39
PRAKTICKÁ VÝUKA PŘÍRODOVĚDNÝCH PŘEDMĚTŮ NA ZŠ A SŠ CZ.1.07/1.1.30/02.0024 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE Téma: PARAZITI POD MIKROSKOPEM FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM ELEKTROCHEMIE

Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

Embed Size (px)

Citation preview

Page 1: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

PRAKTICKÁ VÝUKA PŘÍRODOVĚDNÝCH PŘEDMĚTŮ NA ZŠ A SŠ

CZ.1.07/1.1.30/02.0024

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Multioborový workshop pro SŠ

BIOLOGIE – FYZIKA – CHEMIE

Téma: PARAZITI POD MIKROSKOPEM FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM ELEKTROCHEMIE

Page 2: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

2

TÉMA: PARAZITI POD MIKROSKOPEM (PARAZITIČNÍ PRVOCI - Protozoa)

AUTOŘI: Mgr. ZBYNĚK HOUDEK, Ph.D., Mgr. VERONIKA KAUFNEROVÁ,

CÍL: Příprava nativních preparátů parazitických prvoků

ÚVOD

Parazitičtí prvoci patří k jednobuněčným eukaryotickým mikroorganismům, které se živí

heterotrofně, ale liší se od svých volně žijících prvoků řadou jedinečných organel. Tyto

organely pomáhají těmto prvokům žít ve svých hostitelích. Mezi tyto organely náleží např.

u trypanosom kinetoplast, což je mitochondrie vybavená velkým množstvím DNA. Podobnou

organelu obsahují výtrusovci, jako je malárie s apikoplastem.

Parazitičtí prvoci ze třídy Kinetoplastea a řádu Trypanosomatida, kteří jsou příbuzní našim

krásnoočkám, tedy bičíkovcům. Tito bičíkovci se vyznačují nejen přítomností bičíků, ale i

zvláštní organelou, kterou nazýváme kinetoplast. Kinetoplast proto, jelikož ho najdeme

blízko bazálního tělíska (kinetozóm) a jedná se v podstatě o specializovanou mitochondrii,

která obsahuje velké množství DNA (až 40 % z celkového množství). Schopností těchto

prvoků je opět vytvářet celou řadu stádií, která se od sebe liší úpravou bičíku, undulující

membrány a polohou kinetoplastu vůči jádru. Nejznámější formou těchto parazitů jsou

trypomastigoti, kteří dali jméno celému řádu (kinetoplast a bičík je až za jádrem.

Nás v této kapitole budou zajímat hlavně dvouhostitelští parazité, kde jedním hostitelem je

hmyz a druhým obratlovec, tedy i člověk. Hmyz, který přenáší tyto parazity, náleží mezi

dvoukřídlé (Diptera) a ploštice (Heteroptera).

Spavá nemoc – africká trypanosomóza

Vývoj parazita v přenašeči končí v přední části trávící soustavy a přenos je zajištěn přes

bodavěsací ústní ústrojí (Salivaria). Původním přenašečem této trypanosomózy jsou africké

mouchy bodalky (Glossina spp.), ale u některých forem onemocnění tyto přenašeči už nejsou

nezbytní a jsou přenášeny jiným dvoukřídlým hmyzem, proto se mohly rozšířit i na jiné

kontinenty.

Trypanosomóza divokých zvířat a dobytka (nagana) je přenášena právě mouchami bodalkami

a je způsobena druhem Trypanosoma brucei, který je pro člověka ale neškodný, protože náš

imunitní systém jej zničí.

Page 3: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

3

Obr. 1 Trypanosoma brucei

Naopak původcem spavé nemoci (lidská trypanosomóza) je druh Trypanosoma

rhodensiense, který je vůči naší imunitní reakci rezistentní. Tato akutní forma nemoci může

být i smrtelná a trvá několik týdnů a je přenášena bodalkami savan a najdeme ji hlavně ve

východní Africe. V západní Africe nám hrozí naopak chronická fáze nemoci, která je

přenášena říčními bodalkami a trvá až několik let a končí také smrtí.

U nás najdeme příbuzné zástupce trypanosom hlavně u bezobratlých živočichů jako jsou

bičíkovci Leptomonas pyrhocoris v trávicí trubici ploštice ruměníce pospolné nebo

v semenném váčku hlemýždě zahradního Cryptobia helicis .

ÚLOHY:

1 SAMOSTATNÁ PŘÍPRAVA NATIVNÍCH PREPARÁTŮ BIČÍKOVCE Z KMENE KRÁSNOOČEK

(Euglenozoa - druh Cryptobia helicis)

1.1 Pomůcky a materiál

živí hlemýždi zahradní (Helix pomatia), živé žížaly obecné (Lumbricus terestris), preparační

(pitevní) miska, preparační jehla, pinzeta, nůžky, špendlíky, jednorázová plastová pipeta,

gumové jednorázové rukavice, měkký hadřík, podložní a krycí skla, fyziologický roztok,

Page 4: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

4

proužky filtračního papíru, čistý benzín, binokulární lupa, mikroskop, imerzní objektiv

a potřeby k mikroskopování, imerzní olej.

1.2 Princip

Zhotovte nativní preparát ze semenného váčku (receptaculum seminis) hlemýždě zahradního

(Helix pomatia).

1.3 Postup

Velkou širokohrdlou lahev naplníme až po okraj převařenou vodou a vložíme do ní živé

hlemýždě zahradní a zavíčkujeme ji. Takto provedeme usmrcení plže utopením, které trvá

přibližně 20 – 24 hodin. Poté po částech opatrně odstraníme pomocí pinzety ulitu. Plže

připevníme pomocí špendlíků k voskovému dnu pitevní misky a objekt přelijeme vodou.

Pomocí nůžek, pinzety a preparační jehly vypreparujeme semenný zásobní váček

(receptaculum seminis), kde by se měli nacházet cizopasní prvoci Cryptobia helicis.

1.4 Otázky a úkoly

• Která buněčná organela obsahuje DNA a je charakteristická pro trypanosomy a jim

příbuzné parazity?

• Napiš jakou nemoc, způsobují trypanosomy v Africe?

Page 5: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

5

A. TÉMA: PARAZITIČTÍ HELMINTI POD BINOLUPOU (ČERVI):

CÍL: Seznámit se s parazitickými helminty:

ÚVOD

Tato rozmanitá skupina helmintů zahrnuje druhy, které napadají člověka i v našem mírném

pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic

(Nematoda). Tato skupina endoparazitů je charakteristická většinou složitými životními cykly.

Motolice mají např. za mezihostitele nějaký druh měkkýše.

Mezi kosmopolitní motolice, které se sporadicky vyskytují i u nás, náleží motolice jaterní

Fasciola hepatica, kterou řadíme do čeledi Fasciolidae mezi dvou-hostitelské motolice. Její

rozměry jsou 60x15 mm a poškozuje játra a žlučovody. Nejvíce tato motolice napadá lidi

v Jižní Americe v Bolívii, kde je to až 15 % populace. Tato motolice je vázána na plovatky,

tedy vodní plže, kdy u nás je to bahnatka malá (Galba truncatula). Tato plovatka je schopná

žít na podmáčených lokalitách. Motolice se do definitivního hostitele dostávají s potravou

(salát z vodních rostlin) v podobě metacerkárií, které v trávicí trubici excystují a pronikají do

břišní dutiny a jater. Následně se usadí ve žlučovodech a způsobují fibrózu až cirhózu jater.

Člověk se může nakazit i tepelně neupravenými játry zvířat, kdy se mladé motolice mohou

zachytit i v hltanu, kde způsobují krvácení a otoky – halzoun.

Prevence těchto parazitů spočívá v tlumení populací mezihostitelů, vodních plžů formou

vysušování a meliorací vodních zdrojů. Nejúčinnější prevence je v oblasti zpracování

potravin, které je nutné před konzumací dobře tepelně upravit.

Obr. 2 Přední část těla motolice obrovské s přísavkou

Page 6: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

6

Trichobilharzia regenti je druh motolice objevené v roce 1998 v České republice a na

některých lokalitách se vyskytuje až u 40 % volně žijících vodních ptáků. Napadá je

prostřednictvím volně plovoucích cerkárií, které se uvolňují z vodních plžů rodu Radix

a pronikají ptákům pod kůži. Oproti ostatním schistosomám, zalézají tyto motolice nejprve

do periferních nervů, pak do míchy, mozku a dále do nosní sliznice, kde se množí. Infikovaní

ptáci mohou mít poškozené nervové tkáně a způsobit poruchy, u těžších infekcí zejména

ochrnutí končetin. U lidí mohou trichobilharzie způsobit cerkáriové vyrážky vznikajících po

koupání ve vodních nádržích. I putování cerkárií v savcích může mít podobné následky jako

u napadených ptáků. Rozdíly mezi ptačím a savčím hostitelem jsou však tak velké, že parazit

v savcích nedospívá a pak hyne. U lidí s cerkariovou dermatitidou zatím nebylo prokázáno

jiné postižení než vyrážka, někdy provázená zduřením lymfatických uzlin.

Škrkavky

Tito helminti patří mezi nematoda a pod řád Ascaridida a čeleď Ascaridae. Nejznámější je

škrkavka dětská (Ascaris lumbricoides), která je opět jako předchozí tasemnice

kosmopolitním druhem a parazituje v tenkém střevě člověka a lidoopů. Odhady světové

zdravotnické organizace uvádí asi 1 mild. nakažených lidí. Jsou země, kde je výskyt choroby

50%, naopak u nás je ročně zaznamenáno několik desítek až stovek pacientů ročně. Larvy žijí

v odolných vajíčkách ve vnějším prostředí až několik týdnů. Zdrojem nákazy jsou

kontaminované potraviny, které jsou nedostatečně teplotně zpracované. Ze střeva pronikají

larvy do jater anebo cév, pak do srdce a plic, pak jsou larvy vypuzeny dýchacími cestami do

úst, kde jsou polknuty a dostávají se zpět do střev, kde dospívají. Krevní a plicní stádia

vyvolávají embolii, kašel, záněty plic, horečkami a eozinofilií. Mimo mechanického poškození

jater a dalších částí trávící soustavy vylučují metabolity, které ovlivňují nervovou soustavu

a působí vznik alergických ekzémů. Onemocnění se dále projevuje nechutenstvím, zvracením

a průjmy. Při masivní nákaze může dojít až k ruptuře střeva.

U člověka může parazitovat i škrkavka psí a kočičí (Toxocara canis, T. cati) a jedná se

o larvální toxokarózu, kdy migrující larvy poškozují orgány, jako jsou plíce, oči a mozek. U nás

byly zjištěny protilátky u 18 % populace, i když se jedná především o škrkavky našich

domácích mazlíčků.

Page 7: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

7

Obr. 3 Toxocara cati

ÚLOHY:

2 POD BINOLUPOU BUDETE POZOROVAT ZÁSTUPCE MOTOLIC

(Trematoda - motolici obrovskou Fascioloides magna), a škrkavek (Ascaridida – škrkavku

kočičí Toxocara cati).

2.1. Pomůcky

usmrcení a ve 4% formalínu uložení dospělí jedinci motolice obrovské (Fascioloides magna), a

škrkavky kočičí (Toxocara cati), preparační (pitevní) miska, preparační jehla, pinzeta,

jednorázová plastová pipeta, gumové jednorázové rukavice, měkký hadřík, podložní a krycí

skla, fyziologický roztok, proužky filtračního papíru, čistý benzín, binokulární lupa a

mikroskop.

2.2. Princip

Prohlédnout pod binolupou a nakreslit parazitické helminty

Page 8: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

8

2.3. Postup

Pinzetou uchopte a vyjměte z nádoby s roztokem formalínu postupně dospělého jedince

motolice obrovské (Fascioloides magna), tasemnice a škrkavky kočičí (Toxocara cati). Pomocí

preparační jehly a pinzety dejte na preparační misku a nakreslete.

2.4. Otázky a úkoly

• Jaká motolice je u nás nejvíce nebezpečná pro lidi?

• Nakresli životní cyklus škrkavky dětské.

• Které další druhy škrkavek znáš?

B. TÉMA: PARAZITIČTÍ ČLENOVCI:

CÍL: Seznámit se s parazitickými členovci a příprava trvalých preparátů

ÚVOD

Klíště obecné (Ixodes ricinus)

Klíště obecné, které je v poslední době velice aktuálním parazitem a vektorem závažných

chorob člověka, náleží systematicky do třídy Chelicerata – klepítkatci, dále do řádu roztočů –

Acarina, čeledi Ixodidae (klíšťovití). Tento roztoč se vyznačuje přítomností štítku (scutum) na

těle, kdy u samce kryje celé tělo, ale u nenasáté samice pouze jeho polovinu nebo třetinu.

Zadní část těla (idiosoma) klíštěte je velice elastická, aby se samička mohla dostatečně nasát

a tím pádem zvětšit svůj objem. Přední část těla (gnathosoma) nese nejen končetiny, ale i

charakteristický útvar podobný rypáčku (hypostom), jehož přichycovací funkci vylepšují

koncentrické a zahnuté zoubky. Nasátá samička klíštěte se pouští svého hostitele

a produkuje vajíčka, ze kterých se vyvíjí larva a pak nymfa, které také sají a přeměňují se

v další stádium nymfy a následně v dospělce. Z hlediska počtu hostitelů mluvíme u klíštěte

o 6-hostitelském životním cyklu, který trvá několik let. Výše uvedená stádia klíšťat čekají na

svého hostitele převážně na vegetaci a jeho přítomnost určí díky Hallerovu orgánu na

předním páru nohou, který deteguje CO2, teplo atd., protože jim oči chybí. U larev bývá

hostitelem drobný hlodavec, pták nebo ještěrka. Nymfy už napadají větší obratlovce

a dospělci hlavně vetší lesní zvěř, hospodářská a domácí zvířata. Člověk může být hostitelem

všech jmenovaných stádií klíšťat od larvy po dospělce. Délka života klíštěte je zhruba 6 let,

protože každé stádium potřebuje pro svůj vývoj asi 1 rok. Nejvíce klíšťat najdeme v květnu –

září v níže položených rovinách, údolích a méně na horách od března do listopadu v závislosti

na počasí. Z hlediska biotopů, tak jsou hojná v listnatých a smíšených lesích s křovinami.

Page 9: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

9

Jejich nebezpečí vůči člověku spočívá především v přenosu klíšťové encefalitidy a lymeské

boreliózy.

Klíšťová encefalitida je způsobena virem a lymeská borelióza je bakteriální onemocnění, jež

zahrnuje komplex druhů Borrelia burgdoferi. V místě sání klíštěte se 2-6 týdny po infekci

dojde k vytvoření zarudlé skvrny, která je uprostřed světlá. Skvrnu nazýváme erythema

migrans.

Klíšťové encephalitidě můžeme předejít díky vakcinaci, ale u lymeské boreliózy vakcína pro

Evropu neexistuje. Naopak v Americe je vakcinace možná, protože byla vyvinuta účinná

vakcína. Léčí se peniciliny jako je ampicilin, penicilin G a cefalosporiny.

Klíšťák holubí (Argas reflexus)

Patří mezi roztoče do čeledi Argasidae (klíšťákovití). V angličtině se jim říká soft tick neboli

měkká klíšťata, podle měkkého bradavičnatého pokryvu těla. Od předchozího klíštěte se liší

nepřítomností štítku (scutum). Idiosoma tohoto roztoče kryje zcela gnathosomu. Klíšťáci žijí

v hnízdech svých ptačích hostitelů. Dospělci podobně jako klíšťata sají krev hostiteli, ale jen

po krátkou dobu, když hostitel spí. Naopak larvy sají na hostitelích po dlouhou dobu. Celkově

jsou klíšťáci schopni i dlouho hladovět, dokonce i několik let. Vývoj klíšťáka trvá podobně

jako u klíštěte 2-6 roky.

Klíšťák holubí parazituje nejen na holubech, ale i na člověku, u kterého může způsobit až

podlitiny, alergickou reakci, horečky a bolesti hlavy.

Nejdůležitější je zjistit zdroj, odkud se klíšťáci šíří dovnitř a ten zlikvidovat, znemožnit

holubům přístup na půdy, římsy a do světlíků.

Page 10: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

10

Obr. 4 Přední část těla (gnathosoma) klíšťáka holubího

ÚLOHY:

3. POD BINOLUPOU NEBO MIKROSKOPEM SI BUDETE MOCT PROHLÉDNOUT PARAZITICKÉ

ČLENOVCE, JAKO ROZTOČE

(Acarina - klíšťáka holubího Argas reflexus) .

3.1. Pomůcky

usmrcení jedinci, klíšťáka holubího (Argas reflexus), 96% alkohol, xylen, kanadský balzám,

podložní a krycí skla, pinzeta, skleněná tyčinka, Petriho miska, mikroskop, binokulární lupa,

čistý benzín, určovací klíč pro determinaci blech (např. Kolářová a kol. – Images of human

parasites – http://old.lf3.cuni.cz/mikrobiologie/parazitologie/)

3.2. Princip

Připravit trvalé preparáty a prohlédnout pod binolupou a nakreslit parazitické členovce

3.3. Postup

Ektoparazity nejprve odvodněte 2 – 3x v 96% etanolu a poté v xylenu.

Na dobře vyčištěné a odmaštěné podložní sklo kápněte kapku kanadského balzámu (pokud je

příliš hustý, lze jej ředit xylenem). Do kapky kanadského balzámu vložte odvodněného

Page 11: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

BIOLOGIE

PARAZITI POD MIKROSKOPEM

11

ektoparazita a oparně přikryjte krycím sklem. Abyste zabránili vzniku vzduchových bublin, je

dobré nejprve krycí sklo smočit v xylenu. Zhotovený trvalý preparát pozorujte nejprve pod

binokulární lupou a poté pod mikroskopem.

3.4. Otázky a úkoly

• Zařaď systematicky klíště obecné?

• Které choroby u nás klíště přenáší nejčastěji?

LITERATURA

1. Hofmanová, H., 2012: Praktická parazitologie ve výuce biologie. –MS, Diplomová práce,

ZČU, Plzeň, str. 123.

2. Jíra, J., 2009: Lékařská protozoologie. Galén, Praha, str. 567.

3. Kolářová, L., Němečková, V. et al., Images of human parasites,

http://old.lf3.cuni.cz/mikrobiologie/parazitologie/, staženo 23. 6. 2013.

4. Volf, P., Horák P. et al., 2007: Paraziti a jejich biologie. Triton, Praha, str. 618.

5. Votava, M., Černohorská, L. et al., 2006: Lékařská mikrobiologie speciální, Neptun, Brno,

str. 493.

Page 12: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

12

TÉMA: FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

AUTOŘI: PhDr. PAVEL MASOPUST, Ph.D., Mgr. LUKÁŠ FEŘT

CÍL: Seznámit účastníky s fyzikálními pokusy, které demonstrují fyziku, která se „skrývá“ za

tím, když se tělesa vznáší

ÚVOD

Také jste jako děti pozorovali s otevřenými pusami letadla a říkali si, jak je možné, že „drží“ ve vzduchu? A nyní už to víte? Následující řádky a především pokusy na workshopu vás seznámí s fyzikou, která je za létáním (a padáním) těles skryta a kterou budete na vlastní kůži zkoumat na workshopu v podobě rozmanitých fyzikálních pokusů.

Page 13: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

13

Něco z poezie

Touha po poznání je lidstvu daná. Toužíme poznávat naše okolí a svět kolem nás, podmořské hlubiny i „prázdný“ prostor nad námi.

Ten byl lidstvu dlouho nepřístupný. Po okolí se mohl člověk projít, přes vodu přeplout, pod vodu se ponořit, ale vznést se a moci tak poznávat prostor nad námi bylo lidstvu dlouho zapovězeno. Vznést se a odlepit od země bylo člověku dlouhou dobu odepřeno. Touhu po poznání vesmíru a vůbec světa nad našimi hlavami krásně ukazuje i báseň Jana Nerudy, tolik slavná i z filmu Marečku, podejte mi pero:

Jak lvové bijem o mříže, jak lvové v kleci jatí, my bychom vzhůru k nebesům a jsme zde Zemí spjatí.

Nám zdá se, z hvězd že vane hlas: "Nuž pojďte, páni, blíže, jen trochu blíže, hrdobci, jimž hrouda nohy víže!"

My přijdem! Odpusť, matičko, již jsi nám, Země, malá, my blesk k myšlénkám spřaháme a noha parou cvalá.

My přijdem! Duch náš roste výš a tepny touhou bijí, zimniční touhou po světech div srdce nerozbijí!

My přijdem blíž, my přijdem blíž, my světů dožijeme, my bijem o mříž, ducha lvi, a my ji rozbijeme!

Víra autora v lidské poznání, které umožní objevovat dosud nepoznané skutečnosti přírody je v básni krásně patrná. Zajímavé je, že v básnické sbírce Písně kosmické (z které je báseň Jak lvové bijem o mříže) nejsou žádné větší nesrovnalosti se současným stavem poznání astronomie, Jan Neruda dokonce astronomii učil i své dva kmotřence, bratry Fričovi, pozdější zakladatele Ondřejovské hvězdárny.

Page 14: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

14

Když se v roce 2009 uskutečnil poslední let amerického raketoplánu programu Space Shuttle STS-125 (jednalo se o poslední let programu k jinému objektu než k Mezinárodní vesmírné stanici) nesl raketoplán Atlantis na své palubě směrem k Hubbleovu vesmírnému dalekohledu, kromě obvyklého vybavení a posádky, také českou vlajku a český a anglický výtisk Písní kosmických. Předměty se na palubu dostaly iniciativou astronauta Andrew J. Feustela. Proč si vybral právě předměty z České republiky? Jeho tchýně byla z Moravy, a tak měl k naší republice vztah.

Obr. 1 Astronaut Andrew J. Feustel,

Zdroj: NASA

Vztah Jana Nerudy a jeho díla a prostoru nad našimi hlavami se tímto činem krásně zpečetil.

Page 15: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

15

Gravitace a tíha

Proč se vlastně nevznášíme prostorem a musíme pro pohyb mimo zemi vyvíjet mimořádné úsilí? Je to samozřejmě způsobeno přitažlivou silou mezi planetou Zemí a naším tělem. Tuto sílu již znáte pod pojmem gravitační síla, nebo tíhová síla.

Gravitační síla

Gravitační síla působí mezi každými dvěma tělesy, která mají hmotnost. Jak veliká je tato síla? To nám umožní spočítat Newtonův gravitační zákon.

Dvě tělesa o hmotnostech a , jejichž hmotné středy (přibližně totožné s těžištěm, u koulí je to jejich střed) jsou ve vzdálenosti , jsou přitahována silou .

Obr. 2 Gravitační síla

Zdroj: http://cs.wikipedia.org/wiki/Newton%C5%AFv_gravita%C4%8Dn%C3%AD_z%C3%A1kon

Řecké písmeno kappa ( ) označuje gravitační konstantu a její velikost byla změřena jako . Jakou silou jste tedy přitahování například k automobilu,

kolem kterého procházíte ve vzdálenosti 1 m? Předpokládejme, že vaše hmotnost je 80 kg a

automobil má 1000 kg, pak: . Tato síla je velmi

malá a ve skutečnosti ji ani nepocítíte. Srovnejme ji se silou, jakou vás přitahuje Země. Hmotnost Země je oproti hmotnosti automobilu mnohokrát vyšší: .

Mnohokrát vyšší tak bude i přitažlivá síla mezi Zemí a vámi. Vzdálenost středu Země a osoby stojící na povrchu země se rovná zemskému poloměru a přitažlivá síla

. Tato síla je cca 150 milionkrát větší.

Tíhová síla

Země rotuje kolem své osy, a my se nacházíme na jejím povrchu. Situaci lze přirovnat k otáčení se na kolotoči. Na kolotoči pociťujme sílu, která se nás snaží z kolotoče „vystrčit“. Je to stejná síla, která na nás působí při zatáčení na kole nebo v automobilu. Jedná se

Page 16: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

16

o takzvanou odstředivou sílu. Stejná síla na nás působí i na povrchu Země a snaží se nás „vystřelit“ kolmo k zemské ose do vesmíru.

Na tomto obrázku značí silu gravitační (ta míří do hmotného středu Země), sílu

odstředivou (je kolmá k ose otáčení) a černě tučně je zde naznačena výsledná síla, což je právě síla tíhová: jedná se tedy o součet gravitační a odstředivé síly. Na pólech, kde je odstředivá síla nulová (podobně jako uprostřed otáčejícího se kruhového kolotoče) je tíhová síla rovna gravitační a na rovníku, kde je odstředivá síla největší (podobně jako na okraji rotujícího kolotoče) se odstředivá a gravitační síla odčítá. Pro představu o velikosti: na rovníku je gravitační síla působící na 80 kg člověka rovna (jak jsme spočítali

v předchozím odstavci) a odstředivá síla se spočte podle vzorce . Hmotnost je

80 kg, r je vzdálenost středu Země a bodu na rovníku (přibližně poloměr Země) a v je oběžná rychlost tělesa na rovníku kolem středu Země.

Tu lze spočítat z toho, že těleso oběhne kruhovou dráhu o poloměru , za jeden den (uvažujme střední den, 24 h, 86 400 s) a rychlost se pak rovná

.

Odstředivá síla je pak . O tuto sílu se gravitační síla 783 N

snižuje. Tíhová síla .

Gravitační síla se se vzdalováním od povrchu Země snižuje, pro běžné aplikace kdy se příliš nevzdálíme od povrchu Země stačí tíhovou sílu počítat známým vzorcem , kde je tíhové zrychlení a velikost normálního tíhového zrychlení je stanovena na

. To je ona hodnota , se kterou se v příkladech běžně počítá.

Podstata gravitace ještě není objasněna, jejímu vysvětlení se mimo jiné věnuje obecná teorie relativity, která gravitaci popisuje pomocí zakřivování prostoru v okolí hmotných těles.

Obr. 3 Gravitační a tíhová síla

Page 17: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

17

Obr. 4 Gravitace a zakřivení prostoru

Zdroj: http://www.reddit.com/static/spreddit5.gif

Antigravitace

Slovo antigravitace nám může znít jako něco z oblasti sci-fi filmů a vědy daleké budoucnosti. Samotný význam slova je ovšem jednodušší: předpona anti obvykle značí proti – například antibakteriální je protibakteriální, antialergický působí proti alergii a antibiotikum působí proti mikroorganismům (bios je řecky život). A slovo gravitace již známe.

Jako antigravitační sílu pak můžeme označit jakoukoli sílu, která působí proti gravitaci. Antigravitační silou tak může být označena i síla, která drží křídu nad stolem a nedovolí jí vlivem gravitace upadnout zpět na stůl.

Page 18: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

18

Obr. 5 Antigravitační síla, Zdroj: http://readingcore.org/privacy.htm

V obrázku Obr. 5 je antigravitační síla označena . Pokud je síla stejně velká

(a opačného směru než ) výsledná síla působící na jablko bude nulová, nulové tedy bude i zrychlení a jablko bude zůstávat na stejném místě v prostoru (pokud na něj nepůsobí žádné další síly). Jaké další síly mohou působit antigravitačně? Ve zbytku textu se na některé z nich podíváme.

Vztlaková síla a balóny

Dne 4. června 1783 se za účasti francouzského krále Ludvíka XVI. podařilo bratrům Montgolfierům odstartovat s prvním horkovzdušným balónem. Toto datum bývá považováno za počátek éry balónového létání.

Tomuto veřejnému pokusu předcházelo samozřejmě množství neveřejných. Samotný princip balónu údajně odhalil Joseph-Michel Montgolfier při pozorování prádla, které se sušilo nad ohněm a v proudu teplého stoupajícího vzduchu se pohybovalo. Další jev, který ho na nápad přivedl, byl žhavý popel, který se vznášel nad ohněm, který pozoroval. V listopadu 1782 zahájil pokusy s krabicí 1x1x1 m z tenkého dřeva, kterou obalil taftem – umělým hedvábím. Pod touto krabicí zapálil papír a pozoroval, že se krabice vznesla a vylétla až ke stropu. Svému bratru (Jacques-Étienne Montgolfier) napsal: „Obstarej zásobu taftu a lan, rychle, a uvidíš jeden nejúžasnějších pohledů světa“. Bratři následně postavili model s třikrát zvětšenými rozměry (27 krát zvětšený objem). Model se vznesl tak prudce, že nad ním bratři hned při prvním letu 17. 12. 1782 ztratili kontrolu a po přistání na dva kilometry vzdáleném místě byl zničen kolemjdoucími.

Bratři předpokládali, že hoření produkuje speciální plyn, který nazvali Montgolfierovým plynem a jeho vlastnost nazvali levitací.

Page 19: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

19

Obr. 6 Balón bratří Montgolfierů Zdroj: http://en.wikipedia.org/wiki/File:1783_balloonj.jpg

První balón plněný jiným plynem než vzduchem, byl balón vytvořený Jacquem Charlesem v roce 1783. Balón plněný vodíkem vzlétl 27. srpna z Martových polí v Paříži. Jaká síla nese balón vzhůru?

Vztlaková síla Balóny jsou udržovány ve vzduchu stejnou silou, jaká vás nadnáší, když se ponoříte do vody. Pokud je těleso o objemu ponořeno do tekutiny (plynu nebo kapaliny) o hustotě , je nadlehčováno silou . Pokud je tato síla větší než tíhová a je namířena proti síle tíhové, působí výsledná síla ve směru vztlakové síly a může těleso zdvihnout do výšky.

Page 20: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

20

Obr. 7 Vztlaková síla

Uvažujme kulový balón o poloměru , uvnitř kterého je plyn o hustotě , je v prostředí o hustotě . Pokud zanedbáme hmotnost obalu balónu (je vůči hmotnosti plynu uvnitř zanedbatelná), je tíhová síla působící na balón, jak víme z předchozích odstavců,

. Byl zde použit vzorec pro hmotnost . Vztlaková síla je .

Pokud je vztlaková síla větší než tíhová, tedy pokud , a , a . Toto je podmínka pro to, aby se balón vznesl. Hustota plynu v balónu tedy musí být nižší, než hustota plynu vně. Zanedbali jsme hmotnost obalu balónu a také hmotnost koše a zátěže. Podmínka pro vznesení je však stejná. Balón unese tím více, čím nižší je hustota plynu uvnitř balónu oproti hustotě plynu vně. Hustota vzduchu při teplotě je , při teplotě je

hustota vodíku , helia . Stoupání a klesání balónu je možné ovládat změnou teploty vzduchu v horkovzdušném balónu (a tedy změnou hustoty plynu uvnitř), nebo u balónů plněných jiným plynem upouštěním plynu pro klesání a odhazováním zátěže pro stoupání. Ve vodorovném směru lze balón ovládat jen částečně využitím toho, že v různých výškách může vítr vanout různým směrem.

Page 21: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

21

Elektrostatická síla Již ve starém Řecku bylo známo, že třením těles (pozorováno u mineralizované pryskyřice jantaru) se s nimi „cosi stane“ a tato tělesa mohou silově působit na tělesa jiná. Jantar se řecky označoval jako = elektron, pojmenování elektřina pochází právě od jantaru. To „cosi“ je jak již dnes víme způsobeno přenosem elektrického náboje z jednoho tělesa (jantaru) na druhé těleso, kterým byl jantar třen (např. vlna). Již velmi dávno je tak známo, že elektrostatická síla může být jak přitažlivá, tak odpudivá. Náboj ve fyzice označujeme a jakou silou na sebe působí dva náboje? Na to nám odpoví

Coulombův zákon, který obvykle zapisujeme v podobě .

Písmenko značí takzvanou permitivitu vakua a hodnota této veličiny je . Náboj jednoho Coulombu je náboj obrovský: pokud bychom

umístili dva bodové náboje o velikosti 1 C do vakua do vzdálenosti 1 m od sebe, odpuzovaly by se silou

,

což je obrovská síla, která odpovídá síle, jakou bychom museli vyvinout pro zdvihnutí tělesa o hmotnosti cca 916 000 tun. S takto velkými náboji se ovšem nesetkáváme a například při tření jantaru vlnou získáme náboje v řádu miliardtin coulombu. Pokud je odpudivá elektrostatická síla namířena proti tíhové síle, může působit jako síla antigravitační. Pěkně tento jev demonstruje hračka http://www.thinkgeek.com/geektoys/science/af4c/. V hůlce je ukryt miniaturní Van de Graaffův generátor, který hůlku a stříbřitou mylarovou fólii nabíjí kladným nábojem. Hůlka a fólie se pak odpuzují.

Page 22: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

22

Obr. 8 Elektrostatická síla

Magnetická síla

Elektřina a magnetismus mají mnohé společné. Jak může být magnetismus použit pro „boj“ s gravitací ukazuje zařízení http://en.wikipedia.org/wiki/Levitron.

Page 23: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

23

Obr. 9 Levitron a magnetická síla

Všichni víme, že magnety mají severní a jižní pól a stejné póly se navzájem odpuzují. Nebylo by tedy možné tuto odpudivou sílu použít jako antigravitační sílu? Tak jednoduché to ovšem nebude. Pokud uchopíme dva magnety a přiblížíme je k sobě stejnými póly tak se sice odpuzují, ale energetický výhodnější je, když se horní magnet otočí a přitáhne se k druhému. Nedopadne to tedy takto

ale takto .

Pokud bychom chtěli, aby se druhý magnet vznášel nad prvním magnetem, musíme nějak zamezit tomu, aby se otočil a přitáhl. Pozn. to, že není možné vytvořit stabilní systém jen s použitím statického magnetického nebo elektrického pole vysvětluje Earnshawův teorém. Stabilita zařízení na obrázku Obr. 9 je dosažena tím, že je horní (žlutý) magnet vyroben jako

Page 24: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

24

setrvačník a roztočený setrvačník se snaží zachovat orientaci osy rotace v prostoru. Tím je magnet stabilizován a nedojde k výše popsanému otočení. Jak poukazuje např. článek na http://www.physics.ucla.edu/marty/levitron/spinstab.pdf, toto vysvětlení je pro stabilitu nedostačující a je potřeba provést důkladnější analýzu, viz zmíněný článek, jeho důkazy ovšem přesahují rámec tohoto textu. Předpoklad, že je zde vznášení dosaženo magnetickou silou je ovšem platné. I magnetická síla může působit jako síla antigravitační.

Lifter, asymetrický kondenzátor.

Předváděný jev byl poprvé pozorován ve dvacátých letech dvacátého století Thomasem Townsendem Brownem při pokusech s Coolidgeovou trubicí. Pozoroval, že při zapnutí trubice se tato snaží pohybovat směrem zpět, proti směru emitovaného záření.

Jev lze v laboratorních podmínkách demonstrovat konstrukcí tzv. lifteru.

Lifter je asymetrický kondenzátor, tedy takový kondenzátor, u nějž je velká geometrická odlišnost kladné a záporné elektrody. Jedna z možných konstrukcí je na obrázku 1. Právě pro tuto odlišnost nazýváme lifter asymetrickým kondenzátorem.

Obr. 10 Princip lifteru

Samotnou konstrukci pak ukazuje obrázek 1. Funkci malé kladné elektrody plní tenký

měděný drátek, funkci záporné elektrody alobalový obal lifteru. Pokud na tenký drátek přiložíme kladný a na alobal záporný pól vysokého napětí,

vznikne silný proud vzduchu směrem dolů od lifteru, a s trochou štěstí se lifter vznese. Jako zdroj vysokého napětí byl použit počítačový monitor. Více o konstrukci lifterů např. na http://jnaudin.free.fr/lifters/main.htm.

Hotový lifter ukazuje obrázek 17.

Page 25: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

25

Obr. 11 Hotový lifter

Page 26: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

26

Obr. 12 Lifter "v akci" Zdroj http://vnuf.cz/2008/cz/galerie/ctvrtek/?fotografie=P8280515.JPG

Page 27: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

27

Závěr

Doprovodný text multioborového workshopu přinesl přehled základní teorie, která bude při workshopu diskutována, a na kterou budou předváděny pokusy, a která je potřeba pro zodpovězení otázek z pracovních listů. Jsou zde popsány základní síly, které mohou působit proti tíhové síle a umožnit tak předmětům vznášet se. Konkrétně byly uvedeny příklady z oblasti elektrostatiky a magnetismu a aerostatiky.

Page 28: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

28

Levitron

Pomůcky: Levitron, http://en.wikipedia.org/wiki/Levitron, váha

Obr. 13 Levitron

Otázky:

1. Na jakém principu Levitron funguje? Jaká síla drží horní magnet ve vzduchu? 2. Zvažte Levitron (horní magnet i podstavu) v klidu a pak umístěte a zprovozněte

Levitron na váze. Bude váha ukazovat odlišná čísla? Proč váha ukazovala to, co ukazovala? Nejprve výsledek odhadněte, pak ověřte experimentem.

3. Proč musí horní magnet rotovat?

Page 29: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

29

Gravitační a tíhová síla

Úkol: Na zeměkouli v bodech označených křížkem vyznačte šipkou gravitační sílu a odstředivou sílu (čárkovaná čára je osa rotace zeměkoule)

Otázky:

1. Kde je gravitační a odstředivá síla největší? 2. Kde je největší výsledná tíhová síla? 3. Pokud byste chtěli překonat rekord ve skoku do výšky nebo do dálky, kde na zeměkouli

byste se o to pokusili? 4. Jak ovlivní odpovědi skutečný tvar zeměkoule – zploštění na pólech?

Page 30: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

30

Lifter

Pomůcky: Sestrojený lifter, zdroj vysokého napětí

Obr.14 Lifter

Zdroj: http://elektronik.webz.cz/img/lifter2.jpg

Otázky:

1. Na jakém principu lifter funguje? Jaká síla drží zařízení ve vzduchu? 2. Jaký fyzikální zákon (jaké zákony) zařízení demonstruje? 3. Proč jsou při provozu lifteru vidět výboje? 4. Při provozu lifteru je ve vzduchu cítit ozon. Co to je a proč vzniká? Jaké má vlastnosti? 5. Co lze použít jako zdroj vysokého napětí pro provoz lifteru?

Page 31: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

31

Vytvoř foukací raketu

Úkol: Vytvoř z papíru raketu.

Pomůcky: kancelářský papír, nůžky, lepenka tužka, brčko, nůžky

Postup: Vystřihni z papíru obdélník o rozměrech 3 cm x 16 cm. Dále vystřihni z papíru stabilizační křidélka ve tvaru trojúhelníku. Obdélník naroluj na tužku, tak abys jím zakryl cca 2/3 tužky. Poté na konci zalep lepenkou (papír se tak nebude rozmotávat). Na druhé straně vytvoř špičku tím, že papír trochu zmuchláš a přelep izolepou. Pak nalep po obvodu stabilizační křidélka lepenkou. Raketu nasaď na brčko s ramenem a foukni do brčka.

Obr. 15 Foukací raketa

Zdroj: http://exploration.grc.nasa.gov/education/rocket/TRCRocket/paper_rocket.html

Otázky:

1. Co ovlivňuje délku letu rakety? 2. Kde se používá obdobný princip? 3. Co má model rakety společného se skutečnými vesmírnými koráby?

zde zalepit lepenkou přilep lepenkou brčko

Page 32: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

32

Vytvoř balon přání NIKDY neprovádět bez přítomnosti dospělého

Úkol: Vytvoř z domácích pomůcek balon přání.

Pomůcky: velký odpadkový pytel, drátek, houbičku na nádobí, líh, lepenka

Postup: Po obvodu ústí odpadkového pytle připevni pomocí lepenky drát. Ve vzniklém kruhu vytvoř pomocí drátu kříž. Uprostřed (na spojnici drátů) přidělej polovinu z houbičky na nádobí (pomocí drátku). Vynes na volné prostranství pytel. Venku nalij trochu lihu na připevněnou houbičku. Odpadkový pytel nafoukni a po té opatrně zapal houbičku. Dávej pozor, aby plamen nezapálil odpadkový pytel.

Obr. 16 Balón přání

Zdroj: http://www.wyspagadzetow.pl/wp-content/uploads/2010/12/latajace-lampiony.jpg

Otázky:

1. Do kdy balon bude stoupat? 2. Co se bude dít s balonem chvíli po té, co houbička dohoří? 3. Jaké síly působí na balon?

Page 33: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

FYZIKA

FYZIKÁLNÍ POKUSY SPOJENÉ S LÉTÁNÍM

33

LITERATURA

1. Halliday, D., Resnick, R., Walker, J.: Fyzika, Prometheus, Praha 2000 2. Montgolfier brothers,

http://en.wikipedia.org/w/index.php?title=Montgolfier_brothers&oldid=589262694 (naposled revidováno. 4. 12. 2013).

3. Rozhovor: Písně kosmické v raketoplánou, http://www.rozhlas.cz/leonardo/vesmir/_zprava/581028 (naposled revidováno 5. 12. 2013)

4. Heronova parní baňka, 5. http://pokusy.upol.cz/skolni-pokusy/mechanika/reaktivni-motory/heronova-parni-

banka-2/ (naposled revidováno 5. 12. 2013)

6. Bernoulliho rovnice, http://cs.wikipedia.org/w/index.php?title=Bernoulliho_rovnice&oldid=10852860 (naposledy revidováno 6. 12. 2013).

7. Visualization Wind Tunnel, http://smart-blade.com/products-services/visualization-wind-tunnel.html

(naposledy revidováno 6. 12. 2013).

8. Amazing paper airplanes, http://www.amazingpaperairplanes.com/Favorites.html

(naposledy revidováno 4. 12. 2013).

Science Fair Project Ideas, Answers, & Tools,

http://www.sciencebuddies.org/

(naposledy revidováno 5. 12. 2013).

9. Amazing paper airplanes, http://www.amazingpaperairplanes.com/sailplane/Sailplane_video.html

(naposledy revidováno 6. 12. 2013)

10. Spin stabilized magnetic levitation http://www.physics.ucla.edu/marty/levitron/spinstab.pdf (naposledy revidováno 4. 1. 2014)

Page 34: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

CHEMIE ELEKTROCHEMIE

34

TÉMA: ELEKTROCHEMIE

AUTOR: Ing. JAN HRDLIČKA, Ph.D.

CÍL: Žáci jsou schopni popsat a vysvětlit termín oxidace a redukce, katoda a anoda,

elektrolyt. Naučí se měřit napětí elektrických článků, sami si dovodí princip Faradayova

zákona a vysvětlí si pojem odpor elektrolytu včetně odvození závislosti odporu na

vzdálenosti elektrod. V rámci studia vlastností elektrického článku jsou schopni popsat a

vysvětlit termín ušlechtilost kovů a Beketovova řada kovů (řada napětí kovů).

ÚVOD

Elektrochemické reakce patří mezi chemické reakce, ale mají od ostatních druhů reakcí

určité odlišnosti. Při reakcích dochází k výměně elektronů, tj. vždy se jedná o reakce redoxní,

dochází k oxidaci a redukci. Zároveň je typické, že oxidace a redukce probíhají na různých

místech, na elektrodách, mezi nimiž dochází k pohybu elektronů vodičem, tj. toku

elektrického proudu. Další odlišností je to, že reakce probíhá jen ve velmi tenké vrstvě na

povrchu dané elektrody. Tento typ reakcí má široké uplatnění. Ve vaší práci se dnes

soustředíme na dvě oblasti – na elektrické články, kdy dochází k samovolným reakcím, které

vedou ke generaci elektrického proudu, a na elektrochemické vylučování kovů z roztoků

jejich iontů, které je využíváno při potahování předmětů vrstvičkou vhodného kovu.

ÚLOHY:

1. GALVANICKÝ ČLÁNEK (ŘADA NAPĚTÍ KOVŮ)

1.1 Pomůcky

dráty nebo plíšky z různých kovů, 2 – 3 kádinky (150 ml), stojan s dvěma držáky, střička s destilovanou vodou, 5% kyselina chlorovodíková, 5% roztok chloridu sodného, voltmetr s vodiči.

1.2 Princip

Nejjednodušším zdrojem elektrické energie je elektrický článek tvořený dvěma různými kovy

ve společném roztoku elektrolytu. První zmínky o tomto jevu lze vysledovat už u známých

pokusů italského lékaře Luigiho Galvaniho, který pozoroval svalové záškuby způsobené

elektřinou. Na základě těchto pozorování zkonstruoval italský fyzik Allesandro Volta již v roce

1800 elektrický článek jako první trvalý zdroj elektrické energie. Vy si vyzkoušíte přípravu

takového článku, který je založen na různé ušlechtilosti kovů. Při vodivém spojení se tak

Page 35: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

CHEMIE ELEKTROCHEMIE

35

jeden z kovů oxiduje na své ionty a rozpouští se v roztoku, druhý pak redukuje na kov,

případně se na něm vylučuje vodík. V takovém případě pak nazýváme kov, který se oxiduje

(rozpouští) méně ušlechtilým kovem.

1.3 Postup

Do kádinky si nalijte asi 100 ml roztoku kyseliny chlorovodíkové. Jako záporný pól článku

budete používat zinkový plíšek. Upevněte jej do držáku a ponořte do elektrolytu. Poté

umístěte stejným způsobem i hliníkový drát. K zinkové elektrodě připojte záporný pól

voltmetru (země) a k hliníkové elektrodě pól kladný. Zapněte voltmetr a zaznamenejte

napětí připraveného článku do tabulky. Postup zopakujte i pro cínový, stříbrný a měděný

drát, železný hřebík a hořčíkový plíšek. Ihned po měření dráty z roztoku vyjměte, opláchněte

destilovanou vodou a osušte.

1.4 Otázky a úkoly

• Změřte napětí na každém vytvořeném článku. Jednotlivá naměřená napětí vyneste do

tabulky 1.

• Pokud máme článek složený ze zinku a mědi, na které elektrodě v článku dochází

k oxidaci a na které k redukci?

• Na základě zjištěných potenciálů seřaďte testované kovy podle jejich ušlechtilosti.

• Pokud má běžně používaný článek, např. "tužková baterie", napětí přibližně 1,5 V, který

z připravených článků by bylo možno použít k zapojení baterie (několik článků za sebou,

jejichž napětí se sčítá), která by dávala podobné napětí jako koupený článek? Kolik článků

by bylo v baterii a jaké napětí by bylo dosaženo?

2. ELEKTROLÝZA

2.1 Pomůcky

Zdroj napětí, dráty s banánky a krokosvorkami, kádinka, petriho miska, plastová pinzeta,

střička s destilovanou vodou, kousky filtračního papíru, 10% roztok ZnSO4.

2.2 Princip

Elektrolýza je rozklad roztoku působením elektrického proudu. Pokud daný roztok obsahuje

rozpuštěnou sůl kovu, pak se účinkem proudu na jedné z elektrod redukují kationty za vzniku

kovu, na druhé elektrodě se oxidují anionty. K tomu, aby reakce probíhala je potřeba

překročit tzv. vylučovací napětí. To je takové napětí, při kterém začne probíhat na elektrodě

daná reakce. Elektrolýzu studoval v první polovině 19. století známý anglický fyzik a chemik a

zjistil vztah mezi časem, elektrickým proudem a množstvím vyloučené látky na elektrodě.

Page 36: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

CHEMIE ELEKTROCHEMIE

36

Tento vztah je dnes známý jako Faradayův zákon. Vy si v tomto úkolu vyzkoušíte obdobný

experiment, díky kterému pak můžeme platnost tohoto zákona ověřit.

2.3 Postup

Zvážíme si kousek pozinkovaného plechu, který budeme používat jako katodu. Do roztoku

vložíme elektrody – uhlíkovou anodu a plechovou katodu. Zapneme zdroj stabilizovaného

napětí a nastavíme hodnotu napětí na 10 – 12 V. Necháme po dobu 2 minut probíhat

elektrolýzu, poté zdroj vypneme. Plechovou elektrodu vyjmeme, opláchneme destilovanou

vodou, osušíme a zvážíme. Opakujeme ještě dvakrát. Váhy po jednotlivých časech

zaznamenáváme do tabulky. Data pak vyneseme do připraveného grafu.

2.4 Otázky a úkoly

• Jaká je souvislost mezi dobou elektrolýzy a množstvím vyloučeného kovu? Vyjádřete ji

slovně.

3. GALVANICKÉ POKOVOVÁNÍ

3.1 Pomůcky

Plochá baterie (4,5 V), žárovka, dráty s banánky a krokosvorkami, 2 kádinky, petriho miska,

plastová pinzeta, střička s destilovanou vodou, kousky filtračního papíru, 10% roztok CuSO4,

10% roztok H2SO4.

3.2 Princip

Stejně jako v předchozí úloze se jedná o elektrolýzu roztoku. V tomto speciálním případě se

využívá k tomu, aby se povrch vodivého předmětu pokryl tenkou vrstvičkou kovu, v našem

případě mědí. Většinou se tohoto postupu využívá k ochraně materiálů před korozí nebo ke

zlepšení estetických vlastností povrchu.

3.3 Postup

Minci ponoříme na několik vteřin do kyseliny sírové. Pak ji opláchneme destilovanou vodou

a uchytíme ji do krokosvorky. Takto připravenou elektrodu zapojíme jako katodu, měděný

drát pak zapojíme jako anodu. Obě elektrody ponoříme do roztoku CuSO4. Pozorujeme

intenzitu svitu žárovky v závislosti na vzdálenosti elektrod. Minci několikrát otočíme tak, aby

pokovení bylo pokud možno jednolité. Po ukončení pokusu minci vyjmeme, opláchneme

destilovanou vodou a osušíme.

3.4 Otázky a úkoly

• Dokážete vysvětlit změnu intenzity svitu žárovky se vzdáleností elektrod?

• Jaký proces probíhá na katodě a jaký na anodě? Zapište je rovnicemi.

Page 37: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

CHEMIE ELEKTROCHEMIE

37

LITERATURA

1. Vacík, J. et al.: Přehled středoškolské chemie. SPN - pedagogické nakladatelství, Praha

1999.

2. Honza, J., Mareček, A.: Chemie pro čtyřletá gymnázia, 2. díl. Nakladatelství Olomouc,

Olomouc 2002.

Page 38: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

CHEMIE ELEKTROCHEMIE

38

Úloha 1

Tabulka 1 Výsledková tabulka napětí článků

Článek Zn / Al Zn / Fe Zn / Sn Zn / Mg Zn / Ag Zn / Cu

Naměřený potenciál

(V)

Pokud máme článek složený ze zinku a mědi, na které elektrodě v článku dochází k oxidaci a na které k redukci? Na základě zjištěných potenciálů seřaďte testované kovy podle jejich ušlechtilosti. Pokud má běžně používaný článek, např. "tužková baterie", napětí přibližně 1,5 V, který z připravených článků by bylo možno použít k zapojení baterie (několik článků za sebou, jejichž napětí se sčítá), která by dávala podobné napětí jako koupený článek? Kolik článků by bylo v baterii a jaké napětí by bylo dosaženo? Úloha 2

Tabulka 2 Závislost hmotnosti vyloučené látky na době elektrolýzy

Čas (min)

Hmotnost vyloučeného kovu (g)

Page 39: Multioborový workshop pro SŠ BIOLOGIE – FYZIKA – CHEMIE .pdf · pásmu a řadíme je do tříd motolic (Trematoda), tasemnic (Cestoda) a kmene hlístic (Nematoda). Tato skupina

CHEMIE ELEKTROCHEMIE

39

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9

Čas (min)

Hm

otn

ost

(g

)

Graf 1 Závislost hmotnosti vyloučeného kovu na čase

Jaká je souvislost mezi dobou elektrolýzy a množstvím vyloučeného kovu? Vyjádřete ji

slovně.

Úloha 3

Vysvětlete změnu intenzity svitu žárovky se vzdáleností elektrod.

Jaký děj probíhá na katodě a jaký na anodě? Zapište je rovnicemi.