22
4 th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018 MULTI-SCENARIO SIMULATION AND ENERGY - EXERGY ANALYSIS OF A DISTRICT HEATING NETWORK FOR A CASE STUDY IN VIENNA Mario Potente Prieto [email protected] TU Wien, Institute for Energy Systems and Thermodynamics. 1

MULTI-SCENARIO SIMULATION AND ENERGY - … · - 20 with hot water and heating services. - 1 with heating service only SUB-STATION GUFO PUMP S-G 30 H PRIMARY NETWORK SECONDARY NETWORK

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

MULTI-SCENARIO SIMULATION AND ENERGY - EXERGY ANALYSIS OF A

DISTRICT HEATING NETWORK FOR A CASE STUDY IN VIENNA

Mario Potente Prieto [email protected]

TU Wien, Institute for Energy Systems and Thermodynamics.

1

CONTENTS

1. CI-NERGY project 2. Purpose of the project 3. Case studied 4. Methodology 4.1 Thermodynamic systems 4.2 Equations 4.3 Simulation 5. Scenarios and Results 6. Conclusions

2

1. CI-NERGY PROJECT

• CI-NERGY is a Marie Curie European project concerning Urban Energy Planning.

• Two case studies: cities of Geneva and Vienna.

• 14 researchers involved, my topic: District heating and cooling systems.

• Supported by the 7th Framework Programme for Research and Technological Development.

3

2. PURPOSE OF THE PROJECT • Defining a methodology which is able to build simulations and

make energy-exergy studies of DH Networks extrapolable for all kind of cities.

• 9 hypothesis are studied, defined as “scenarios” each one is a simulation of the network combining different improvements and technologies:

- Replacing radiators for heated/cooled floors. - Connecting heat pumps supporting the DHN - Adapting to Low Temperature district heating network.

• Informing urban planners about all possible advantages and disadvantages for each considered hypothesis during the transition to 4th GDHN

4

3. CASE STUDIED • Simulation of a local district heating network located in Vienna.

• 21 residential buildings

- 20 with hot water and heating services.

- 1 with heating service only

SUB-STATIONGUFO

PUMPS-G

30H

PRIMARY NETWORK

SECONDARY NETWORK

29H 29C

30C

28H

28C

27H 27C

26H

26C

25H 25C

24H

24C

23H 23C

25BH

25CH

25CC

25DH

25DC

22H

22C

21H 21C

21BH 21BC

25BC

20H

20C

19H 19C

18H

18C

17H 17C

16H

16C

12H 12C

13H 13C

14H

14C

15H

15C

11H

11C

1H 1C

2H 2C

3H

4H

4C

5H

5C

3C

6H

6C

10H

10C

9H

9C

7H 7C

8H 8C

FH

FC

PH

PC

G-A

G-B

G-C

G-D

G-D-1 G-D-2

G-E

G-F

G-F-1

G-G

G-H

G-I

G-L G-M

G-M-1 G-M-2

G-N

G-N-1

S-G

G-K

G-N-2-1(SLAVE)

9BC 9BH

G-J-1(SLAVE)

14BC 14BH

G-I-3(SLAVE)

G-I-1(SLAVE)

G-I-2(SLAVE)

12BH 12BC12CC 12CH 12DH 12DC

12EH 12EC

2C*

7C*7H*

2C*

21C*21H*25C*25H*

G-J 14C*14H* G-N-2 9H*9C*

12C*12H*

12FH 12FC

CEBADAGASSE

UVAGASSE

RASTROJOGASSE

GIR

AS

OLS

TRA

SS

E

MIESESGASSE

AZA

DA

GA

SS

E

ALG

AG

AS

SE

WH

EA

TGA

SS

E

CEBADAGASSE

CEBADAGASSECEBADAGASSE

GIR

AS

OLS

TRA

SS

E

GIR

AS

OLS

TRA

SS

E

AZA

DA

GA

SS

EA

ZAD

AG

AS

SE

ALG

AG

AS

SE

ALG

AG

AS

SE

POLEOGASSE

PO

LEO

GA

SS

E

PO

LEO

GA

SS

E

HA

RIN

AG

AS

SE

HA

RIN

AG

AS

SE

PIO

-OR

TEG

A-G

AS

SE

TOM

ATE

GA

SS

ETO

MA

TEG

AS

SE

MIESESGASSE

MIESESGASSE

MIESESGASSE

CE

NTE

NO

GA

SS

E

WH

EA

TGA

SS

E

MAIZGASSE

MAIZGASSE

MAIZGASSE

G-M-2

S-G

G-M-1

G-M

G-L

G-I

G-N-2

G-N-1

G-NG-K

G-J

G-G

G-E

G-FG-D

G-C

G-B

G-A

G-F-1

G-D-1

G-D-2

30C

30H

29C29H

28C

28H

27C27H 26C

26H

25C 25H

25B-C 25B-H

25C-H

25C-C

25D-H25D-C

24H

24C

23C 23H

22C

22H

20C

20H

21C21H

21BH 21BC G-H

19C19H

18H

18C

17C 17H

16H

16C

12C12H

12B-C

12B-H

12E-C

12E-H

12C-H

12C-C

12D-H 12D-C

13H13C

14C14H

14B-H

14B-C

15H15C

11H

11C

1H1C

2H2C

3H3C

4H

4C

5H5C

6H

6C

7H7C

8H8C

9H

9C10H10C

9B-H9B-C

PH

PC

FHFC

G-N-2-1

G-I-3

G-I-1

G-I-2

G-J-1

2C*

7C*

5

PRIMARY NETWORK

SUBSTATION

SECONDARY NETWORK

BUILDINGS

4. METHODOLOGY DEFINING THE THERMODYNAMIC SYSTEMS

6

SECONDARY NETWORK

Wp

T DH2

Tr DH2m flow DH2

HYDRAULIC PUMP

BUILDINGS SUBSTATIONPRIMARY NETWORK

Tp in i

m flow HW i

m flow H i

Ts out i

Ts in i

Trad cs i

Trad cr i

HP

W HP HW i

HP

W HP H i

T AN out HW iT AN in HW i

T AN out H iT AN in H i

Tp in HW post HP i

Tp in H post HP i

Q flow DHN side HW i

Ex flow DHN side HW i

Q flow DHN side H i

Ex flow DHN side H i

Q flow client side HW iEx flow client side HW i

Q flow client side H iEx flow client side H i

Q flow client side i

Ex flow client side i

m flow iTp out i

W HP substation

HP

T AN in substation

T AN out substation

m flow AN substation

Q flow AN substationEx flow AN substation

T DH1

Tr DH1m flow DH1

Q flow DH1Ex flow DH1

Q flow DH2Ex flow DH2

Q flow DHN side i

Ex flow DHN side i

7

𝐸𝐸�̇�𝐸 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷2 + �̇�𝑁𝑝𝑝 −�𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝑠𝑠

𝑛𝑛

𝑠𝑠

𝜂𝜂 𝐸𝐸𝐸𝐸 𝑁𝑁𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =∑ 𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝑠𝑠𝑛𝑛𝑠𝑠

𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷2 +𝑁𝑁𝑝𝑝

�̇�𝑄 = �̇�𝑚 𝐶𝐶𝑝𝑝�𝑁𝑁𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠 − 𝑁𝑁𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 �

�̇�𝑄 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �̇�𝑄𝐷𝐷𝐷𝐷2 + �̇�𝑁𝑝𝑝 −��̇�𝑄𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝑠𝑠

𝑛𝑛

𝑠𝑠

𝜂𝜂 𝐸𝐸𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =∑ �̇�𝑄𝐷𝐷𝐷𝐷 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝑠𝑠𝑛𝑛𝑠𝑠

�̇�𝑄𝐷𝐷𝐷𝐷2 + �̇�𝑁𝑝𝑝

ENERGY AND EXERGY BALANCES: NETWORK

T DH2

Tr DH2m flow DH2

HYDRAULIC PUMP

Wp

Q flow DHN side iQ flow DH2

Ex flow DHN side i

Ex flow DH2

8

ENERGY AND EXERGY BALANCES: BUILDINGS

Tp in i

m flow HW i

m flow H i

Ts out i

Ts in i

Trad cs i

Trad cr i

HP

HP

T AN out HW iT AN in HW i

T AN out H iT AN in H i

Tp in HW post HP i

Tp in H post HP i

m flow iTp out i

Ex flow client side i

Ex flow DHN side i

𝐸𝐸�̇�𝐸 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵 = �𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝑠𝑠

𝑛𝑛

𝑠𝑠

−�𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙𝑠𝑠𝑙𝑙𝑛𝑛𝑟𝑟 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛

𝑠𝑠

−�𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙𝑠𝑠𝑙𝑙𝑛𝑛𝑟𝑟 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝐵 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝐵 𝐷𝐷 𝑠𝑠

𝑛𝑛

𝑠𝑠

η 𝐸𝐸𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵 =∑ 𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙𝑠𝑠𝑙𝑙𝑛𝑛𝑟𝑟 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷𝑁𝑁 𝑠𝑠𝑛𝑛𝑠𝑠 − ∑ 𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙𝑠𝑠𝑙𝑙 𝑛𝑛𝑟𝑟 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷 𝑠𝑠

𝑛𝑛𝑠𝑠

∑ 𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝑠𝑠𝑛𝑛𝑠𝑠 + ∑ �̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛𝑠𝑠 + ∑ �̇�𝐵 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛𝑠𝑠 + ∑ �̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷 𝑠𝑠

𝑛𝑛𝑠𝑠 + ∑ �̇�𝐵 𝐷𝐷 𝑠𝑠

𝑛𝑛𝑠𝑠

W HP HW i

W HP HW i

Ex flow client side HW i Ex flow DHN side HW i

𝐸𝐸�̇�𝐸 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵 𝐷𝐷𝑁𝑁 = �𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛

𝑠𝑠

−�𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙 .𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝐵 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛

𝑠𝑠

η 𝐸𝐸𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵 𝐷𝐷𝑁𝑁 =∑ 𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙𝑠𝑠𝑙𝑙𝑛𝑛𝑟𝑟 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷𝑁𝑁 𝑠𝑠𝑛𝑛𝑠𝑠

∑ 𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷𝑁𝑁 𝑠𝑠𝑛𝑛𝑠𝑠 + ∑ �̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛𝑠𝑠 + ∑ �̇�𝐵 𝐷𝐷𝑁𝑁 𝑠𝑠

𝑛𝑛𝑠𝑠

Ex flow client side H i Ex flow DHN side H i

𝐸𝐸�̇�𝐸 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵 𝐷𝐷 = �𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷 𝑠𝑠

𝑛𝑛

𝑠𝑠

−�𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙𝑠𝑠𝑙𝑙𝑛𝑛𝑟𝑟 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷 𝑠𝑠

𝑛𝑛

𝑠𝑠

+ ��̇�𝐵 𝐷𝐷 𝑠𝑠

𝑛𝑛

𝑠𝑠

𝜂𝜂 𝐸𝐸𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵 𝐷𝐷 =∑ 𝐸𝐸�̇�𝐸𝑐𝑐𝑙𝑙𝑠𝑠𝑙𝑙𝑛𝑛𝑟𝑟 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷 𝑠𝑠𝑛𝑛𝑠𝑠

∑ 𝐸𝐸�̇�𝐸𝐷𝐷𝐷𝐷𝑁𝑁 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 𝐷𝐷 𝑠𝑠𝑛𝑛𝑠𝑠 + ∑ �̇�𝑁𝐷𝐷𝐻𝐻 𝐷𝐷 𝑠𝑠

𝑛𝑛𝑠𝑠 + ∑ �̇�𝐵 𝐷𝐷 𝑠𝑠

𝑛𝑛𝑠𝑠

9

HOW THE SIMULATION WORKS: THE SIMPLE BLOCK

HIDRAULIC PUMP

INPUTS

OUTPUTS

PARAMETERS

10

HOW THE SIMULATION WORKS: CREATING THE SIMULATION

HOT WATER PRODUCTION

R

RADIATORSDH PIPE HIDRAULIC PUMP

GENERAL SUBSTATION

BUILDING WITH HOT WATER +

HEATING (RADIATORS)

QUADRUPLE PIPE LINK

TRIPLE PIPE LINK

DOUBLE PIPE LINK

SUBSTATION HEAT EXCHANGER

HEAT EXCHANGER TEMPERATURE REGULATION

CURVE

BUILDING ONLY WITH HEATING (RADIATORS)

PARAMETERS DATABASE 11

1ST SCENARIO: CURRENT SITUATION BUILDINGS SECONDARY NETWORK PRIMARY

NETWORKSUBSTATION

FRESH WATER

HYDRAULIC PUMP

63 °C60 °C

3-12 °C

55-60 °C POWERSUPPLY

DRINKING WATER

HOT WATER

RETURN WATER

60-80 °C

50-55 °C

90 °C80 °C70 °C

/ 65°C

5. SCENARIOS AND RESULTS

12

2ND SCENARIO: BASIC REFURBISHMENT

60-80 °C

50-55 °C

30-35 °C

20-25 °C

90 °C80 °C70 °C

55-60 °C35-50 °C

/ 65°C

13

RESULTS: COMPARISON BETWEEN 1ST AND 2ND SCENARIO

27,15 27,46

0 00 00

5

10

15

20

25

30

35

40

SCENARIO 1 SCENARIO 2

mas

s flo

w (k

g/s)

Mass flows comparison, minimum external temperature

m flow DHN (kg/s)

m flow AN HP substation (kg/s)

sum mdot AN HP i (kg/s)

0,04 0,05

0

0,01

0,02

0,03

0,04

0,05

0,06

SCENARIO 1 SCENARIO 2

Ener

gy fl

ow (W

/m2)

Hydraulic Pump Power consumption

Electriciy Hyd. Pump (W/m2)

88,7

65,0

88,4

64,8

87,6

64,361,9

38,9

0

10

20

30

40

50

60

70

80

90

100

SCENARIO 1 SCENARIO 2

T (°

C)

Temperatures comparison, minimum external temperature

T feed substation (°C)

T feed middle (°C)

T feed last building (°C)

T return substation (°C)

∆Feed T = -26.7% approx .

∆Return T = -37.1% approx .

97,4898,32

90919293949596979899

100

SCENARIO 1 SCENARIO 2

Ener

gy y

ield

(ad.

)

Energy yield comparison, minimum external temperature

Energy yield Network (ad.)

94,77 93,0689,11

78,3979,35

94,9795,27

63,19

50556065707580859095

100

SCENARIO 1 SCENARIO 2

Exer

gy y

ield

(ad.

)

Exergy yield comparison, minimum external temperature

Exergy yield Network (ad.)

Exergy yield Buildings (ad.)

Exergy yield Buildings HW (ad.)

Exergy yield Buildings H (ad.)

∆ ηEX NETWORK= -1.8% ∆ ηEN = +0.86%

∆ mass flow = +1.15% ∆ Hyd. Pump Power consumption = +4.28%

∆ ηEX BUILDINGS HW= +19.68% ∆ ηEX BUILDINGS H= -33.67%

0 00 00 00

5

10

15

20

25

30

SCENARIO 1 SCENARIO 2

Ener

gy fl

ow (W

/m2)

Heat Pump Power consumption

Electricity HP for HW (W/m2)

Electricity HP for H (W/m2)

Electriciy Heat Pump substation (W/m2)

No heat pumps installed 14

3RD SCENARIO: BASIC REFURBISHMENT FOR LOW TEMPERATURE DHN

BUILDINGS SECONDARY NETWORKPRIMARY NETWORKSUBSTATION

FRESH WATER

HYDRAULIC PUMP

60 °C

3-12 °C

POWERSUPPLY

DRINKING WATER

HOT WATER

RETURN WATERPOWER

HP

40 °C63 °C

90 °C80 °C70 °C63 °C

60-80 °C

50-55 °C

40 °C

55-60 °C35-50 °C30-35 °C

20-25 °C

/ 65°C

15

RESULTS: COMPARISON BETWEEN 1ST AND 3RD SCENARIO

∆ Feed T = -54.9 % approx .

∆ Return T = -58.1% approx .

88,7

40,0

88,4

39,9

87,6

39,8

61,9

25,9

0

10

20

30

40

50

60

70

80

90

100

SCENARIO 1 SCENARIO 3

T (°

C)

Temperatures comparison, minimum external temperature

T feed substation (°C)

T feed middle (°C)

T feed last building (°C)

T return substation (°C)

27,15

44,26

0 00 00

5

10

15

20

25

30

35

40

45

50

SCENARIO 1 SCENARIO 3

mas

s flo

w (k

g/s)

Mass flows comparison, minimum external temperature

m flow DHN (kg/s)

m flow AN HP substation (kg/s)

sum mdot AN HP i (kg/s)

∆ mass flow = +63.02%

0,04

0,09

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

SCENARIO 1 SCENARIO 3

Ener

gy fl

ow (W

/m2)

Hydraulic Pump Power consumption

Electriciy Hyd. Pump (W/m2)

∆ Hyd. Pump Power consumption = +96.57%

97,48

98,79

90919293949596979899

100

SCENARIO 1 SCENARIO 3

Ener

gy y

ield

(ad.

)

Energy yield comparison, minimum external temperature

Energy yield Network (ad.)

∆ ηEN = +1.33%

94,77 96,92

89,11

51,85

79,35

39,40

95,2791,87

30

40

50

60

70

80

90

100

SCENARIO 1 SCENARIO 3

Exer

gy y

ield

(ad

.)

Exergy yield comparison, minimum external temperature

Exergy yield Network (ad.)

Exergy yield Buildings (ad.)

Exergy yield Buildings HW (ad.)

Exergy yield Buildings H (ad.)

∆ ηEX NETWORK= +2.27 ∆ ηEX BUILDINGS HW= -50.35% ∆ ηEX BUILDINGS H= -3.57%

0

7,36

0 00 00

1

2

3

4

5

6

7

8

9

10

SCENARIO 1 SCENARIO 3

Ener

gy fl

ow (W

/m2)

Heat Pump Power consumption

Electricity HP for HW (W/m2)

Electricity HP for H (W/m2)

Electriciy Heat Pump substation (W/m2)

Heat Pump Power consumption HW= 7.36 W/m2 16

5TH SCENARIO: INDIVIDUAL HEAT PUMPS FOR HEATING WITHOUT REFURBISHMENT BUILDINGS SECONDARY NETWORK

PRIMARY NETWORKSUBSTATION

FRESH WATER

HYDRAULIC PUMP

60 °C

3-12 °C

POWERSUPPLY

DRINKING WATER

HOT WATER

RETURN WATER

90 °C80 °C70 °C63 °C

60-80 °C

50-55 °C

55-60 °CHP

POWER

/ 65°C

17

RESULTS: COMPARISON BETWEEN 1ST AND 5TH SCENARIO

∆ Feed T = -26.7 % approx .

∆ Return T = -19.9% approx .

∆ Hyd. Pump Power consumption = +81% Heat Pump Power consumption H= 7.21 W/m2

88,7

65,0

88,4

64,9

87,6

64,661,9

49,6

0

10

20

30

40

50

60

70

80

90

100

SCENARIO 1 SCENARIO 5

T (°

C)

Temperatures comparison, minimum external temperature

T feed substation (°C)

T feed middle (°C)

T feed last building (°C)

T return substation (°C)

27,15

41,25

0 00 00

5

10

15

20

25

30

35

40

45

50

SCENARIO 1 SCENARIO 5

mas

s flo

w (k

g/s)

Mass flows comparison, minimum external temperature

m flow DHN (kg/s)

m flow AN HP substation (kg/s)

sum mdot AN HP i (kg/s)

∆ mass flow = +51.96%

0,04

0,08

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

SCENARIO 1 SCENARIO 5

Ener

gy fl

ow (W

/m2)

Hydraulic Pump Power consumption

Electriciy Hyd. Pump (W/m2)

97,48 97,95

0

20

40

60

80

100

120

SCENARIO 1 SCENARIO 5

Ener

gy y

ield

(ad.

)

Energy yield comparison, minimum external temperature

Energy yield Network (ad.)

∆ ηEN = +0.48% ∆ ηEX NETWORK= +2.27 ∆ ηEX BUILDINGS HW= +17.38% ∆ ηEX BUILDINGS H= -37.91%

94,7796,92

89,11

67,56

79,35

93,1495,27

59,15

50556065707580859095

100

SCENARIO 1 SCENARIO 5

Exer

gy y

ield

(ad.

)

Exergy yield comparison, minimum external temperature

Exergy yield Network (ad.)

Exergy yield Buildings (ad.)

Exergy yield Buildings HW (ad.)

Exergy yield Buildings H (ad.)

0 00

7,21

0 00

1

2

3

4

5

6

7

8

9

10

SCENARIO 1 SCENARIO 5

Ener

gy fl

ow (W

/m2)

Heat Pump Power consumption

Electricity HP for HW (W/m2)

Electricity HP for H (W/m2)

Electriciy Heat Pump substation (W/m2)

18

CONCLUSIONS: COMPARISON BETWEEN 1ST AND 2ND SCENARIO

0,00

20,00

40,00

60,00

80,00

100,00FIXED COSTS

POWERCONSUMPTIONENERGY YIELD

SCENARIO 2

SCENARIO 1

A spider diagram shows the characteristics, advantages and disadvantages for each hypothesis in a graphical way. In this case, SCENARIO 2 has almost the best energy efficiency with intermediate fixed costs. No extra power consumption required.

19

CONCLUSIONS: COMPARISON BETWEEN 1ST AND 3RD SCENARIO

0,00

20,00

40,00

60,00

80,00

100,00FIXED COSTS

POWERCONSUMPTIONENERGY YIELD

SCENARIO 3

SCENARIO 1

- SCENARIO 3 is the natural evolution of SCENARIO 2, and the most appropriate from the ηENERGY perspective. Involves high fixed costs from the installation of heat pumps, leading to extra power consumption. - This scenario contemplates the adaptation of the current Viennese DHN to a LTDHN.

20

CONCLUSIONS: COMPARISON BETWEEN 1ST AND 5TH SCENARIO

0,00

20,00

40,00

60,00

80,00

100,00FIXED COSTS

POWERCONSUMPTIONENERGY YIELD

SCENARIO 5

SCENARIO 1

Adaptation of the current Viennese DHN to a partial LTDHN at 65°C, without modifying the radiators system inside the buildings. The counterpart is the installation of heat pumps in the buildings supporting the heating branch. This is the best option if we want to avoid installation works in individual homes.

21

THANK YOU FOR YOUR ATTENTION!

22

Mario Potente Prieto [email protected]

TU Wien, Institute for Energy Systems and Thermodynamics.