point interaction discrete energy

Ediscr(u, βp) =X<i,j>

|u(i)− u(j)− βp(< i , j >)|2

Dislocations are introduced through the plastic strainβp : bonds → Z.

Minimizing w.r.t. βp

minβp

Ediscr(u, βp) = Ediscr(u) =X<i,j>

dist2(u(i)− u(j),Z)

Note: βp corresponds to the projection of du on integers.

Remark: βp in general is not a discrete gradient. We candefine a discrete Curl of βp, denoted by dβp, and

α = dβp

is the discrete dislocation density

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 9 /21

Page 22: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PARTICULAR CASE: Anti-plane problem (screw dislocations)

Scalar (vertical) displacement u : Z2 ∩ Ω→ R. Take atwo-point interaction discrete energy

Ediscr(u, βp) =X<i,j>

|u(i)− u(j)− βp(< i , j >)|2

Dislocations are introduced through the plastic strainβp : bonds → Z.

Minimizing w.r.t. βp

minβp

Ediscr(u, βp) = Ediscr(u) =X<i,j>

dist2(u(i)− u(j),Z)

Note: βp corresponds to the projection of du on integers.

Remark: βp in general is not a discrete gradient. We candefine a discrete Curl of βp, denoted by dβp, and

α = dβp

is the discrete dislocation density

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 9 /21

Page 23: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PARTICULAR CASE: Anti-plane problem (screw dislocations)

Scalar (vertical) displacement u : Z2 ∩ Ω→ R. Take atwo-point interaction discrete energy

Ediscr(u, βp) =X<i,j>

|u(i)− u(j)− βp(< i , j >)|2

Dislocations are introduced through the plastic strainβp : bonds → Z.

Minimizing w.r.t. βp

minβp

Ediscr(u, βp) = Ediscr(u) =X<i,j>

dist2(u(i)− u(j),Z)

Note: βp corresponds to the projection of du on integers.

Remark: βp in general is not a discrete gradient. We candefine a discrete Curl of βp, denoted by dβp, and

α = dβp

is the discrete dislocation density

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 9 /21

Page 24: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

SEMI-DISCRETE ANALYSIS FOR SCREW DISLOCATIONS - Ponsiglione ’07

One consider a cylindrical symmetry and we fix Ω ⊂ R2 the cross section

Ω

• xi = cross section of a dislocation• ε = core radius ∼ lattice spacing

• Fix a distribution of dislocations

µ =X

i

ξiδxi

with ξi ∈ Z.• Consider a strain field β satisfyingZ

∂Bε(xi )

β · t ds = ξi

andCurlβ = 0 in Ω \ ∪iBε(xi )

• Elastic Energy (Linearized)

Eε(µ, β) =

|β|2 dx

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 10 /21

Page 25: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

SEMI-DISCRETE ANALYSIS FOR SCREW DISLOCATIONS - Ponsiglione ’07

One consider a cylindrical symmetry and we fix Ω ⊂ R2 the cross section

Ω

xi

• xi = cross section of a dislocation

• ε = core radius ∼ lattice spacing

• Fix a distribution of dislocations

µ =X

i

ξiδxi

with ξi ∈ Z.

• Consider a strain field β satisfyingZ∂Bε(xi )

β · t ds = ξi

andCurlβ = 0 in Ω \ ∪iBε(xi )

• Elastic Energy (Linearized)

Eε(µ, β) =

|β|2 dx

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 10 /21

Page 26: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

SEMI-DISCRETE ANALYSIS FOR SCREW DISLOCATIONS - Ponsiglione ’07

One consider a cylindrical symmetry and we fix Ω ⊂ R2 the cross section

Ω

Bε(xi )

• xi = cross section of a dislocation• ε = core radius ∼ lattice spacing

• Fix a distribution of dislocations

µ =X

i

ξiδxi

with ξi ∈ Z.• Consider a strain field β satisfyingZ

∂Bε(xi )

β · t ds = ξi

andCurlβ = 0 in Ω \ ∪iBε(xi )

• Elastic Energy (Linearized)

Eε(µ, β) =

|β|2 dx

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 10 /21

Page 27: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

SEMI-DISCRETE ANALYSIS FOR SCREW DISLOCATIONS - Ponsiglione ’07

One consider a cylindrical symmetry and we fix Ω ⊂ R2 the cross section

Ω

Bε(xi )

• xi = cross section of a dislocation• ε = core radius ∼ lattice spacing

• Fix a distribution of dislocations

µ =X

i

ξiδxi

with ξi ∈ Z.• Consider a strain field β satisfyingZ

∂Bε(xi )

β · t ds = ξi

andCurlβ = 0 in Ω \ ∪iBε(xi )

• Elastic Energy (Linearized)

Eε(µ, β) =

|β|2 dx

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 10 /21

Page 28: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

Γ-convergence result(in the flat norm for the dislocation density µ =

∑ξiδxi )

1

| log ε|Eε(µ) =

1

| log ε|min

”Curlβ=µ”

∫Ω|β|2dx

Γ−→ 1

∑i

|ξi |

Note: the semi-discrete analysis provides the limit of the fully discretemodelIf one consider the discrete energy as above it is also true that

1

| log ε|∑<i ,j>

dist2(u(εi)− u(εj),Z)Γ−→ 1

∑i

|ξi |

where βi ,j = arg mins∈Z|u(εi)− u(εj)− s|2 and dβi ,j =∑ξiδxi

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 11 /21

Page 29: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS VS THE GINZBURG-LANDAU FUNCTIONALBoth have topological singularities with logarithmic scaling.

In the 2D case it can be shown that the ”Screw dislocation energy” isvariationally equivalent to the Ginzburg-Landau energy for vortices(Alicandro, Cicalese, Ponsiglione, to appear) .

EssentiallyI They have the same Γ-limitI From the convergence of one it can be deduced the convergence of

the other

In the 3D case a general model for dislocations has the samephenomenology: this suggests that it can be formulated as aGizburg-Landau type energy.

• We start with the analysis of a 3D model at a continuum level(”semi-discrete”)• This will show similarity with Ginzburg-Landau models, but also morecomplexity

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 12 /21

Page 30: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

DISLOCATIONS VS THE GINZBURG-LANDAU FUNCTIONALBoth have topological singularities with logarithmic scaling.

In the 2D case it can be shown that the ”Screw dislocation energy” isvariationally equivalent to the Ginzburg-Landau energy for vortices(Alicandro, Cicalese, Ponsiglione, to appear) .

EssentiallyI They have the same Γ-limitI From the convergence of one it can be deduced the convergence of

the other

In the 3D case a general model for dislocations has the samephenomenology: this suggests that it can be formulated as aGizburg-Landau type energy.

• We start with the analysis of a 3D model at a continuum level(”semi-discrete”)• This will show similarity with Ginzburg-Landau models, but also morecomplexity

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 12 /21

Page 31: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

3D SEMI-DISCRETE ANALYSIS (Conti-G.-Ortiz, in preparation)

• Dislocations are identified with measures concentrated on curves γPrecisely µ ∈MB(Ω) = dislocation denities such that

µ = b ⊗ tH1 γ

with

- γ = ∪iγi , γi Lip. curves in Ω- t is the tangent vector of γ- b : γ → Z3

- Divµ = 0

loops

b

t

b1+ b2

b1 b2

• The elastic strain associate to µ, β ∈ Adε(µ) = admissible strains, such that

β : Ω ⊆ R3 → R3×3 β ∈ L2(Ω) ”Curlβ = µ” (Curlβ = µ ? ϕε)

The Elastic Energy

Eε(β, µ) =

〈Cβ, β〉 dx µ ∈MB(Ω) β ∈ Adε(µ)

with C the elastic tensor (〈Cβ, β〉 ≥ C |βsym|2)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 13 /21

Page 32: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

3D SEMI-DISCRETE ANALYSIS (Conti-G.-Ortiz, in preparation)

• Dislocations are identified with measures concentrated on curves γPrecisely µ ∈MB(Ω) = dislocation denities such that

µ = b ⊗ tH1 γ

with

- γ = ∪iγi , γi Lip. curves in Ω- t is the tangent vector of γ- b : γ → Z3

- Divµ = 0

loops

b

t

b1+ b2

b1 b2

• The elastic strain associate to µ, β ∈ Adε(µ) = admissible strains, such that

β : Ω ⊆ R3 → R3×3 β ∈ L2(Ω) ”Curlβ = µ” (Curlβ = µ ? ϕε)

The Elastic Energy

Eε(β, µ) =

〈Cβ, β〉 dx µ ∈MB(Ω) β ∈ Adε(µ)

with C the elastic tensor (〈Cβ, β〉 ≥ C |βsym|2)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 13 /21

Page 33: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

3D SEMI-DISCRETE ANALYSIS (Conti-G.-Ortiz, in preparation)

• Dislocations are identified with measures concentrated on curves γPrecisely µ ∈MB(Ω) = dislocation denities such that

µ = b ⊗ tH1 γ

with

- γ = ∪iγi , γi Lip. curves in Ω- t is the tangent vector of γ- b : γ → Z3

- Divµ = 0

loops

b

t

b1+ b2

b1 b2

• The elastic strain associate to µ, β ∈ Adε(µ) = admissible strains, such that

β : Ω ⊆ R3 → R3×3 β ∈ L2(Ω) ”Curlβ = µ” (Curlβ = µ ? ϕε)

The Elastic Energy

Eε(β, µ) =

〈Cβ, β〉 dx µ ∈MB(Ω) β ∈ Adε(µ)

with C the elastic tensor (〈Cβ, β〉 ≥ C |βsym|2)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 13 /21

Page 34: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

THE GOAL: Study the asymptotics in terms of Γ-convergence for theenergy

Fε(β, µ) =1

| log ε|

∫Ω〈Cβ, β〉 dx µ ∈MB(Ω) β ∈ Adε(µ)

Subject to a diluteness condition (big loops and well separated)

γ = ∪iγi

with- γi are closed segments of length ≥ ρε >> ε ( | log ρε|

| log ε| → 0)

- If γi ∩ γj = ∅ =⇒ dist(γi , γj) > ηρε- If γi ∩ γj 6= ∅ the angle is larger than θ0 > 0.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 14 /21

Page 35: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

THE CLASSICAL STRAIN FOR INFINITE STRAIGHT DISLOCATIONS

The elastic strain is given by

β0 =1

rΓ0(θ)

and satisfiesDiv(Cβ0) = 0 Curlβ0 = b ⊗ tH1 γ in R3

1) Since Curlβ0 = 0 in R3 \ γ, then there exists u : R3 \ Σ→ R3

such that

β0 = ∇u in R3 \ Σ and [u] = b on Σ

Σ

ε

R

CR

b

γ

2)

limε→0

1

| log ε|

ZR3\Cε(γ)

〈Cβ0, β0〉 dx = limε→0

1

| log ε|

ZCR (γ)\Cε(γ)

〈Cβ0, β0〉 dx

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 15 /21

Page 36: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

THE CLASSICAL STRAIN FOR INFINITE STRAIGHT DISLOCATIONS

The elastic strain is given by

β0 =1

rΓ0(θ)

and satisfiesDiv(Cβ0) = 0 Curlβ0 = b ⊗ tH1 γ in R3

1) Since Curlβ0 = 0 in R3 \ γ, then there exists u : R3 \ Σ→ R3

such that

β0 = ∇u in R3 \ Σ and [u] = b on Σ

Σ

ε

R

CR

b

γ

2)

limε→0

1

| log ε|

ZR3\Cε(γ)

〈Cβ0, β0〉 dx = limε→0

1

| log ε|

ZCR (γ)\Cε(γ)

〈Cβ0, β0〉 dx

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 15 /21

Page 37: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

THE CLASSICAL STRAIN FOR INFINITE STRAIGHT DISLOCATIONS

The elastic strain is given by

β0 =1

rΓ0(θ)

and satisfiesDiv(Cβ0) = 0 Curlβ0 = b ⊗ tH1 γ in R3

1) Since Curlβ0 = 0 in R3 \ γ, then there exists u : R3 \ Σ→ R3

such that

β0 = ∇u in R3 \ Σ and [u] = b on Σ

Σ

ε

R

CR

b

γ

2)

limε→0

1

| log ε|

ZR3\Cε(γ)

〈Cβ0, β0〉 dx = limε→0

1

| log ε|

ZCR (γ)\Cε(γ)

〈Cβ0, β0〉 dx

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 15 /21

Page 38: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

LOWER BOUNDIdea: Optimal configurations will have the same decay, also for generaldislocations lines.

Take a sequence µε ∈MB(Ω) and βε ∈ Adε(µε)

1

| log ε|

∫Ω

〈Cβε, βε〉 dx ≥ 1

| log ε|∑

i

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβε, βε〉 dx

≥ 1

| log ε|∑

i

minCurlβ=µε

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβ, β〉 dx

=∑

i

ϕε(biε, γ

iε) ≥ c

∑i

|biε|H1(γ i

ε)

Compactness: If Fε(βε, µε) ≤ C =⇒ (up to subseq.) µε∗∑

i bi ⊗ tiH1 γi

(in the sense of 1-currents)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 16 /21

Page 39: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

LOWER BOUNDIdea: Optimal configurations will have the same decay, also for generaldislocations lines.

Take a sequence µε ∈MB(Ω) and βε ∈ Adε(µε)

1

| log ε|

∫Ω

〈Cβε, βε〉 dx ≥ 1

| log ε|∑

i

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβε, βε〉 dx

≥ 1

| log ε|∑

i

minCurlβ=µε

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβ, β〉 dx

=∑

i

ϕε(biε, γ

iε) ≥ c

∑i

|biε|H1(γ i

ε)

Compactness: If Fε(βε, µε) ≤ C =⇒ (up to subseq.) µε∗∑

i bi ⊗ tiH1 γi

(in the sense of 1-currents)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 16 /21

Page 40: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

LOWER BOUNDIdea: Optimal configurations will have the same decay, also for generaldislocations lines.

Take a sequence µε ∈MB(Ω) and βε ∈ Adε(µε)

1

| log ε|

∫Ω

〈Cβε, βε〉 dx ≥ 1

| log ε|∑

i

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβε, βε〉 dx

≥ 1

| log ε|∑

i

minCurlβ=µε

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβ, β〉 dx

=∑

i

ϕε(biε, γ

iε) ≥ c

∑i

|biε|H1(γ i

ε)

Compactness: If Fε(βε, µε) ≤ C =⇒ (up to subseq.) µε∗∑

i bi ⊗ tiH1 γi

(in the sense of 1-currents)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 16 /21

Page 41: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

LOWER BOUNDIdea: Optimal configurations will have the same decay, also for generaldislocations lines.

Take a sequence µε ∈MB(Ω) and βε ∈ Adε(µε)

1

| log ε|

∫Ω

〈Cβε, βε〉 dx ≥ 1

| log ε|∑

i

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβε, βε〉 dx

≥ 1

| log ε|∑

i

minCurlβ=µε

∫Cηρε (γ i

ε)\Cε(γ iε)

〈Cβ, β〉 dx

=∑

i

ϕε(biε, γ

iε) ≥ c

∑i

|biε|H1(γ i

ε)

Compactness: If Fε(βε, µε) ≤ C =⇒ (up to subseq.) µε∗∑

i bi ⊗ tiH1 γi

(in the sense of 1-currents)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 16 /21

Page 42: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

CELL PROBLEM FORMULA

Let γ be a segment of length 1, t its tangent vector and b ∈ Z3 we canshow that

ϕ0(b ⊗ t) := limε→0

1

| log ε|min

Curlβ=µ

∫Cηρε (γ)\Cε(γ)

〈Cβ, β〉 dx

= limε→0

1

| log ε|min

Curlβ=µ

∫C1(γ)\Cε(γ)

〈Cβ, β〉 dx

= minβ= 1

rΓ(θ) Curlβ=b⊗tH1 γ

∫S1

〈CΓ, Γ〉 ds =

∫S1

〈CΓ0, Γ0〉 ds

This is a variational characterization of what is called the pre-logarithmicfactor.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 17 /21

Page 43: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

CELL PROBLEM FORMULA

Let γ be a segment of length 1, t its tangent vector and b ∈ Z3 we canshow that

ϕ0(b ⊗ t) := limε→0

1

| log ε|min

Curlβ=µ

∫Cηρε (γ)\Cε(γ)

〈Cβ, β〉 dx

= limε→0

1

| log ε|min

Curlβ=µ

∫C1(γ)\Cε(γ)

〈Cβ, β〉 dx

= minβ= 1

rΓ(θ) Curlβ=b⊗tH1 γ

∫S1

〈CΓ, Γ〉 ds =

∫S1

〈CΓ0, Γ0〉 ds

This is a variational characterization of what is called the pre-logarithmicfactor.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 17 /21

Page 44: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

CELL PROBLEM FORMULA

Let γ be a segment of length 1, t its tangent vector and b ∈ Z3 we canshow that

ϕ0(b ⊗ t) := limε→0

1

| log ε|min

Curlβ=µ

∫Cηρε (γ)\Cε(γ)

〈Cβ, β〉 dx

= limε→0

1

| log ε|min

Curlβ=µ

∫C1(γ)\Cε(γ)

〈Cβ, β〉 dx

= minβ= 1

rΓ(θ) Curlβ=b⊗tH1 γ

∫S1

〈CΓ, Γ〉 ds =

∫S1

〈CΓ0, Γ0〉 ds

This is a variational characterization of what is called the pre-logarithmicfactor.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 17 /21

Page 45: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

CELL PROBLEM FORMULA

Let γ be a segment of length 1, t its tangent vector and b ∈ Z3 we canshow that

ϕ0(b ⊗ t) := limε→0

1

| log ε|min

Curlβ=µ

∫Cηρε (γ)\Cε(γ)

〈Cβ, β〉 dx

= limε→0

1

| log ε|min

Curlβ=µ

∫C1(γ)\Cε(γ)

〈Cβ, β〉 dx

= minβ= 1

rΓ(θ) Curlβ=b⊗tH1 γ

∫S1

〈CΓ, Γ〉 ds =

∫S1

〈CΓ0, Γ0〉 ds

This is a variational characterization of what is called the pre-logarithmicfactor.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 17 /21

Page 46: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

LACK OF LOWER SEMICONTINUITY: MICROSTRUCTUREThe line tension energy ∫

γϕ0(b(x)⊗ t(x)) dH1(x)

is not lower semi-continuous w.r.t. the weak convergence of measures(weak convergence of 1-currents).

b1+ b2 b2

b1

b1+ b2

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 18 /21

Page 47: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

LACK OF LOWER SEMICONTINUITY: MICROSTRUCTUREThe line tension energy ∫

γϕ0(b(x)⊗ t(x)) dH1(x)

is not lower semi-continuous w.r.t. the weak convergence of measures(weak convergence of 1-currents).

b1+ b2 b2

b1

b1+ b2

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 18 /21

Page 48: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

RELAXATION: The H1-elliptic envelope

The lower semicontinuous envelope of the line tension energy above isgiven by ∫

γϕ0(b(x), t(x)) dH1(x)

where ϕ0 is the H1-elliptic envelope of ϕ0 and is given by

ϕ0(b ⊗ t) = inf ∫

γ∩B1(0)ϕ0(b(x)⊗ t(x)) dH1(x) : µ ∈MB(R3) ,

supp(µ− b ⊗ tdH1 (Rt)) ⊂ B1(0).

1. ϕ0 is Lipschitz-continuous in the second argument;

2. ϕ0 is subadditive in its first argument;

Note: Using this formula one can show optimality of the lower bound.

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 19 /21

Page 49: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

THE Γ-CONVERGENCE RESULT

Theorem Under the diluteness condition

1. (compactness)If Fε(βε, µε) ≤ C =⇒ up to a subsequence µε

∗ µ = b ⊗ tH1 γ

2. (Γ-convergence)

Fε(β, µ)Γ−→

∫γϕ0(b(x)⊗ t(x)) dH1(x)

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 20 /21

Page 50: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

FINAL REMARKS

1. For ”good” discrete energies (for which we have Γ-convergence in thelinear elastic case) in presence of dislocations we obtain the same linetension limit.

2. We would like to remove the kinematic constraints (dilutedislocations)

3. There might be a Ginzburg-Landau type formulation that enforcesconcentration on lines with two difficulties:

I The energy density is anisotropic and depends only on the symmetricpart of the strain field

I The line tension limit creates microstructure

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 21 /21

Page 51: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PLANAR DISLOCATIONS(Peierls-Nabarro 1940-1947, Koslowski-Ortiz 2004)

Slip only on one single slip plane Q = (0, 1)2 ⊆ R2

(a domain on the slip plane)

relevant variable v = [u],v : Q → R2 (the slip)

ε = small parameter

∼ lattice spacing

Etot(v) = Eelast.(v)

qLong-range elastic

energy induced by the slip

q

+ Emisfit(v)

qInterfacial energy that

penalizes slips not

compatible with the lattice

q

K is a matrix valued singular kernel

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 22 /21

Page 52: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PLANAR DISLOCATIONS(Peierls-Nabarro 1940-1947, Koslowski-Ortiz 2004)

slip plane

Bulk elastic energy Q = (0, 1)2 ⊆ R2

(a domain on the slip plane)

relevant variable v = [u],v : Q → R2 (the slip)

ε = small parameter

∼ lattice spacing

Etot(v) = Eelast.(v)q

Long-range elastic

energy induced by the slip

q

+ Emisfit(v)

qInterfacial energy that

penalizes slips not

compatible with the lattice

q

K is a matrix valued singular kernel

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 22 /21

Page 53: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PLANAR DISLOCATIONS(Peierls-Nabarro 1940-1947, Koslowski-Ortiz 2004)

slip plane Interfacial energy

Q = (0, 1)2 ⊆ R2

(a domain on the slip plane)

relevant variable v = [u],v : Q → R2 (the slip)

ε = small parameter

∼ lattice spacing

Etot(v) = Eelast.(v)q

Long-range elastic

energy induced by the slip

q

+ Emisfit(v)q

Interfacial energy that

penalizes slips not

compatible with the lattice

q

K is a matrix valued singular kernel

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 22 /21

Page 54: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PLANAR DISLOCATIONS(Peierls-Nabarro 1940-1947, Koslowski-Ortiz 2004)

slip plane Interfacial energy

Bulk elastic energy

Q = (0, 1)2 ⊆ R2

(a domain on the slip plane)

relevant variable v = [u],v : Q → R2 (the slip)

ε = small parameter

∼ lattice spacing

Etot(v) = Eelast.(v)q

Long-range elastic

energy induced by the slip

q

+ Emisfit(v)q

Interfacial energy that

penalizes slips not

compatible with the lattice

qEε(v) =

ZQ

ZQ

(v(x)− v(y))tK(x − y)(v(x)− v(y)) dx dy +1

ε

ZQ

W (v) dx

K is a matrix valued singular kernel

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 22 /21

Page 55: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

PLANAR DISLOCATIONS(Peierls-Nabarro 1940-1947, Koslowski-Ortiz 2004)

slip plane Interfacial energy

Bulk elastic energy

Q = (0, 1)2 ⊆ R2

(a domain on the slip plane)

relevant variable v = [u],v : Q → R2 (the slip)

ε = small parameter

∼ lattice spacing

Etot(v) = Eelast.(v)q

Long-range elastic

energy induced by the slip

q

+ Emisfit(v)q

Interfacial energy that

penalizes slips not

compatible with the lattice

qEε(v) =

ZQ

ZQ

(v(x)− v(y))tK(x − y)(v(x)− v(y)) dx dy +1

ε

ZQ

W (v) dx

K is a matrix valued singular kernel

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 22 /21

Page 56: Multiscale analysis of dislocationsgkarali/anogia09/slides/garroni.pdf · Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 3 /21. TOPOLOGICAL SINGULARITIES

Theorem (Cacace-G. ’09, Conti-G.-Muller, preprint)

(Compactness)If Eε(vε) ≤ C | log ε|, then (up to a subsequence) ∃ aε ∈ Z2 andv ∈ BV (Q,Z2) such that

vε − aε → v in Lp ∀p < 2

(Γ-convergence)∃ ϕ : Z2 × S1 → R (uniquely determined by the kernel) such that

1

| log ε|Eε(v) Γ-converges to F (v) =

∫Su

ϕ0([v ], tv ) dH1

Svtv

Sv = discontinuity set of v[v ] = jump of v

tv = tangent vector to Sv

Adriana Garroni - Sapienza, Roma Multiscale analysis of dislocations Anogia 2009 23 /21