35
Professor N Cheung, U.C. Berkeley Lecture 18 EE143 F2010 1 IC Process Integration Example IC Process Flows Simple resistor NMOS - Generic NMOS Process Flow CMOS - Generic CMOS Process Flow Self-aligned Techniques LOCOS- self-aligned channel stop Self-aligned Source/Drain Lightly Doped Drain (LDD) Self-aligned silicide (SALICIDE) Self-aligned oxide gap Advance MOS Techniques Twin Well CMOS , Retrograde Wells , SOI CMOS

Mos Fabrication

Embed Size (px)

DESCRIPTION

Mos Fabrication

Citation preview

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

1

IC Process Integration

Example IC Process Flows

• Simple resistor

• NMOS - Generic NMOS Process Flow

• CMOS - Generic CMOS Process Flow

Self-aligned Techniques

• LOCOS- self-aligned channel stop

• Self-aligned Source/Drain

• Lightly Doped Drain (LDD)

• Self-aligned silicide (SALICIDE)

• Self-aligned oxide gap

Advance MOS Techniques

• Twin Well CMOS , Retrograde Wells , SOI CMOS

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

2

Self-aligned channel stop

with Local Oxidation (LOCOS)

Si3N4 CVD

pad oxide

Si

LOCOS Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

3

B+ channel

stop

implant

Si

thermal oxidation

(high temperature)

FOX

Self-aligned

channel stop pp

B

dose

~1013/cm2

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

4

If poly or metal lines lie on top of the Field Oxide (FOX), they will

form a parasitic MOS structure.If these lines carrying a high voltage,

they may create an inversion layer of free carriers at the Si substrate

and shorts out neighboring devices. The relatively highly doped Si

underneath (the “channel stop”) raises the threshold voltage of

this parasitic MOS. If this threshold voltage value is higher than

the highest circuit voltage, inversion will not occur.

SiO2

p-Si

metal

Comment: Field Oxide Channel Inversion

Inversion

Layer

Device 1Device 2

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

5

Comments : Non self-aligned alternative:

P.R.1

SiO2

P+ P+

SiP+ P+

SiO2

2

B+

3

Disadvantages1 Two lithography steps

2 Channel stop doping not FOX aligned

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

6

Self-aligned Source and Drain

n+n+

poly-Si gate

As+

n+n+

As+

Off Alignment

Perfect Alignment

* The n+ S/D always follows gate

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

7

Comment: Non self-aligned Alternative

.n+n+ 2

.n+n+

Solution: Use

gate overlap

to avoid offset

error.

.n+n+ 1

Channel not linked to S/D

Stray

capacitance

Disadvantages: Two lithography steps, excess gate overlap capacitance

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

8

Lightly Doped Drain (LDD)

LDD

(1E17-to 1E18/cm3)

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

9

Lightly Doped Source/Drain MOSFET (LDD)

The n-pockets (LDD) doped to medium conc (~1E18) are used to

smear out the strong E-field between the channel and heavily doped n+

S/D, in order to reduce hot-carrier generation.

n+ n+n nSiO2

CVD oxide

spacer

p-sub

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

10

n implant

for LDD

SiO2

CVD SiO2

Directional

RIE of CVD Oxide

CVD conformal

deposition SiO2

LDD Process Flow using Ion Implantation

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

11

Spacer left when CVD SiO2

is just cleared on flat region.

nn

0.05mm

0.25mm

n+ n+

n+ implant

n n

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

RIE-based Stringers / Spacers

Leftover material must be removed by overetching

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

13

Self-Aligned Silicide Process (SALICIDE) using Ion

Implantation and Metal-Si reaction

n+n+

TiSi2 (metal)poly-gate

Metal silicides are metallic.

They lower the sheet resistance of S/D and the poly-gate

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

14

n+n+

SiO2

oxide spacer

SALICIDE Process Flow

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

15

n+n+

SiO2

Ti

Ti deposition

Si

Ti

TiSi2

Ti

Ti

Selective etch to remove

unreacted Ti only

.

2

)700(

2

2

SiOwithreactnotwillTi

TiSiSiTi

Ctreatmentheat o

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

16

Salicide Gate and Source/Drain

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

17

Self-aligned Oxide Gap

n+

poly-I

poly-II

small oxide spacing < 30nm

inversion

charge layerpoly-I

substrate

Gate

oxide

poly-IIMOSFET

MOS

Capacitor

DRAM structure ( MOSFET with a capacitor)

V (plate)

For a small spacing

between poly-I and

poly-II, inversion

charges between

MOSFET and

Capacitor are

electrically linked. No

need for a separate

n+ island.

Thermal Oxide grown

conformal on poly-I

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

Starting material: p-type wafer with NA = 1016 cm-3

Step 1: grow 500 nm of SiO2

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type

layer with ND = 1020 cm-3 and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Step 6: deposit aluminum to a thickness of 1 mm

Step 7: pattern using the aluminum mask (clear field)

Starting material: p-type wafer with NA = 1016 cm-3

Step 1: grow 500 nm of SiO2

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type

layer with ND = 1020 cm-3 and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Oxide mask (dark field)

Contact mask (dark field)

Al mask (clear field)

Three-mask process:

Process Flow Example : Resistor

Layout:

A A

Starting material: p-type wafer with NA = 1016 cm-3

Step 1: grow 500 nm of SiO2

Step 2: pattern oxide using the oxide mask (dark field)

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

p-type Si

Step 2:

Pattern oxide

Step 3: Implant

& Anneal

oxide etchant

p-type Si

photoresist

patterned using

mask #1

phosphorus

blocked by oxide

phosphorus implant:

A-A Cross-Section

SiO2

phosphorus ions

after anneal of

phosphorus implant:n+ layer

p-type Si

lateral diffusion of phosphorus

under oxide during anneal

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

n+ layer

p-type Si

Step 4: Deposit

500 nm oxide

n+ layer

p-type Si

Step 7:

Pattern metalAl

1st layer of SiO2

2nd layer of SiO2

Step 5:

Pattern oxide n+ layer

p-type Si

Open holes for metal contacts

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

21

Substrate

Boron doped (100)Si

Resistivity= 20 -cm

Thermal

Oxidation

~100Å pad oxide

CVD Si3N4

~ 0.1 um

Lithography

Pattern Field Oxide

Regions

RIE removal of

Nitride and pad

oxide

Channel Stop

Implant:

3x1012 B/cm2

60keV

Thermal Oxidation

to grow 0.45um

oxide

Wet Etch

Nitrdie and

pad oxide

Ion Implant for

Threshold

Voltage control

8x1011 B/cm2 35keV

Thermal Oxidation

To grow 250Å

gate oxide

LPCVD

Poly-Si

~ 0.35um

Dope Poly-Si to n+

with Phosphorus

Diffusion source

Generic NMOS Process Flow Description

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

22

Lithography

Poly-Si

Gate pattern

RIE

Poly-Si

gate

Source /Drain

Implantation

~ 1016 As/cm2 80keV

Thermal Oxidation

Grow ~0.1um oxide

on poly-Si

And source/drian

LPCVD

SiO2

~0.35um

Lithography

Contact

Window pattern

RIE removal of

CVD oxide and

thermal oxide

Sputter Deposit

Al metal

~0.7um

Lithography

Al interconnect

pattern

RIE etch of

Al metallization

Sintering at ~400oC in H2 ambient

to improve contact resistance

and to reduce oxide interface charge

Generic NMOS Process Flow Description (cont.)

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

23

Generic NMOS Process Flow

active

device~5 mm

p-Si <100> 500mm

Boron-doped Si

20 -cm

<100>

NMOS Structure

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

24

P.R.

SiO2

Si

nitride

SiO2

P.R.

Si

~0.1mm

keV

cmB

60

/103: 212

317 /103 cm

nitride

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

25

Fox

p+ p+

keVcmB 35/105 211

Fox

p+p+

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

26

Resist

n+n+

As+ 80keV, 1016/cm2

n+n+

Thermal oxide

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

27

Al

CVD oxide

intermediate

oxide

n+n+

Si/SiO2

H2 anneal

~ 400oC

(forming gas

is 10% H2

and 90%

N2)

Al

Interface

States Passivation

n+ n+

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

28

Basic Structure of CMOS Inverter

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

29

A Generic

CMOS Process

P-well CMOS

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

30

Pattern mask opening

For p-well implant

Shallow implantation

of boron

Diffusion drive-in

To form p-well in

oxidizing ambient

Remove masking oxide

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

31

Pad oxide growth and CVD Si3N4.

Pattern field oxide regions

Blanket implant of Boron for p

channel stop inside p-well

Protect p-well regions with

photoresist.

Implant Ph to form n channel

stop outside p-well regions

LOCOS Oxidation

Thermal oxidation of gate SiO2

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

32

Pattern poly-Si gates and poly lines

Protect ALL n-channel

transistors with photoresist.

Boron implantation to

form source/drain of p-

channel transistors and

contacts to p-well

CVD poly-Si

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

33

Protect ALL p-channel

transistors with photoresist.

CVD SiO2

(Low-temperature oxide)

Pattern and etch contact

openings to source/drain, well

contact, and substrate contact.

Arsenic implantation to form

source/drain of n-channel

transistors and contacts to n-

substrate

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

34

Metal 1 deposition

Pattern and etch

Metal 1 interconnects

CVD SiO2

Professor N Cheung, U.C. Berkeley

Lecture 18EE143 F2010

35

Pattern and etch contact

openings to Metal 1.

Metal 2 deposition.

Pattern, and etch Metal 2

interconnects.