73
Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD [email protected]

Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD [email protected]

Embed Size (px)

Citation preview

Page 1: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Motor System: Reflexes, Pyramidal Tract and Basal

GangliaRichard Harlan, PhD

[email protected]

Page 2: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Overview of Motor Systems

• Spinal and brainstem reflexes• Corticospinal and corticobulbar tracts• Cortical-subcortical-thalamo-cortical

systems– Involving basal ganglia– Involving pons and cerebellum– Involving nucleus accumbens

Page 3: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Spinal and Brainstem Reflexes: Agonist and Antagonist Muscle

Groups• Sensory side–Muscle spindles– Golgi tendon organs

• Motor side– Alpha motor neurons: innervate skeletal

muscles, causing contraction– Gamma motor neurons: innervate

muscle spindles

Page 4: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Golgi tendon organ

• found in tendons near junctions with muscle fibers: stretch receptors innervated by Ib fibers: heavily myelinated with fast conduction; Ib fibers go to ventral horn and activate interneurons which inhibit (glycinergic) alpha motor neurons (opposite of muscle spindle effect; negative feedback); higher threshold than for muscle spindle

Page 5: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Muscle spindles• encapsulated structures within skeletal

muscle, containing intrafusal muscle fibers, in parallel with extrafusal muscle fibers (normal skeletal muscle); multiple nuclei in central region and intrafusal fibers at each end; two morphological/functional types of spindles

Page 6: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Muscle spindles: Types• Nuclear bag fibers: clustered nuclei in center of spindle;

dynamic: sensitive to rate of change in muscle length; static: sensitive to total change in muscle length; innervated by type Ia fibers: heavily myelinated, fast conduction: annulospiral nerve endings: firing frequency proportional to degree of muscle stretch; also innervated by dynamic or static gamma motor neurons: can contract the intrafusal fibers, stretching the central region, activating Ia afferents

• Nuclear chain fibers: nuclei in row; sensitive to change in muscle length; innervated by type II fibers: flower spray ending: codes event of stretch, not rate; gamma motor efferents

Page 7: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Muscle spindle

Page 8: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Innervation of muscle spindle and muscle

Page 9: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Spinal cord circuits

• 1a afferents: activated by stretch of muscle; innervate alpha motor neurons, causing reflex contraction of muscle

• 1b afferents: activated by contraction of muscle; innervate interneurons, that inhibit alpha motor neurons, causing reflex relaxation of muscle

Page 10: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Stretch reflexes

• 1. passive stretch of muscle (e.g. by tapping tendon) activates Ia afferents, which activate alpha motor neurons, causing contraction of stretched muscle: monosynaptic reflex

• 2. passive contraction of muscle (stimulation of alpha motor neurons) causes decreased activity of muscle spindles, leading to decreased activity of alpha motor neurons

Page 11: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Stretch reflex

Page 12: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Stretch reflexes• 3. gamma loop: supraspinal input (e.g.

corticospinal) activates gamma motor neurons, activating intrafusal fibers that stretch the muscle spindle, activating Ia fibers, which activate alpha motor neurons

• 4. voluntary muscle contraction against a load: corticospinal fibers activate both alpha and gamma motor neurons, allowing Ia fibers to continue to sense muscle length while muscle is contracting: alpha-gamma coactivation

Page 13: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Gamma efferents allow continued response of spindle during voluntary contraction

Page 14: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Stretch reflexes

• 5. reciprocal or autogenic inhibition: activation of agonist and inhibition of antagonist muscles; stretch of muscle spindles activates Ia fibers, which monosynaptically activate agonist alpha motor neurons, and Ia fibers also activate glycinergic interneurons which inhibit antagonist alpha motor neurons

Page 15: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Stretch reflex

Page 16: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Stretch reflexes

• 6. flexor reflex: activation of A-delta and c fibers by nociceptive stimuli activates excitatory and inhibitory interneurons in ventral horn, which activate flexor alpha motor neurons and inhibit extensor motor neurons; involves several spinal cord segments

Page 17: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Flexor reflex

Page 18: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Stretch reflexes

• 7. crossed extensor reflex: activation of A-delta and c fibers by nociceptive stimuli activates excitatory and inhibitory interneurons in ventral horn, which project across midline to activate or inhibit interneurons, resulting in activation of extensor and inhibition of flexor motor neurons

Page 19: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Crossed extensor reflex

Page 20: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Brainstem control over spinal reflexes

• 1. vestibulospinal tracts– a. medial tract: originates in medial and inferior vestibular

nuclei; projects bilaterally to cervical and thoracic spinal cord; mostly controls neck muscles: reflex control of head position: vestibular apparatus (semicircular canals, sacculus, utriculus) activate vestibular ganglion neurons that activate central vestibular neurons

– b. lateral tract: originates in lateral vestibular nucleus; projects ipsilaterally to entire spinal cord; innervates alpha motor neurons (directly or indirectly) that control deep back extensors and proximal limb extensors: maintain balance, antigravity muscles

Page 21: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 22: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Brainstem control over spinal reflexes

• 2. reticulospinal tracts: innervate (indirectly) antigravity motor neurons; activated by cortico-reticular fibers and by somatosensory inputs, especially nociceptive

Page 23: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Brainstem control over spinal reflexes

• 3. rubrospinal tract: crossed descending systems controlling mostly upper limbs; inputs from cerebral cortex and cerebellum– a. from magnocellular RN: rubrospinal

tract; excites motor neurons controlling proximal flexors

– b. from parvocellular RN: rubro-olivary tract

Page 24: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 25: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Brainstem reflexes

• A. blink reflexes

• B. feeding mechanisms: rhythmic chewing and licking movements

• C. micturition (urination) reflex

• D. gaze control

Page 26: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Overview of Motor Systems

• Spinal and brainstem reflexes

• Corticospinal and corticobulbar tracts

• Cortical-subcortical-thalamo-cortical systems– Involving basal ganglia– Involving pons and cerebellum

Page 27: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Corticospinal tract• Origins: primary motor cortex (MI),

premotor cortex, supplemental motor cortex, anterior paracentral gyrus, parietal lobe (including SI) and cingulate gyrus

• collaterals: small percentage of corticospinal neurons– 1. midbrain (primarily red nucleus)– 2. trigeminal nuclei– 3. pontine nuclei

Page 28: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Corticospinal tract

• Termination in spinal cord: mostly laminae 3-7, few in ventral horn and laminae 1-2; mostly innervating interneurons, although some innervation of alpha motor neurons

• Neurotransmitter: glutamate and/or aspartate

Page 29: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Pyramidal tract origin

Page 30: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Corticobulbar tracts• A. control over facial muscles; bilateral input to motor

neurons controlling muscles in upper face, but contralateral input to motor neurons controlling lower face (in humans, not sure about rodents)

• B. control over muscles of mastication: motor trigeminal, and RF

• C. control over external eye muscles: input comes from frontal and parietal eye fields, rather than from MI; projection to midbrain and paramedian pontine RF

• D. control over tongue: hypoglossal and RF• E. control over swallowing reflexes: nucleus

ambiguus and RF

Page 31: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Control of movement by motor cortex

• A. microstimulation studies: in MI movements of particular contralateral joints (e.g. distal finger) can be elicited by microstimulation; in MII contractions of groups of muscles sequentially to produce overall movements of limbs, often bilaterally

Page 32: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Control of movement by motor cortex

• B. electrical activity during movement: corticospinal neurons active just before initiation of a movement; activity related to amount of force necessary to produce the movement; directionally-sensitive corticospinal neurons; higher-order motor cortex involved in calculating trajectories in space (probably in close communication with cerebellum) and in planning larger-scale movements (probably in close communication with the basal ganglia)

Page 33: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Control of movement by motor cortex

• C imaging studies in humans: random movements of digits activates MI (precentral gyrus); planned movements activate MI and supplemental motor cortex; thinking about planned movements activates supplemental motor cortex, but not MI

Page 34: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Overview of Motor Systems

• Spinal and brainstem reflexes

• Corticospinal and corticobulbar tracts

• Cortical-subcortical-thalamo-cortical systems– Involving basal ganglia– Involving pons and cerebellum

Page 35: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Cortex SubcorticalStructures

Thalamus

Cortical-Subcortical-Thalamo-Cortical Loops

Page 36: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Motor Hierarchy and Loops

Page 37: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Pallidum

Striatum

Motor Thalamus: VA

Motor Cortex

Basal Ganglia Loop

glutamate

GABAglu

GABA

Page 38: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Basal Ganglia Structures

• Striatum: dorsal striatum (caudate and putamen), ventral striatum (nucleus accumbens and olfactory tubercle)

• Pallidum: external and internal segments of globus pallidus

• Subthalamic nucleus• Substantia nigra

Page 39: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 40: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 41: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Striatum: extent

• dorsal vs. ventral: dorsal = caudate and putamen; ventral = nucleus accumbens (Acb) and olfactory tubercle Tu; Tu separated from striatum by ventral pallidum

• core vs. shell of nucleus accumbens: core similar to caudate, shell transition between striatum and extended amygdala

Page 42: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Striatum: cell types• medium spiny: GABAergic projection neurons

that co-express neuropeptides:– enkephalinergic: PPE gene; D2 receptors

– tachykininergic: extensive co-localization with dynorphin: PPD/SP; D1 receptors

– other neuropeptides in much lower abundance

• large cells: interneurons– cholinergic: muscarinic receptors found on PPE and

PPD/SP neurons

– NOS/NADPH d/somatostatin: GABAergic

Page 43: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Medium spiny neuron

Page 44: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Striatum: patch-matrix organization

• Mu receptors: demonstrate patches• Calbindin: most of matrix• Dendrites and axon collaterals of

projection neurons mostly (but not always) restricted to the compartment of the parent neuron; dendrites and axons of large neurons readily cross patch-matrix boundaries

Page 45: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 46: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Striatum: Afferent connections

• cerebral cortex: come from layers 5 and 6: 5a and superficial 6 go to matrix, 5b and deep 6 go to patch: may be related to development; glutamatergic

• thalamus: input mostly from medial thalamus, including midline and intralaminar nuclei, many are collaterals of projections to cortex, primarily Fr2 and Cg and insular

• substantia nigra: dopaminergic

Page 47: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Striatum: Dopaminergic Afferents

• From substantia nigra in midbrain

• Nigra divided into pars compacta (SNc; contains most of dopaminergic cell bodies) and pars reticulata (SNr; contains dendrites of dopaminergic neurons and GABAergic local neurons)

• Pars compacta divided into dorsal tier (co-localized with calbindin; projects to patch and part of cortex) and ventral tier (no calbindin; projects to matrix)

Page 48: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Striatum: Efferent connections

• Globus pallidus: external and internal segments; in rat, GP = GPe and entopeduncular n. = GPi

• SNr: GABAergic neurons that inhibit dopaminergic neurons; also projections to thalamus (VL, VM)

Page 49: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Cortico-striatal-pallidal-thalamo-cortical loops

• Direct path: cortex activates medium spiny neurons, which inhibit GPi neurons, decreasing the inhibition of thalamo-cortical neurons; net effect is disinhibition of the thalamus and facilitation of movement

• Indirect path: cortex activates medium spiny neurons, which inhibit GPe neurons, which inhibit subthalamic neurons, which tonically activate GPi neurons, which inhibit thalamo-cortical neurons; net effect is inhibition of thalamo-cortical neurons and inhibition of movement

Page 50: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Pallidum

Striatum

Motor Thalamus: VA

Motor Cortex

Basal Ganglia Loop

SubstantiaNigra

glutamate

GABAgluDA

GABA

Page 51: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 52: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Direct and Indirect Pathways

• Direct pathway– Disinhibits motor

thalamus– Thus activates

thalamo-cortical neurons

– Activates motor cortex

– Facilitates movement

• Indirect pathway– Inhibits motor

thalamus– Thus inhibits

thalamo-cortical neurons

– Inhibits motor cortex

– Inhibits movement

Page 53: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 54: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 55: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Direct and Indirect Pathways

• Direct pathway– Disinhibits motor

thalamus– Thus activates

thalamo-cortical neurons

– Activates motor cortex

– Facilitates movement

• Indirect pathway– Inhibits motor

thalamus– Thus inhibits

thalamo-cortical neurons

– Inhibits motor cortex

– Inhibits movement

Page 56: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 57: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Pallidum: Gpe, GPi

Striatum

Motor Thalamus: VA

Motor Cortex

Basal Ganglia Loop

SubstantiaNigra

glutamate

GABAglu

DA

Direct: +

Indirect: -

D1R, PPTD2R, PPE

Subthalamic n.

Page 58: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Dopaminergic control of striatum

• Direct path: facilitates movement

• Dopamine acts on D1 receptors, which facilitate information flow

• Dopamine facilitates movement

• Indirect path: inhibits movement

• Dopamine acts on D2 receptors, which inhibit information flow, thus disinhibition

• Dopamine facilitates movement

Page 59: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Direct and Indirect Pathways• Direct: DA binds to D1

receptors• activating adenylyl cyclase,

increasing cAMP, activating PKA

• PKA phosphorylates DARPP32

• P-DARPP32 inhibits PP1 phosphatase

• unopposed phosphorylation of various ion channels

• Indirect: DA binds to D2 receptors

• inhibits AC, decreases cAMP, decreases activity of PKA

• reduces phosphorylation of DARPP32

• reduces inhibition of PP1• de-phosphorylates NR1

Page 60: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Clinical problems in basal ganglia

• Movement disorders are one aspect; cognitive and memory impairments may also occur

• Hypokinesias: akinesia (difficulty in planning and initiating movements); bradykinesia (reduction in velocity and amplitude of movement): inappropriate activity in antagonist muscles

– Striatal strokes – Parkinson’s disease

• Dyskinesias (unwanted movements)

Page 61: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 62: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Dopaminergic control of striatum

• Direct path: facilitates movement

• Dopamine acts on D1 receptors, which facilitate information flow

• Dopamine facilitates movement

• Indirect path: inhibits movement

• Dopamine acts on D2 receptors, which inhibit information flow, thus disinhibition

• Dopamine facilitates movement

Page 63: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 64: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Treatments for Parkinson’s disease• Pharmacological

– L-DOPA plus carbidopa to increase dopamine levels; usually initial improvements, but then progressive loss; D1 receptor agonists can induce tardive dyskinesia

• Neurosurgical– implantation of dopamine-producing cells: very

controversial

– lesions of thalamic or pallidal structures: blocks overactivity of pallido-thalamic projection

– overstimulation of subthalamus to inhibit subthalamic activity: deep brain stimulation

Page 65: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 66: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 67: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 68: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Dyskinesias and hyperkinesias

• choreiform movements: “dance-like movements” e.g. Huntington's disease

• ballisms and hemiballisms; usually vascular lesions of contralateral subthalamic nucleus

• athetoid movements: continual writhing movements of distal extremity

• myoclonus: sudden jerky movements• dystonia: chronic muscular contractions leading to

bending or twisting• tardive dyskinesia: iatrogenic (caused by

medications)

Page 69: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Clinical problems in basal ganglia

• Huntington’s chorea– Progressive, untreatable, decreased function

and dementia– Genetic defect in gene called huntingtin– Choreiform movements leading to severe

impairment; death within 15 years– Loss of about 90% of striatal neurons,

especially of indirect pathway: overactivity of direct pathway: uncontrolled movements

Page 70: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu
Page 71: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 72: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

QuickTime™ and aGIF decompressor

are needed to see this picture.

QuickTime™ and aGIF decompressor

are needed to see this picture.

Normal Huntington’s Chorea

Page 73: Motor System: Reflexes, Pyramidal Tract and Basal Ganglia Richard Harlan, PhD harlanre@tulane.edu

Functions of striatum

• Much evidence for involvement in stimulus-response learning, or procedural memory: Packard and Knowlton, Ann. Rev. Neurosci 25: 563-593, 2002

• Large-scale movements and motivated behaviors (especially in ventral striatum)