211
Multiplicative theory of (additive) partitions Robert Schneider University of Georgia October 27, 2020 1

Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive)partitions

Robert SchneiderUniversity of Georgia

October 27, 2020

1

Page 2: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Additive number theory

Patterns and interconnectionstheory of partitions

beautiful generating functions

surprising bijections

Ramanujan congruences

combinatorics, algebra, analytic num. theory, mod.forms, stat. phys., QT, string theory, chemistry, ...

2

Page 3: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Additive number theory

Patterns and interconnections

theory of partitions

beautiful generating functions

surprising bijections

Ramanujan congruences

combinatorics, algebra, analytic num. theory, mod.forms, stat. phys., QT, string theory, chemistry, ...

3

Page 4: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Additive number theory

Patterns and interconnectionstheory of partitions

beautiful generating functions

surprising bijections

Ramanujan congruences

combinatorics, algebra, analytic num. theory, mod.forms, stat. phys., QT, string theory, chemistry, ...

4

Page 5: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Additive number theory

Patterns and interconnectionstheory of partitions

beautiful generating functions

surprising bijections

Ramanujan congruences

combinatorics, algebra, analytic num. theory, mod.forms, stat. phys., QT, string theory, chemistry, ...

5

Page 6: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Ishango bone (Africa, ca. 20,000 B.C.E.)

6

Page 7: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Ishango bone (Africa, ca. 20,000 B.C.E.)

7

Page 8: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Ahmes papyrus (Egypt, ca. 2,000 B.C.E.)

8

Page 9: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Ahmes papyrus (Egypt, ca. 2,000 B.C.E.)

9

Page 10: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition theory

Incan quipu (Peru, 2,000 B.C.E. - 1600s)

10

Page 11: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition theory

Incan quipu (Peru, 2,000 B.C.E. - 1600s)

11

Page 12: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

G. W. Leibniz (1600s)

12

Page 13: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

G. W. Leibniz (1600s)

13

Page 14: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Leibnizwondered about size of p(n) := # of partitions of n

p(n) is called the partition function

14

Page 15: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Leibnizwondered about size of p(n) := # of partitions of n

p(n) is called the partition function

15

Page 16: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Leonhard Euler (1700s)

16

Page 17: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Leonhard Euler (1700s)

17

Page 18: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)

∞∑n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theoryproduct-sum generating functionscombinatorics encoded in exponents, coefficientsconnected analysis to partitions

18

Page 19: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn

=∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theoryproduct-sum generating functionscombinatorics encoded in exponents, coefficientsconnected analysis to partitions

19

Page 20: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theoryproduct-sum generating functionscombinatorics encoded in exponents, coefficientsconnected analysis to partitions

20

Page 21: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theory

product-sum generating functionscombinatorics encoded in exponents, coefficientsconnected analysis to partitions

21

Page 22: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theoryproduct-sum generating functions

combinatorics encoded in exponents, coefficientsconnected analysis to partitions

22

Page 23: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theoryproduct-sum generating functionscombinatorics encoded in exponents, coefficients

connected analysis to partitions

23

Page 24: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Template for partition theoryproduct-sum generating functionscombinatorics encoded in exponents, coefficientsconnected analysis to partitions

24

Page 25: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

Proof

RHS =∏∞

n=1(1 + qn + q2n + q3n + ...) (geom. series)=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS

25

Page 26: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

ProofRHS

=∏∞

n=1(1 + qn + q2n + q3n + ...) (geom. series)=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS

26

Page 27: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

ProofRHS =

∏∞n=1(1 + qn + q2n + q3n + ...)

(geom. series)=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS

27

Page 28: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

ProofRHS =

∏∞n=1(1 + qn + q2n + q3n + ...) (geom. series)

=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS

28

Page 29: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

ProofRHS =

∏∞n=1(1 + qn + q2n + q3n + ...) (geom. series)

=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...)

(like, second grade)= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS

29

Page 30: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

ProofRHS =

∏∞n=1(1 + qn + q2n + q3n + ...) (geom. series)

=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)

= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS

30

Page 31: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

ProofRHS =

∏∞n=1(1 + qn + q2n + q3n + ...) (geom. series)

=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...

= LHS

31

Page 32: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of partition theory

Partition generating function (Euler)∞∑

n=0

p(n)qn =∞∏

n=1

(1− qn)−1 (q ∈ C, |q| < 1)

ProofRHS =

∏∞n=1(1 + qn + q2n + q3n + ...) (geom. series)

=∏∞

n=1(1 + qn + qn+n + qn+n+n + ...) (like, second grade)= 1 + q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + ...= LHS

32

Page 33: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

I.e., most of classical number theoryprimesdivisorsEuler phi function ϕ(n), Möbius function µ(n)arithmetic functions, Dirichlet convolutionzeta functions, Dirichlet series, L-functions

33

Page 34: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

I.e., most of classical number theory

primesdivisorsEuler phi function ϕ(n), Möbius function µ(n)arithmetic functions, Dirichlet convolutionzeta functions, Dirichlet series, L-functions

34

Page 35: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

I.e., most of classical number theoryprimesdivisorsEuler phi function ϕ(n), Möbius function µ(n)arithmetic functions, Dirichlet convolutionzeta functions, Dirichlet series, L-functions

35

Page 36: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Ishango bone (Africa, ca. 20,000 B.C.E.)

36

Page 37: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Ahmes papyrus (Egypt, ca. 2,000 B.C.E.)

37

Page 38: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Eratosthenes, Euclid (Alexandria, ca. 300 B.C.E.)

38

Page 39: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Euler

first to understand (Riemann) zeta function:

ζ(s) :=∞∑

n=1

1ns (Re(s) > 1)

explicit zeta values→ compute even powers of π:

ζ(2) =π2

6, ζ(4) =

π4

90, ζ(6) =

π6

945, ...

39

Page 40: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Eulerfirst to understand (Riemann) zeta function

:

ζ(s) :=∞∑

n=1

1ns (Re(s) > 1)

explicit zeta values→ compute even powers of π:

ζ(2) =π2

6, ζ(4) =

π4

90, ζ(6) =

π6

945, ...

40

Page 41: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Eulerfirst to understand (Riemann) zeta function:

ζ(s) :=∞∑

n=1

1ns (Re(s) > 1)

explicit zeta values→ compute even powers of π:

ζ(2) =π2

6, ζ(4) =

π4

90, ζ(6) =

π6

945, ...

41

Page 42: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Eulerfirst to understand (Riemann) zeta function:

ζ(s) :=∞∑

n=1

1ns (Re(s) > 1)

explicit zeta values→ compute even powers of π

:

ζ(2) =π2

6, ζ(4) =

π4

90, ζ(6) =

π6

945, ...

42

Page 43: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Birth of multiplicative number theory

Eulerfirst to understand (Riemann) zeta function:

ζ(s) :=∞∑

n=1

1ns (Re(s) > 1)

explicit zeta values→ compute even powers of π:

ζ(2) =π2

6, ζ(4) =

π4

90, ζ(6) =

π6

945, ...

43

Page 44: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

Product formula for zeta function (Euler)

∞∑n=0

1ns =

∏p∈P

(1− p−s)−1

(Re(s) > 1)

Template for study of L-functions“Euler product” generating functionsconnected analysis to prime numbers

44

Page 45: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

Product formula for zeta function (Euler)∞∑

n=0

1ns

=∏p∈P

(1− p−s)−1

(Re(s) > 1)

Template for study of L-functions“Euler product” generating functionsconnected analysis to prime numbers

45

Page 46: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

Product formula for zeta function (Euler)∞∑

n=0

1ns =

∏p∈P

(1− p−s)−1

(Re(s) > 1)

Template for study of L-functions“Euler product” generating functionsconnected analysis to prime numbers

46

Page 47: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

Product formula for zeta function (Euler)∞∑

n=0

1ns =

∏p∈P

(1− p−s)−1

(Re(s) > 1)

Template for study of L-functions

“Euler product” generating functionsconnected analysis to prime numbers

47

Page 48: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

Product formula for zeta function (Euler)∞∑

n=0

1ns =

∏p∈P

(1− p−s)−1

(Re(s) > 1)

Template for study of L-functions“Euler product” generating functions

connected analysis to prime numbers

48

Page 49: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative number theory

Product formula for zeta function (Euler)∞∑

n=0

1ns =

∏p∈P

(1− p−s)−1

(Re(s) > 1)

Template for study of L-functions“Euler product” generating functionsconnected analysis to prime numbers

49

Page 50: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)∞∏

n=1

(1− qn)−1 =∞∑

n=0

p(n)qn, |q| < 1

Euler product formula (encodes primes / multiplic.)∏p∈P

(1− p−s)−1 =∞∑

k=1

n−s, Re(s) > 1

Proofs feel similar (multiply geometric series)

50

Page 51: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)∞∏

n=1

(1− qn)−1 =∞∑

n=0

p(n)qn, |q| < 1

Euler product formula (encodes primes / multiplic.)∏p∈P

(1− p−s)−1 =∞∑

k=1

n−s, Re(s) > 1

Proofs feel similar (multiply geometric series)

51

Page 52: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Additive-multiplicative correspondence (Euler)

Partition generating function (encodes addition)∞∏

n=1

(1− qn)−1 =∞∑

n=0

p(n)qn, |q| < 1

Euler product formula (encodes primes / multiplic.)∏p∈P

(1− p−s)−1 =∞∑

k=1

n−s, Re(s) > 1

Proofs feel similar (multiply geometric series)

52

Page 53: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Alladi–Erdos (1970s)Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

QuestionAre other thms. in arithmetic images in prime partitions ofcombinatorial/set-theoretic meta-structures?

53

Page 54: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Alladi–Erdos (1970s)

Bijection between integer factorizations, prime partitionsstudy properties of arithmetic functions

QuestionAre other thms. in arithmetic images in prime partitions ofcombinatorial/set-theoretic meta-structures?

54

Page 55: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Alladi–Erdos (1970s)Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

QuestionAre other thms. in arithmetic images in prime partitions ofcombinatorial/set-theoretic meta-structures?

55

Page 56: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Alladi–Erdos (1970s)Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

QuestionAre other thms. in arithmetic images in prime partitions ofcombinatorial/set-theoretic meta-structures?

56

Page 57: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Alladi–Erdos (1970s)Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

Question

Are other thms. in arithmetic images in prime partitions ofcombinatorial/set-theoretic meta-structures?

57

Page 58: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Alladi–Erdos (1970s)Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

QuestionAre other thms. in arithmetic images in prime partitions

ofcombinatorial/set-theoretic meta-structures?

58

Page 59: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Alladi–Erdos (1970s)Bijection between integer factorizations, prime partitions

study properties of arithmetic functions

QuestionAre other thms. in arithmetic images in prime partitions ofcombinatorial/set-theoretic meta-structures?

59

Page 60: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)

Theory of partition idealsinspired by lattice theoryunifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions generalizing arithmetic inintegers (i.e., prime partitions)?

60

Page 61: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theoryunifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions generalizing arithmetic inintegers (i.e., prime partitions)?

61

Page 62: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theory

unifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions generalizing arithmetic inintegers (i.e., prime partitions)?

62

Page 63: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theoryunifies classical results on gen. functions, bijections

suggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions generalizing arithmetic inintegers (i.e., prime partitions)?

63

Page 64: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theoryunifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions generalizing arithmetic inintegers (i.e., prime partitions)?

64

Page 65: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theoryunifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

Question

Is there an algebra of partitions generalizing arithmetic inintegers (i.e., prime partitions)?

65

Page 66: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theoryunifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions

generalizing arithmetic inintegers (i.e., prime partitions)?

66

Page 67: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theoryunifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions generalizing arithmetic inintegers

(i.e., prime partitions)?

67

Page 68: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Modern vistas in partition theory

Andrews (1970s)Theory of partition ideals

inspired by lattice theoryunifies classical results on gen. functions, bijectionssuggestive of a universal algebra of partitions

QuestionIs there an algebra of partitions generalizing arithmetic inintegers (i.e., prime partitions)?

68

Page 69: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

69

Page 70: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

70

Page 71: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory

→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

71

Page 72: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

72

Page 73: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems

→ extend to partitions

Expect partition properties→ properties of integers

73

Page 74: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

74

Page 75: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties

→ properties of integers

75

Page 76: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Philosophy of this talk

Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

76

Page 77: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,denote a nonempty partition, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N,e.g. PP is the “prime partitions”.

77

Page 78: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,denote a nonempty partition, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N,e.g. PP is the “prime partitions”.

78

Page 79: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,denote a nonempty partition, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N,e.g. PP is the “prime partitions”.

79

Page 80: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,denote a nonempty partition

, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N,e.g. PP is the “prime partitions”.

80

Page 81: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,denote a nonempty partition, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N,e.g. PP is the “prime partitions”.

81

Page 82: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,denote a nonempty partition, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N

,e.g. PP is the “prime partitions”.

82

Page 83: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,denote a nonempty partition, e.g. λ = (3,2,2,1).

Let PX denote partitions into elements λi ∈ X ⊆ N,e.g. PP is the “prime partitions”.

83

Page 84: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

`(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

“λ ` n” means λ is a partition of n.

Define `(∅) = |∅| = mi(∅) = 0, ∅ ` 0.

84

Page 85: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

`(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

“λ ` n” means λ is a partition of n.

Define `(∅) = |∅| = mi(∅) = 0, ∅ ` 0.

85

Page 86: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

`(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

“λ ` n” means λ is a partition of n.

Define `(∅) = |∅| = mi(∅) = 0, ∅ ` 0.

86

Page 87: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

`(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

“λ ` n” means λ is a partition of n.

Define `(∅) = |∅| = mi(∅) = 0, ∅ ` 0.

87

Page 88: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

`(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

“λ ` n” means λ is a partition of n.

Define `(∅) = |∅| = mi(∅) = 0, ∅ ` 0.

88

Page 89: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition notations

`(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

“λ ` n” means λ is a partition of n.

Define `(∅) = |∅| = mi(∅) = 0, ∅ ` 0.

89

Page 90: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

New partition statisticDefine N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)See “The product of parts or ‘norm’ etc.” (S-Sills)

90

Page 91: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

New partition statistic

Define N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)See “The product of parts or ‘norm’ etc.” (S-Sills)

91

Page 92: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

New partition statisticDefine N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)See “The product of parts or ‘norm’ etc.” (S-Sills)

92

Page 93: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

New partition statisticDefine N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)See “The product of parts or ‘norm’ etc.” (S-Sills)

93

Page 94: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

New partition statisticDefine N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)

See “The product of parts or ‘norm’ etc.” (S-Sills)

94

Page 95: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

New partition statisticDefine N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)See “The product of parts or ‘norm’ etc.” (S-Sills)

95

Page 96: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition multiplication

For λ, γ ∈ P let λγ denote multiset union of the parts,e.g. (3,2)(2,1) = (3,2,2,1).

Identity is ∅

Partitions into one part are like primes, FTA holds

96

Page 97: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition multiplication

For λ, γ ∈ P let λγ denote multiset union of the parts

,e.g. (3,2)(2,1) = (3,2,2,1).

Identity is ∅

Partitions into one part are like primes, FTA holds

97

Page 98: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition multiplication

For λ, γ ∈ P let λγ denote multiset union of the parts,e.g. (3,2)(2,1) = (3,2,2,1).

Identity is ∅

Partitions into one part are like primes, FTA holds

98

Page 99: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition multiplication

For λ, γ ∈ P let λγ denote multiset union of the parts,e.g. (3,2)(2,1) = (3,2,2,1).

Identity is ∅

Partitions into one part are like primes, FTA holds

99

Page 100: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition multiplication

For λ, γ ∈ P let λγ denote multiset union of the parts,e.g. (3,2)(2,1) = (3,2,2,1).

Identity is ∅

Partitions into one part are like primes, FTA holds

100

Page 101: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+

101

Page 102: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ

,e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+

102

Page 103: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+

103

Page 104: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ

,e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+

104

Page 105: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+

105

Page 106: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP

→ mult./div. in Z+

106

Page 107: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Partition division (subpartitions)

For λ, δ ∈ P, let δ|λ mean all parts of δ are parts of λ,e.g. (3,2,1)|(3,2,2,1).

For δ|λ, let λ/δ mean parts of δ deleted from λ,e.g. (3,2,2,1)/(3,2,1) = (2).

Replace P with PP → mult./div. in Z+

107

Page 108: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Many arithmetic objects have partition counterparts.

Partition Möbius functionFor λ ∈ P, define

µP(λ) :=

{0 if λ has any part repeated,(−1)`(λ) otherwise.

Replacing P with PP reduces to µ(N(λ)), where N(λ)is the norm (product of parts).

108

Page 109: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Many arithmetic objects have partition counterparts.

Partition Möbius functionFor λ ∈ P, define

µP(λ) :=

{0 if λ has any part repeated,(−1)`(λ) otherwise.

Replacing P with PP reduces to µ(N(λ)), where N(λ)is the norm (product of parts).

109

Page 110: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Many arithmetic objects have partition counterparts.

Partition Möbius function

For λ ∈ P, define

µP(λ) :=

{0 if λ has any part repeated,(−1)`(λ) otherwise.

Replacing P with PP reduces to µ(N(λ)), where N(λ)is the norm (product of parts).

110

Page 111: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Many arithmetic objects have partition counterparts.

Partition Möbius functionFor λ ∈ P, define

µP(λ) :=

{0 if λ has any part repeated,(−1)`(λ) otherwise.

Replacing P with PP reduces to µ(N(λ)), where N(λ)is the norm (product of parts).

111

Page 112: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Many arithmetic objects have partition counterparts.

Partition Möbius functionFor λ ∈ P, define

µP(λ) :=

{0 if λ has any part repeated,(−1)`(λ) otherwise.

Replacing P with PP reduces to µ(N(λ)), where N(λ)is the norm (product of parts).

112

Page 113: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Many arithmetic objects have partition counterparts.

Partition Möbius functionFor λ ∈ P, define

µP(λ) :=

{0 if λ has any part repeated,(−1)`(λ) otherwise.

Replacing P with PP reduces to µ(N(λ)), where N(λ)is the norm (product of parts).

113

Page 114: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Just as in classical cases, nice sums over “divisors”...

Partition Möbius function∑δ|λ

µP(δ) =

{1 if λ = ∅,0 otherwise

114

Page 115: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Just as in classical cases, nice sums over “divisors”...

Partition Möbius function∑δ|λ

µP(δ) =

{1 if λ = ∅,0 otherwise

115

Page 116: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Just as in classical cases, nice sums over “divisors”...

Partition Möbius function

∑δ|λ

µP(δ) =

{1 if λ = ∅,0 otherwise

116

Page 117: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Just as in classical cases, nice sums over “divisors”...

Partition Möbius function∑δ|λ

µP(δ) =

{1 if λ = ∅,0 otherwise

117

Page 118: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Partition Möbius inversionIf we have

f (λ) =∑δ|λ

g(δ)

we also have

g(λ) =∑δ|λ

µP(λ/δ)f (δ).

118

Page 119: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Partition Möbius inversionIf we have

f (λ) =∑δ|λ

g(δ)

we also have

g(λ) =∑δ|λ

µP(λ/δ)f (δ).

119

Page 120: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Classically, µ(n) has a close companion in ϕ(n).

Partition phi functionFor λ ∈ P, define

ϕP(λ) := N(λ)∏λi∈λ

no repeats

(1− λ−1i ).

Replacing P with PP reduces to ϕ(N(λ)).

120

Page 121: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Classically, µ(n) has a close companion in ϕ(n).

Partition phi function

For λ ∈ P, define

ϕP(λ) := N(λ)∏λi∈λ

no repeats

(1− λ−1i ).

Replacing P with PP reduces to ϕ(N(λ)).

121

Page 122: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Classically, µ(n) has a close companion in ϕ(n).

Partition phi functionFor λ ∈ P, define

ϕP(λ) := N(λ)∏λi∈λ

no repeats

(1− λ−1i ).

Replacing P with PP reduces to ϕ(N(λ)).

122

Page 123: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Classically, µ(n) has a close companion in ϕ(n).

Partition phi functionFor λ ∈ P, define

ϕP(λ) := N(λ)∏λi∈λ

no repeats

(1− λ−1i ).

Replacing P with PP reduces to ϕ(N(λ)).

123

Page 124: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Classically, µ(n) has a close companion in ϕ(n).

Partition phi functionFor λ ∈ P, define

ϕP(λ) := N(λ)∏λi∈λ

no repeats

(1− λ−1i ).

Replacing P with PP reduces to ϕ(N(λ)).

124

Page 125: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Phi function identities

∑δ|λ

ϕP(δ) = N(λ), ϕP(λ) = N(λ)∑δ|λ

µP(δ)

N(δ)

Replacing P with PP reduces to classical cases.Many analogs of objects in multiplic. # theory...

125

Page 126: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Phi function identities

∑δ|λ

ϕP(δ) = N(λ), ϕP(λ) = N(λ)∑δ|λ

µP(δ)

N(δ)

Replacing P with PP reduces to classical cases.Many analogs of objects in multiplic. # theory...

126

Page 127: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Phi function identities

∑δ|λ

ϕP(δ) = N(λ), ϕP(λ) = N(λ)∑δ|λ

µP(δ)

N(δ)

Replacing P with PP reduces to classical cases.

Many analogs of objects in multiplic. # theory...

127

Page 128: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Phi function identities

∑δ|λ

ϕP(δ) = N(λ), ϕP(λ) = N(λ)∑δ|λ

µP(δ)

N(δ)

Replacing P with PP reduces to classical cases.Many analogs of objects in multiplic. # theory...

128

Page 129: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Partition Cauchy product(∑λ∈P

f (λ)q|λ|)(∑

λ∈P

g(λ)q|λ|)

=∑λ∈P

q|λ|∑δ|λ

f (δ)g(λ/δ)

Swapping order of summation∑λ∈P

f (λ)∑δ|λ

g(δ) =∑λ∈P

g(λ)∑γ∈P

f (λγ)

Other multiplicative objects generalize to partition theory...

129

Page 130: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Partition Cauchy product(∑λ∈P

f (λ)q|λ|)(∑

λ∈P

g(λ)q|λ|)

=∑λ∈P

q|λ|∑δ|λ

f (δ)g(λ/δ)

Swapping order of summation∑λ∈P

f (λ)∑δ|λ

g(δ) =∑λ∈P

g(λ)∑γ∈P

f (λγ)

Other multiplicative objects generalize to partition theory...

130

Page 131: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Parallel universe

Partition Cauchy product(∑λ∈P

f (λ)q|λ|)(∑

λ∈P

g(λ)q|λ|)

=∑λ∈P

q|λ|∑δ|λ

f (δ)g(λ/δ)

Swapping order of summation∑λ∈P

f (λ)∑δ|λ

g(δ) =∑λ∈P

g(λ)∑γ∈P

f (λγ)

Other multiplicative objects generalize to partition theory...

131

Page 132: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions

In analogy with ζ(s) =∑∞

n=1 n−s:

DefinitionFor P ′ ( P , s ∈ C, define a partition zeta function:

ζP ′(s) :=∑λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.For 1 6∈ P ′ = PX (parts in X ⊂ N)→ Euler product:

ζPX(s) =∏n∈X

(1− n−s)−1

132

Page 133: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions

In analogy with ζ(s) =∑∞

n=1 n−s:

DefinitionFor P ′ ( P , s ∈ C, define a partition zeta function:

ζP ′(s) :=∑λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.For 1 6∈ P ′ = PX (parts in X ⊂ N)→ Euler product:

ζPX(s) =∏n∈X

(1− n−s)−1

133

Page 134: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions

In analogy with ζ(s) =∑∞

n=1 n−s:

DefinitionFor P ′ ( P , s ∈ C, define a partition zeta function

:

ζP ′(s) :=∑λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.For 1 6∈ P ′ = PX (parts in X ⊂ N)→ Euler product:

ζPX(s) =∏n∈X

(1− n−s)−1

134

Page 135: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions

In analogy with ζ(s) =∑∞

n=1 n−s:

DefinitionFor P ′ ( P , s ∈ C, define a partition zeta function:

ζP ′(s) :=∑λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.For 1 6∈ P ′ = PX (parts in X ⊂ N)→ Euler product:

ζPX(s) =∏n∈X

(1− n−s)−1

135

Page 136: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions

In analogy with ζ(s) =∑∞

n=1 n−s:

DefinitionFor P ′ ( P , s ∈ C, define a partition zeta function:

ζP ′(s) :=∑λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.

For 1 6∈ P ′ = PX (parts in X ⊂ N)→ Euler product:

ζPX(s) =∏n∈X

(1− n−s)−1

136

Page 137: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions

In analogy with ζ(s) =∑∞

n=1 n−s:

DefinitionFor P ′ ( P , s ∈ C, define a partition zeta function:

ζP ′(s) :=∑λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.For 1 6∈ P ′ = PX (parts in X ⊂ N)

→ Euler product:

ζPX(s) =∏n∈X

(1− n−s)−1

137

Page 138: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions

In analogy with ζ(s) =∑∞

n=1 n−s:

DefinitionFor P ′ ( P , s ∈ C, define a partition zeta function:

ζP ′(s) :=∑λ∈P ′

N(λ)−s

N(λ) is the norm (product of parts) of λ, N(∅) := 1.For 1 6∈ P ′ = PX (parts in X ⊂ N)→ Euler product:

ζPX(s) =∏n∈X

(1− n−s)−1

138

Page 139: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identities

Fix s = 2, vary subset P ′

Summing over partitions into prime parts:

ζPP(2) = ζ(2) =π2

6

Summing over partitions into even parts:

ζPeven(2) =π

2

Summing over partitions into distinct parts:

ζPdistinct(2) =sinh π

π

139

Page 140: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identities

Fix s = 2, vary subset P ′

Summing over partitions into prime parts:

ζPP(2) = ζ(2) =π2

6

Summing over partitions into even parts:

ζPeven(2) =π

2

Summing over partitions into distinct parts:

ζPdistinct(2) =sinh π

π

140

Page 141: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identites

Partition analogs of classical identities∑λ∈PX

µP(λ)N(λ)−s =1

ζPX(s)∑λ∈PX

ϕP(λ)N(λ)−s =ζPX(s − 1)ζPX(s)

Takeaway from these examplesDifferent subsets of P induce very diff. zeta valuesClassical zeta theorems→ partition zeta theorems

141

Page 142: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identites

Partition analogs of classical identities∑λ∈PX

µP(λ)N(λ)−s =1

ζPX(s)∑λ∈PX

ϕP(λ)N(λ)−s =ζPX(s − 1)ζPX(s)

Takeaway from these examples

Different subsets of P induce very diff. zeta valuesClassical zeta theorems→ partition zeta theorems

142

Page 143: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identites

Partition analogs of classical identities∑λ∈PX

µP(λ)N(λ)−s =1

ζPX(s)∑λ∈PX

ϕP(λ)N(λ)−s =ζPX(s − 1)ζPX(s)

Takeaway from these examplesDifferent subsets of P induce very diff. zeta values

Classical zeta theorems→ partition zeta theorems

143

Page 144: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identites

Partition analogs of classical identities∑λ∈PX

µP(λ)N(λ)−s =1

ζPX(s)∑λ∈PX

ϕP(λ)N(λ)−s =ζPX(s − 1)ζPX(s)

Takeaway from these examplesDifferent subsets of P induce very diff. zeta valuesClassical zeta theorems→ partition zeta theorems

144

Page 145: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we hadfamilies of identities like Euler’s zeta values

:

ζ(2N) = π2N × rational number

QuestionDo there exist (non-Riemann) partition zeta functionssuch that, for the “right” choice of P ′ ( P,

ζP ′(N) = πM × rational number?

145

Page 146: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we hadfamilies of identities like Euler’s zeta values:

ζ(2N) = π2N × rational number

QuestionDo there exist (non-Riemann) partition zeta functionssuch that, for the “right” choice of P ′ ( P,

ζP ′(N) = πM × rational number?

146

Page 147: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we hadfamilies of identities like Euler’s zeta values:

ζ(2N) = π2N × rational number

Question

Do there exist (non-Riemann) partition zeta functionssuch that, for the “right” choice of P ′ ( P,

ζP ′(N) = πM × rational number?

147

Page 148: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we hadfamilies of identities like Euler’s zeta values:

ζ(2N) = π2N × rational number

QuestionDo there exist (non-Riemann) partition zeta functionssuch that, for the “right” choice of P ′ ( P

,

ζP ′(N) = πM × rational number?

148

Page 149: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice identities

Pretty cool, but it would be a whole lot cooler if we hadfamilies of identities like Euler’s zeta values:

ζ(2N) = π2N × rational number

QuestionDo there exist (non-Riemann) partition zeta functionssuch that, for the “right” choice of P ′ ( P,

ζP ′(N) = πM × rational number?

149

Page 150: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Partitions of fixed length k

Define sum over partitions of fixed length `(λ) = k :

ζP({s}k) :=∑λ∈P`(λ)=k

N(λ)−s (Re(s) > 1)

150

Page 151: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Partitions of fixed length kDefine sum over partitions of fixed length `(λ) = k :

ζP({s}k) :=∑λ∈P`(λ)=k

N(λ)−s (Re(s) > 1)

151

Page 152: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Partitions of fixed length kDefine sum over partitions of fixed length `(λ) = k :

ζP({s}k) :=∑λ∈P`(λ)=k

N(λ)−s (Re(s) > 1)

152

Page 153: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (S, 2016)

Summing over partitions of fixed length k > 0:

ζP({2}k) =22k−1 − 1

22k−2 ζ(2k) = π2k × rational number

Note: k = 0 suggests ζ(0) = −12 (correct value)

Theorem (Ono-Rolen-S, 2017)

For N ≥ 1: ζP({2N}k) = π2Nk × rational number

153

Page 154: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (S, 2016)Summing over partitions of fixed length k > 0:

ζP({2}k) =22k−1 − 1

22k−2 ζ(2k) = π2k × rational number

Note: k = 0 suggests ζ(0) = −12 (correct value)

Theorem (Ono-Rolen-S, 2017)

For N ≥ 1: ζP({2N}k) = π2Nk × rational number

154

Page 155: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (S, 2016)Summing over partitions of fixed length k > 0:

ζP({2}k) =22k−1 − 1

22k−2 ζ(2k) = π2k × rational number

Note: k = 0 suggests ζ(0) = −12 (correct value)

Theorem (Ono-Rolen-S, 2017)

For N ≥ 1: ζP({2N}k) = π2Nk × rational number

155

Page 156: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (S, 2016)Summing over partitions of fixed length k > 0:

ζP({2}k) =22k−1 − 1

22k−2 ζ(2k) = π2k × rational number

Note: k = 0 suggests ζ(0) = −12 (correct value)

Theorem (Ono-Rolen-S, 2017)

For N ≥ 1: ζP({2N}k) = π2Nk × rational number

156

Page 157: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (S, 2016)Summing over partitions of fixed length k > 0:

ζP({2}k) =22k−1 − 1

22k−2 ζ(2k) = π2k × rational number

Note: k = 0 suggests ζ(0) = −12 (correct value)

Theorem (Ono-Rolen-S, 2017)

For N ≥ 1: ζP({2N}k) = π2Nk × rational number

157

Page 158: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (Ono-Rolen-S., 2017)Some other partition zeta fctns. contin. to right half-plane.

Natural questions

General ζP({s}k)? Analytic continuation? Poles? Roots?

158

Page 159: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (Ono-Rolen-S., 2017)Some other partition zeta fctns. contin. to right half-plane.

Natural questions

General ζP({s}k)? Analytic continuation? Poles? Roots?

159

Page 160: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: nice family

Theorem (Ono-Rolen-S., 2017)Some other partition zeta fctns. contin. to right half-plane.

Natural questions

General ζP({s}k)? Analytic continuation? Poles? Roots?

160

Page 161: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)

For Re(s) > 1:

ζP({s}k) =∑λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHSinherits continuation from ζ(s)poles at s = 1,1/2,1/3,1/4, ...,1/ktrivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1

161

Page 162: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)For Re(s) > 1:

ζP({s}k) =∑λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHSinherits continuation from ζ(s)poles at s = 1,1/2,1/3,1/4, ...,1/ktrivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1

162

Page 163: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)For Re(s) > 1:

ζP({s}k) =∑λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHS

inherits continuation from ζ(s)poles at s = 1,1/2,1/3,1/4, ...,1/ktrivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1

163

Page 164: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)For Re(s) > 1:

ζP({s}k) =∑λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHSinherits continuation from ζ(s)

poles at s = 1,1/2,1/3,1/4, ...,1/ktrivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1

164

Page 165: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)For Re(s) > 1:

ζP({s}k) =∑λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHSinherits continuation from ζ(s)poles at s = 1,1/2,1/3,1/4, ...,1/k

trivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1

165

Page 166: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)For Re(s) > 1:

ζP({s}k) =∑λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHSinherits continuation from ζ(s)poles at s = 1,1/2,1/3,1/4, ...,1/ktrivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1

166

Page 167: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition zeta functions: analytic properties

Theorem (S.-Sills, 2020)For Re(s) > 1:

ζP({s}k) =∑λ`k

ζ(s)m1ζ(2s)m2ζ(3s)m3 · · · ζ(ks)mk

N(λ) m1! m2! m3! · · · mk !

sum over partitions λ of size k on RHSinherits continuation from ζ(s)poles at s = 1,1/2,1/3,1/4, ...,1/ktrivial roots at s ∈ −2N

Note: ζP({s}k) not zero at roots of ζ(s) for k > 1

167

Page 168: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Proof mimics Sills’ combinatorial proof (2019) ofMacMahon’s partial fraction decomposition...

MacMahon’s partial fraction decompositionFor |q| < 1:

k∏n=1

(1− qn)−1 =∑λ`k

(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

Although here we really want to use...

168

Page 169: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Proof mimics Sills’ combinatorial proof (2019) ofMacMahon’s partial fraction decomposition...

MacMahon’s partial fraction decompositionFor |q| < 1:

k∏n=1

(1− qn)−1 =∑λ`k

(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

Although here we really want to use...

169

Page 170: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times qk

qkk∏

n=1

(1− qn)−1 =∑`(λ)=k

q|λ|

=∑λ`k

qm1(1− q)−m1 · q2m2(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

LHS generates all partitions with largest part kConjugation→ also gen. partitions w/ length kRHS = comb. geom. series over partitions of size k

170

Page 171: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times qk

qkk∏

n=1

(1− qn)−1 =∑`(λ)=k

q|λ|

=∑λ`k

qm1(1− q)−m1 · q2m2(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

LHS generates all partitions with largest part k

Conjugation→ also gen. partitions w/ length kRHS = comb. geom. series over partitions of size k

171

Page 172: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times qk

qkk∏

n=1

(1− qn)−1 =∑`(λ)=k

q|λ|

=∑λ`k

qm1(1− q)−m1 · q2m2(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

LHS generates all partitions with largest part kConjugation→ also gen. partitions w/ length k

RHS = comb. geom. series over partitions of size k

172

Page 173: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times qk

qkk∏

n=1

(1− qn)−1 =∑`(λ)=k

q|λ|

=∑λ`k

qm1(1− q)−m1 · q2m2(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

LHS generates all partitions with largest part kConjugation→ also gen. partitions w/ length kRHS = comb. geom. series over partitions of size k

173

Page 174: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

MacMahon’s partial fraction decomposition times qk

qkk∏

n=1

(1− qn)−1 =∑`(λ)=k

q|λ|

=∑λ`k

qm1(1− q)−m1 · q2m2(1− q2)−m2 · · · qkmk (1− qk)−mk

N(λ) m1! m2! · · · mk !

Compare and contrast

ζP({s}k) =∑`(λ)=k

N(λ)−s =∑λ`k

ζ(s)m1ζ(2s)m2 · · · ζ(ks)mk

N(λ) m1! m2! · · · mk !

174

Page 175: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Gen fctn component Analogous zeta fctn componentq|λ| N(λ)−s

qj

1−qj ζ(js)qk∏k

j=1(1−qj )ζP({s}k)

Multiplication of terms of either shape qn or n−s generatespartitions in exactly the same way:

qλ1qλ2qλ3 · · · qλr = q|λ| ←→ λ−s1 λ−s

2 λ−s3 · · ·λ

−sr = N (λ)−s

175

Page 176: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Gen fctn component Analogous zeta fctn componentq|λ| N(λ)−s

qj

1−qj ζ(js)qk∏k

j=1(1−qj )ζP({s}k)

Multiplication of terms of either shape qn or n−s generatespartitions in exactly the same way:

qλ1qλ2qλ3 · · · qλr = q|λ| ←→ λ−s1 λ−s

2 λ−s3 · · ·λ

−sr = N (λ)−s

176

Page 177: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Gen fctn component Analogous zeta fctn componentq|λ| N(λ)−s

qj

1−qj ζ(js)qk∏k

j=1(1−qj )ζP({s}k)

The term q jn in geom series∑∞

n=1 q jn and resp. term n−js

of ζ(js) both encode partition (n)j := (n,n, ...,n) (j times):

q j

1− q j =∞∑

n=1

q|(n)j | ←→ ζ(js) =

∞∑n=1

N((n)j)−s

.

177

Page 178: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Geometric series-zeta function duality

Correspondence says qj

1−qj and ζ(js) are interchangeableas gen fctns for partitions (n,n, . . . ,n) (j reps / same part).

178

Page 179: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Geometric series-zeta function duality

Correspondence says qj

1−qj and ζ(js) are interchangeable

as gen fctns for partitions (n,n, . . . ,n) (j reps / same part).

179

Page 180: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

MacMahon-partition zeta correspondence

Geometric series-zeta function duality

Correspondence says qj

1−qj and ζ(js) are interchangeableas gen fctns for partitions (n,n, . . . ,n) (j reps / same part).

180

Page 181: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

Applications

New combinatorial bijectionsComputing coefficients of q-series, mock mod. formsStatistical physicsComputational chemistryComputing arithmetic densitiesComputing π (quite inefficiently, to boot!)

181

Page 182: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

ApplicationsNew combinatorial bijectionsComputing coefficients of q-series, mock mod. formsStatistical physicsComputational chemistryComputing arithmetic densitiesComputing π

(quite inefficiently, to boot!)

182

Page 183: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Multiplicative theory of (additive) partitions

ApplicationsNew combinatorial bijectionsComputing coefficients of q-series, mock mod. formsStatistical physicsComputational chemistryComputing arithmetic densitiesComputing π (quite inefficiently, to boot!)

183

Page 184: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

DefinitionThe arithmetic density of a subset S ⊆ Z+ is

limN→∞

#{n ∈ S | n ≤ N}N

,

if the limit exists.

ExamplesIntegers ≡ r (mod t) have density 1/tSquare-free integers have density 6/π2 = 1/ζ(2)

184

Page 185: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Definition

The arithmetic density of a subset S ⊆ Z+ is

limN→∞

#{n ∈ S | n ≤ N}N

,

if the limit exists.

ExamplesIntegers ≡ r (mod t) have density 1/tSquare-free integers have density 6/π2 = 1/ζ(2)

185

Page 186: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

DefinitionThe arithmetic density of a subset S ⊆ Z+ is

limN→∞

#{n ∈ S | n ≤ N}N

,

if the limit exists.

ExamplesIntegers ≡ r (mod t) have density 1/tSquare-free integers have density 6/π2 = 1/ζ(2)

186

Page 187: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

DefinitionThe arithmetic density of a subset S ⊆ Z+ is

limN→∞

#{n ∈ S | n ≤ N}N

,

if the limit exists.

Examples

Integers ≡ r (mod t) have density 1/tSquare-free integers have density 6/π2 = 1/ζ(2)

187

Page 188: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

DefinitionThe arithmetic density of a subset S ⊆ Z+ is

limN→∞

#{n ∈ S | n ≤ N}N

,

if the limit exists.

ExamplesIntegers ≡ r (mod t) have density 1/t

Square-free integers have density 6/π2 = 1/ζ(2)

188

Page 189: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

DefinitionThe arithmetic density of a subset S ⊆ Z+ is

limN→∞

#{n ∈ S | n ≤ N}N

,

if the limit exists.

ExamplesIntegers ≡ r (mod t) have density 1/tSquare-free integers have density 6/π2 = 1/ζ(2)

189

Page 190: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Classical computation

Well-known relation between arithmetic density andzeta-type sumsIf a subset T ⊆ P has arith. density in P, its density isequal to the Dirichlet density of T

lims→1

∑p∈T p−s∑p∈P p−s

190

Page 191: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Classical computationWell-known relation between arithmetic density andzeta-type sums

If a subset T ⊆ P has arith. density in P, its density isequal to the Dirichlet density of T

lims→1

∑p∈T p−s∑p∈P p−s

191

Page 192: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Classical computationWell-known relation between arithmetic density andzeta-type sumsIf a subset T ⊆ P has arith. density in P, its density isequal to the Dirichlet density of T

lims→1

∑p∈T p−s∑p∈P p−s

192

Page 193: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of integers ≡ r mod t is equal to

− limq→1

∑λ∈P

sm(λ)≡r(mod t)

µP(λ)q|λ| =1t.

“sm” is the smallest part of λextends work of Alladi (1977), Locus Dawsey (2017)

193

Page 194: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)The arith. density of integers ≡ r mod t is equal to

− limq→1

∑λ∈P

sm(λ)≡r(mod t)

µP(λ)q|λ| =1t.

“sm” is the smallest part of λextends work of Alladi (1977), Locus Dawsey (2017)

194

Page 195: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)The arith. density of integers ≡ r mod t is equal to

− limq→1

∑λ∈P

sm(λ)≡r(mod t)

µP(λ)q|λ| =1t.

“sm” is the smallest part of λ

extends work of Alladi (1977), Locus Dawsey (2017)

195

Page 196: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)The arith. density of integers ≡ r mod t is equal to

− limq→1

∑λ∈P

sm(λ)≡r(mod t)

µP(λ)q|λ| =1t.

“sm” is the smallest part of λextends work of Alladi (1977), Locus Dawsey (2017)

196

Page 197: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)

The arith. density of k th power-free integers is equal to

− limq→1

∑λ∈P

sm(λ) k th power-free

µP(λ)q|λ| =1

ζ(k).

Proofsq-binomial thm + partition bijection + complex analysis

197

Page 198: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)The arith. density of k th power-free integers is equal to

− limq→1

∑λ∈P

sm(λ) k th power-free

µP(λ)q|λ| =1

ζ(k).

Proofsq-binomial thm + partition bijection + complex analysis

198

Page 199: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)The arith. density of k th power-free integers is equal to

− limq→1

∑λ∈P

sm(λ) k th power-free

µP(λ)q|λ| =1

ζ(k).

Proofsq-binomial thm + partition bijection + complex analysis

199

Page 200: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)The arith. density of k th power-free integers is equal to

− limq→1

∑λ∈P

sm(λ) k th power-free

µP(λ)q|λ| =1

ζ(k).

another partition-zeta connection

200

Page 201: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2018)The arith. density of k th power-free integers is equal to

− limq→1

∑λ∈P

sm(λ) k th power-free

µP(λ)q|λ| =1

ζ(k).

another partition-zeta connection

201

Page 202: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)For dS arith. density of a q-commensurate subset S ⊆ N:

− limq→1

∑λ∈P

sm(λ)∈S

µP(λ)q|λ| = dS.

More generally, for a(λ) with certain analytic conditions:

− limq→1

∑sm(λ)∈S

(µP ∗ a)(λ)ϕ (sm(λ))

q|λ| = dS.

here ∗ is partition convolution, ϕ(n) classical phisecond formula extends work of Wang (2020)

202

Page 203: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)For dS arith. density of a q-commensurate subset S ⊆ N:

− limq→1

∑λ∈P

sm(λ)∈S

µP(λ)q|λ| = dS.

More generally, for a(λ) with certain analytic conditions:

− limq→1

∑sm(λ)∈S

(µP ∗ a)(λ)ϕ (sm(λ))

q|λ| = dS.

here ∗ is partition convolution, ϕ(n) classical phisecond formula extends work of Wang (2020)

203

Page 204: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)For dS arith. density of a q-commensurate subset S ⊆ N:

− limq→1

∑λ∈P

sm(λ)∈S

µP(λ)q|λ| = dS.

More generally, for a(λ) with certain analytic conditions:

− limq→1

∑sm(λ)∈S

(µP ∗ a)(λ)ϕ (sm(λ))

q|λ| = dS.

here ∗ is partition convolution, ϕ(n) classical phisecond formula extends work of Wang (2020)

204

Page 205: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)For dS arith. density of a q-commensurate subset S ⊆ N:

− limq→1

∑λ∈P

sm(λ)∈S

µP(λ)q|λ| = dS.

More generally, for a(λ) with certain analytic conditions:

− limq→1

∑sm(λ)∈S

(µP ∗ a)(λ)ϕ (sm(λ))

q|λ| = dS.

here ∗ is partition convolution, ϕ(n) classical phisecond formula extends work of Wang (2020)

205

Page 206: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Application: arithmetic densities

Theorem (Ono-S-Wagner, 2020)Proof requires a new theory of q-series densitycomputations based on “q-density” statistic.:

dS(q) :=

∑sm(λ)∈S q|λ|∑

λ q|λ|= (1− q)

∑sm(λ)∈S

q|λ|.

Natural number n Partition λPrime factors of n Parts of λ

Square-free integers Partitions into distinct partsµ(n) µP(λ)ϕ(n) ϕP(λ)

pmin(n) sm(λ)pmax(n) lg(λ)

n−s q|λ|

ζ(s)−1 (q;q)∞s → 1 q → 1

206

Page 207: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition-theoretic multiverse

Philosophy of this talk (again)Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

Work in progressWith Akande, Beckwith, Dawsey, Hendon, Jameson, Just,Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?

207

Page 208: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition-theoretic multiverse

Philosophy of this talk (again)Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

Work in progressWith Akande, Beckwith, Dawsey, Hendon, Jameson, Just,Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?

208

Page 209: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition-theoretic multiverse

Philosophy of this talk (again)Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

Work in progressWith Akande, Beckwith, Dawsey, Hendon, Jameson, Just,Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ...

you?

209

Page 210: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Partition-theoretic multiverse

Philosophy of this talk (again)Exist multipl., division, arith. functions on partitions

Objects in classical multiplic. number theory→ special cases of partition-theoretic structures

Expect arithmetic theorems→ extend to partitions

Expect partition properties→ properties of integers

Work in progressWith Akande, Beckwith, Dawsey, Hendon, Jameson, Just,Ono, Rolen, M. Schneider, Sellers, Sills, Wagner, ... you?

210

Page 211: Multiplicative theory of (additive) partitions...Multiplicative number theory I.e., most of classical number theory primes divisors Euler phi function ’(n), Möbius function (n)

Gratitude

Thank you for listening :)

211