28
MG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben FhG-SCAI Schloss Birlinghoven 53754 St. Augustin, Germany e-mail: [email protected] Multigrid Tutorial MG_Tutorial-2 Overview Why multigrid? Basic multigrid principles Full multigrid (FMG) Nonlinear multigrid (FAS) Eigenproblems Local Refinements

Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-1

Multigrid (MG) and Local Refinement forElliptic Partial Differential Equations

Klaus Stüben

FhG-SCAISchloss Birlinghoven53754 St. Augustin, Germanye-mail: [email protected]

Multigrid Tutorial

MG_Tutorial-2

Overview

• Why multigrid?

• Basic multigrid principles

• Full multigrid (FMG)

• Nonlinear multigrid (FAS)

• Eigenproblems

• Local Refinements

Page 2: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-3

Why Multigrid?

MG_Tutorial-4

Why Multigrid?

Optimal solvers requirehierarchical algorithms:

• Multigrid• Multilevel• Multiscale Optimal

solvers

Large problems requireoptimal solvers

O(N)

One-levelsolvers

Log(N)

Com

puta

tiona

l wor

k pe

r va

riabl

e

O(N1.2)

O(N1.5)O(N2)

O(N3)

O(N) log(N)

Page 3: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-5

Model Problem: 2D Poisson Equation

A u fh h h=

L u x y f x y x yh h h h( , ) ( , ) (( , ) )= ∈ Ω

Lh =1

11 4 1

12h

h

−− −

L

NMMM

O

QPPP

h

h=1/n, N=(n-1)2

Lu x y f x y x y( , ) ( , ) (( , ) )= ∈ Ω

Lu u= −∆ + Dirichlet boundary conditions

MG_Tutorial-6

Model Problem: Solution Methods

Method:Gauss Elimination

Jacobi iterationGauss-Seidel iteration

SORConjugate Gradient

Nested DissectionICCG

ADIFFT

BunemanTotal Reduction

Multigrid (iterative)Multigrid (FMG)

Complexity (accuracy ε):O(N2)O(N2) log(ε)O(N2) log(ε)O(N3/2) log(ε)O(N3/2) log(ε)O(N3/2)O(N5/4) log(ε)O(N log(N)) log(ε)O(N log(N))O(N log(N))O(N)O(N) log(ε)O(N)

Page 4: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-7

Quantitative Example: Molecular Dynamics

Analysis of dynamical behavior of biological systems

Time integration:

Computation of energy/forces:

Courtesy of Hoechst ZFScientific Computing

Lipid-double layermembrane

MG_Tutorial-8

Quantitative Example: Molecular Dynamics

1 8152 sec2 4481 sec3 3056 sec4 2427 sec6 1769 sec8 ---

MOLMEC7,000 atomsP

MOLMEC: straightforward, O(N2)

FMM (Fast Multipole)Greengard, Rokhlin

Separate short & long range forces:• Short-range forces

are updated in each time step• Long-range forces

are treated on "coarser scales"

MEGADYN: FMM approach, O(N)MEGADYN

550,000 atoms

---6305 sec

---3295 sec

---1840 sec

Estim. time for 550,000atoms: 1.5 years!

Page 5: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-9

Basic Multigrid Principles

Smoothing &Coarse-grid correction

MG_Tutorial-10

Model Problem: Gauss-Seidel Relaxation

u u→ : − − + − − =− − + +u u u u u h fi j i j i j i j i j i j1 1 1 124, , , , , ,

h

One Gauss-Seidel step:lexicographic order:

v v→ : − − + − − =− − + +v v v v vi j i j i j i j i j1 1 1 14 0, , , , ,

or, in terms of the error:

Very slow convergence: 21 ( )O hρ = − Asymptoticconvergence factor

Very fast „smoothing“of the error:

11 1 0 14

1

h hij ijv v

The smoother the error, theless efficient a further errorreduction becomes!

Averaging of error

Page 6: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-11

Principle of Error Smoothing

e2 e3

Relaxation methods converge slowlybut smooth the error quickly!

low frequencies(slow reduction)

high frequencies(fast reduction)

e1 error = superposition oflow and high frequencies

MG_Tutorial-12

Infinite Grid Smoothing Analysis

ei x hΘ /

Fourier components on infinite grid

(| | )Θ ≤ π| | : max(| |, | | )Θ Θ Θ = 1 2

Θ Θ Θx x x := +1 1 2 2

ei x hΘ / µ( )Θ ei x hΘ /

Amplification factor per relaxation step

Smoothing factor

µ µ π* max| ( )|: | | / = ≥Θ Θ 2

ei x hΘ /

Distinguish low & high frequencies

| | /Θ < π 2| | /Θ ≥ π 2

low (smooth) frequencies

high (non-smooth) frequencies

Model problem, Gauss-Seidel* 0.5µ = , h-independent!

Page 7: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-13

Model Problem: Error Smoothing

Smoothing byGauss-Seidel relaxation

4e

e2e1

xy3e

MG_Tutorial-14

Coarse-Grid Correction

mh h hA v d=

1,

h Hh H h H H h hM I I A I A−= − ρ( ),Mh H ≥ 1 !

d f A uhm

h h hm= −

mH H HA v d=

u u vhm

hm

h+ = +1

ˆ : hh H Hv I v=d I dH

mhH

hm:=

restriction interpolation

not full rank

Coarse-grid correction:

d f A uhm

h h hm= − * m

h h hu u v= +

Defect equation:

Page 8: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-15

Two-Grid Cycle

d f A uhm

h h hm= −

mH H HA v d=

u u vhm

hm

h+ = +1

ˆ : hh H Hv I v=d I dH

mhH

hm:=

restriction interpolation

ν1 smoothing steps ν2 smoothing steps

ρ( ),Mh H << 1independent of h!

,h HM = 1h Hh H H h hI I A I A−−2 (hSν 1) hSν

MG_Tutorial-16

Example: Model Problem

Lh =1

11 4 1

12h

h

−− −

L

NMMM

O

QPPP

L h2 = 14

11 4 1

1 22h

h

−− −

L

NMMM

O

QPPP

Ωh

Ω2h

Ihh2 = 1

16

1 2 12 21 2 1

4L

NMMM

O

QPPPh

Restriction:„full weighting“

I hh2 = 1

4

1 2 12 21 2 1

4O

QPPP

L

NMMMh

Interpolation:bilinear

Standard coarsening: Ω Ωh h→ 2

Smoothing: Gauss-Seidel relaxation

Page 9: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-17

Multigrid Cycle

ν1

ν1

ν1

ν2

ν2

ν2

ν1

ν1

ν1 ν ν2

ν

ν1 ν ν2

ν2

ν2Ω4

Ω

Ω

Ω

3

2

1

Recursive extensionof two-grid cycle

V-Cycle(γ=1)

W-Cycle (γ=2)

ν1

ν2

Approximate solution by γ two-grid cycles using still coarser grids, .....

MG_Tutorial-18

MG Performance for Model Problem

0

1

2

3

4

5

32 64 128 256 512 1024

MG

cg/ILU

cg/SGS

n

Time per variable (msec)

Residual reduction: ε = 10-12

Page 10: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-19

General Remarks

MG_Tutorial-20

What is multigrid not?

A particular solver

What is multigrid?A general strategy for constructing

hierarchical solvers

• Smoothing process (type, number of steps, ...)• Coarsening process (type of hierarchy, speed of coarsening, ...)• Intergrid transfer processes (interpolation, restriction)• Coarser-level operators• Coarsest-level solver• More advanced techniques• ......

MG components

MG Components

Page 11: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-21

Advanced MG Techniques/Applications

• General domains and BCs• Variable coefficients • Singular perturbed problems• Discontinuous coefficients• Systems of PDEs• Non-elliptic PDEs• Algebraic problems• ........

Advanced techniques

Applications

• Full multigrid (FMG)• Nonlinear multigrid (FAS)• Local refinements• Multigrid for eigenproblems• Parallel multigrid• Algebraic multigrid (AMG)

MG_Tutorial-22

Unstructured Grids

Page 12: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-23

Full Multigrid (FMG)

MG_Tutorial-24

Nested Iteration + MG = Full Multigrid (FMG)

II hh

42

II hh2

E Eh h≈ 2 4/E Eh h2 4 4≈ /E h4

Ωh

Ω2h

Ω4h

II FMG interpolation =order discretization order≥ ,model problem: cubic

On each level, a fixed number of cycles, κ , is sufficient

(typically, κ =1 or κ =2) O(N) complexity!

2( )hE O h=

Page 13: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-25

Nonlinear Multigrid (FAS)

L u x f x[ ]( ) ( )=

L u x f xh h h[ ]( ) ( )=

A u fh h h[ ] =discrete:

MG_Tutorial-26

Nonlinear Problems: Two Approaches

Straightforward approach

• Global Jacobian needs to be computed (and stored!)• Inner and outer iterations have to be matched

1. Global linearization (outer iteration)2. Linear multigrid (inner iteration)

• No global linearization (except for coarsest level?)• Same cycle structure as in the linear case• No matching of different iterations required

• Advantages also for linear problems

Full approximation scheme (FAS)

1. Nonlinear relaxation (local linearization)2. Nonlinear defect equation

Page 14: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-27

− − + − − + =− − + +u u u u u h g x y u h fi j i j i j i j i j i j i j i j1 1 1 12 24, , , , , , ,( , , )

Nonlinear Relaxation (Local Linearization)

1 1 1[ ,..., , , ,..., ]i i i i N ia u u u u u f− + =

1 1 1[ ,..., , , ,..., ]i i i i N ia u u u u u f− + =

Jacobi

Gauss-Seidel (GS)

L u u g x y u f[ ] ( , , )= − + =∆ ( ( , , ) 0)ug x y u ≥

g x y ui j i j( , , ),

g x y u g x y u u ui j i j u i j i j i j i j( , , ) ( , , )( ), , , ,+ −

GS-Picard:

GS-Newton:

( )reasonable if h gu 2 1<

Example for nonlinear GS

i iu u→1,..., :i N=

MG_Tutorial-28

Nonlinear Defect Equation

Coarse-grid approximation

mh h hA v d=

[ ] [ ]m m mh h h h h hA v u A u d+ − =

Linear defect equation:

Nonlinear analog:

( )= −f A uh h hm

Standard coarsening

[ ] [ ]H m H m H mH H h h H h h h hA v I u A I u I d+ − =

2hhI = straight injection Typical choice:

IhH

and IhH

not necessarily the same!

Page 15: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-29

[ ] [ ]H m m H mH H h h H H h hA v I u d A I u+ = +

Full Approximation Scheme (FAS)

d f A uhm

h h hm= − [ ] u u vh

mhm

h+ = +1

ν1 smoothing steps ν2 smoothing steps

ˆ : hh H Hv I v=d I dH

mhH

hm:=

: Hu= : mHf=

MG_Tutorial-30

Full Approximation Scheme (FAS)

d f A uhm

h h hm= − [ ] u u vh

mhm

h+ = +1

ν1 smoothing steps ν2 smoothing steps

ˆ : hh H Hv I v=d I dH

mhH

hm:=

[ ] mH H HA u f=

: [ ]m m H mH H H h hf d A I u= + : H m

H H h hv u I u= −

*HH h hu I u→*m

h hu u→

Standard coarsening

2hhI = straight injection

*2h hu u→

Page 16: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-31

Full Approximation Scheme (FAS)

• If A linear:

- FAS identical to linear cycle („correction scheme“)

- however: different point of view

• Recursive extension to multigrid as in the linear case

• In general, continuation required

- approach the range of attraction

- most natural: combination with FMG

• Natural for solving eigenvalue problems

Remarks

MG_Tutorial-32

Example

Method I: Global Newton linearization, number of MG cycles doubled

Method II: Global Newton linearization, one MG cycle per Newton step

|| ||*u uh hm− 2 as a function of m

FAS

123456789

.18(+2)

.29

.86(-2)

.14(-3)

.43(-5)

.13(-6)

.47(-8)

.13(-9)

.42(-11)

m Method I

.18(+2)

.20

.55(-2)

.14(-3)

.42(-5)

.13(-6)

.39(-8)

.12(-9)

.40(-11)

.14(+2)

.20

.54(-2)

.14(-3)

.42(-5)

.13(-6)

.38(-8)

.12(-9)

.39(-11)

Method II− + =∆ Ωu e fu ( )u g= ( )Γ

Ω

Page 17: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-33

Continuation Methods

Bratu‘s problem (bifurcation)

− − = =∆ Ωu euλ 0 0 1 2 ( ( , ) )u = 0 ( )Γ

Birfurcation diagram

Continuation via λ :gives only lower branchsolutions (up to λ∼6.5)

Other solutions requiremore sophisticatedcontinuation techniques!

MG_Tutorial-34

Continuation Methods

Augmented system: continuation parameter „s“

L u[ , ] ( )λ = 0 Ωu = 0 ( )Γ

L u s s[ ( ), ( )] ( )λ = 0 Ωu s( ) ( )= 0 Γ

C u s s s[ ( ), ( ), ]λ = 0 (constraint)

For example: „arclength continuation“

The constraint has also to be transferred to coarser grids in the sense of FAS

2 22[ , , ] || / || +| / | 1 0C u s du ds d dsλ λ= − =

Simpler choices for Bratu:

C u s u s[ , , ] || ||λ = −C u s u s[ , , ] ( . , . )λ = −0 5 0 5

Page 18: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-35

Eigenproblems

Here: computation of smallest

EV/EF for elliptic s.p.d. problems

MG_Tutorial-36

Eigenproblems + FAS

One step of a relaxation method (inefficient as solver!):

h h h h hL u u fλ− =(1) GS relaxation step w.r.t. uh (λh fixed) :

(2) Scale uh : ( )h h huη σ=

( , ) ( , ) ( , )h h h h h h h hL u u u u f uλ− =(3) Update of λh (uh fixed) :

Problem: Find smallest EV/EF of

0 ( : )h h h h hL u u fλ− = =( )h h huη σ=

Two multigrid approaches

(a) Replace (1) by linear MG cycle inefficient

(b) Use (1-3) as smoother in (non-linear) FAS process(can be simplified, see later)

normalization, e.g. || || 1hu =

Page 19: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-37

Eigenproblems + FAS

( ) ( )Lh h h h h hd f L u uλ= − − ˆh h hu u v← +ν1 smoothing steps ν2 smoothing steps

ˆ : hh H Hv I v=

( ) ( ) ( ) ( ): , :L H LH h h H hd I d d dη η= =

H H H H HL u u fλ− =

( ): ( )L H HH H H h h h h hf d L I u I uλ= + −

: HH H h hv u I u= −

( )H H Huη σ=

( ) ( )h h h hd uη σ η= − h Hλ λ←

( ): ( )HH H H h hd I uησ η= +

If coarse enough, e.g.,solution by relaxation (1-3)

At convergence:

, HH h h H hu I u λ λ= =

MG_Tutorial-38

Eigenproblems + FAS

• Straightforward: recursive extension to more levels

Remarks

• Solution on coarsest level: e.g. by relaxation (1-3)

• Generally sufficient:

- λ-update only on coarsest level- normalization only on coarsest level

• Natural combination with FMG

• No more expensive than MG for regular problems

• Generalization to several (many) eigenvalues

Page 20: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-39

Local Refinement

(MLAT)

MG_Tutorial-40

Adaptivity

Adaptivitygrid resolution,

order of discretization,

type of discretization.

Adaptive gridspre-defined (static),

self-adapting (dynamic).

Applicationslocally non-smooth solutions

(boundary or interior layers, shocks, turbulence, ....),

non-smooth domains,

singularities / discontinuities in the differential problem.

Page 21: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-41

Boundary-Driven Singularity

( , )r φ =polar coordinates

− =∆ Ωu f ( )

u u us* ~ ,= + ~u smooth

P=(0,0)

Γ

Ωu = 0 ( )Γ

Singular behavior near P:

u r rs ( , ) sin( )/φ φ= 2 3 23

Discretization error:

Remedies:

O h( )/4 3

O h( )/2 3at fixed distance from Pat distance O(h) from P

(1)(2) local refinements

MG_Tutorial-42

Global grid vs. adaptive grid

49 665 points

= 3.3(-3)

Global fine grid

657 points

= 3.8(-3)

Adaptive grid

|| ||*u uh− ∞ || ||*u uh− ∞

Page 22: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-43

Local Refinement

Natural integration into the MG approach

Composite grid Multigrid hierarchy of grids

Interfaceboundaries

Dynamic local refinement• Combination with FMG process

New aspects in MG cycling• Treatment of interface boundaries• Grids covering only subdomains FAS, even for linear problems!

Important aspects:

MG_Tutorial-44

Local Refinement + FAS

Recall: FAS correction equation

2 2 22 [ ] [ ]h h m h m

h h h h h h h hI f L I u I L u= + −

(h,2h)-relative truncation error

2 * *2

hh h h hu I u u→ =*m

h hu u→

2hhI = straight injection:

2 2h hh h hI f τ= +

2 22 2 2[ ] [ ]h m h m

h h h h h h hL u I d L I u= +

Page 23: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-45

Local Refinement + FAS

h

2h

MG_Tutorial-46

Local Refinement + FAS

Relaxation on grid Ωh:Interface variables are treatedas Dirichlet points:

Smoothing:

2 2h hL u =I fh

hh h

h2 2+τfh

FAS coarse-grid equations:

FAS correction:

At all points:

Ωh ΩhΩ2h

Page 24: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-47

Modified interface treatment

Conservative FV discretizationalong interface

Smoothing by relaxation nowincludes interface variables

Local Refinement

• conservative interpolation

• conservative discretization along interface

Modifications

MG_Tutorial-48

Local Refinement

Requirements on automatic refinement criteria

• Reliably detect local low accuracy

• Terminate automatically (!)

A simple grid refinement criterion

2 2h hL u =I fh

hh h

h2 2+τfh

τ hh2 : measures to which extent the fine grid solution

is different from the coarse grid one.

hdh

hτ ε2 ≥refine where (d = dimension)

Page 25: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-49

Example: Euler Equations

Euler Equations

NACA0012airfoil:

MG_Tutorial-50

Global block-structured grid(subdivided for parallel processing)

Example: Euler Equations

Page 26: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-51

Refinement criterion (FE)

r Qh ( ) ≥ εrefine near Q if

Example: Euler Equations

assuming linearshape functions

MG_Tutorial-52

Refinement areas Resulting refined grid (near the profile)

1

3

2

Example: Euler Equations

Page 27: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-53

Without refinement With refinement

Comparison: global grid vs. adaptive grid(obtained in parallel on 16 processors)

# pointsTime

197 6326 115 sec

13 866590 sec

Global fine grid Adaptive grid Factor

1410

Example: Euler Equations

MG_Tutorial-54

Literature

Page 28: Multigrid Tutorialhelper.ipam.ucla.edu/publications/es2002/es2002_1449.pdfMG_Tutorial-1 Multigrid (MG) and Local Refinement for Elliptic Partial Differential Equations Klaus Stüben

MG_Tutorial-55

Historical Papers

• Discovery of multigrid (theoretical)– Fedorenko, R.P.: The speed of convergence of an iterative method,

USSR Comput. Math. and Math. Phys. 4,3 (1964).

– Bakhvalov, N.S.: On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comput. Math. and Math. Phys. 6,5 (1966).

• Beginning of multigrid– Brandt, A.: Multi-level adaptive technique (MLAT) for fast numerical

solution to boundary value problems, Lecture Notes in Physics 18, Springer 1973.

– Brandt, A.: Multi-level adaptive solutions to boundary value problems, Math. Comp. 31 (1977).

• Re-discovery of multigrid– Hackbusch, W.: On the multigrid method applied to difference equations,

Computing 20 (1978).

MG_Tutorial-56

Text Books

• Classical– Stüben, K.; Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem

analysis and applications, Lecture Notes in Mathematics 960, Springer (1982).

– Brandt, A.: Multigrid techniques: 1984 Guide with applications to fluid dynamics, GMD-Studie No. 85 (1984).

• Theory– Hackbusch, W.: Multigrid methods and applications, Springer Series in Comp. Math. 4,

Springer (1985).

– McCormick, S. (ed.).: Multigrid methods, Frontiers in Applied Mathematics, Vol. 5, SIAM, Philadelphia (1987).

• Tutorial-level– Briggs, W.: A multigrid tutorial, SIAM, Philadelphia (1987). New edition: 2001.

• Engineers– Wesseling, P.: An introduction to multigrid methods, Pure and Applied Mathematics Series,

John Wiley and Sons (1992).

• Engineers and Practitioners– Trottenberg, U.; Oosterlee, C.W.; Schüller, A.: Multigrid, Academic Press, 2001 (with

appendices by Brandt, A., Oswald, P. and Stüben, K.)