92
Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). Columbia Departments of IEOR and Statistics Blanchet (Columbia) 1 / 41

Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Monte Carlo Methods for Spatial Extremes

Jose Blanchet (joint with Liu, Dieker, Mikosch).

Columbia Departments of IEOR and Statistics

Blanchet (Columbia) 1 / 41

Page 2: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

What is our Goal?

Our goal is to enable effi cient Monte Carlo of extreme events inspace...

Our focus here is on Max-stable Fields.

Blanchet (Columbia) 2 / 41

Page 3: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Elements of Extreme Value Analysis

A little story... Gumbel.

Textbook Example: Given storm surges observed over the last 100yrs in NYC, what’s the maximum height of a storm surge which getsexceeded only about once in 1000 yrs? Answer: One mustextrapolate...

Blanchet (Columbia) 3 / 41

Page 4: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Elements of Extreme Value Analysis

A little story... Gumbel.

Textbook Example: Given storm surges observed over the last 100yrs in NYC, what’s the maximum height of a storm surge which getsexceeded only about once in 1000 yrs? Answer: One mustextrapolate...Blanchet (Columbia) 3 / 41

Page 5: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Extreme Value Theory (EVT): The IID case

Theorem (Fisher-Tippet-Gnedenko)

Suppose X1, ...,Xn is an IID sequence and define Zn = max{X1, ...,Xn}. Ifthere exists {(an, bn)}n≥1 deterministic numbers such that

ZnD≈ bnM + an,

then M must be a max-stable distribution.

Blanchet (Columbia) 4 / 41

Page 6: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-stable Distributions

A max-stable r.v. M is characterized by the fact that ifM1,M2, ...,Mn are i.i.d. copies of M then

MD=

nmaxi=1

(Mi − an) /bn.

We also have that

P (M ≤ x) = exp(− (1+ γx)−1/γ

)1+ γx > 0.

P (M ≤ x) = exp (− exp (−x)) ; γ = 0 (the Gumbel case).

In practice Zm = max{X(m−1)n+1, ...,Xmn}D= a+ bMm , apply MLE

to estimate a, b,γ & ready to extrapolate...

But in many cases it is important to account for spatialdependence...

Blanchet (Columbia) 5 / 41

Page 7: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-stable Distributions

A max-stable r.v. M is characterized by the fact that ifM1,M2, ...,Mn are i.i.d. copies of M then

MD=

nmaxi=1

(Mi − an) /bn.

We also have that

P (M ≤ x) = exp(− (1+ γx)−1/γ

)1+ γx > 0.

P (M ≤ x) = exp (− exp (−x)) ; γ = 0 (the Gumbel case).

In practice Zm = max{X(m−1)n+1, ...,Xmn}D= a+ bMm , apply MLE

to estimate a, b,γ & ready to extrapolate...

But in many cases it is important to account for spatialdependence...

Blanchet (Columbia) 5 / 41

Page 8: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-stable Distributions

A max-stable r.v. M is characterized by the fact that ifM1,M2, ...,Mn are i.i.d. copies of M then

MD=

nmaxi=1

(Mi − an) /bn.

We also have that

P (M ≤ x) = exp(− (1+ γx)−1/γ

)1+ γx > 0.

P (M ≤ x) = exp (− exp (−x)) ; γ = 0 (the Gumbel case).

In practice Zm = max{X(m−1)n+1, ...,Xmn}D= a+ bMm , apply MLE

to estimate a, b,γ & ready to extrapolate...

But in many cases it is important to account for spatialdependence...

Blanchet (Columbia) 5 / 41

Page 9: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-stable Distributions

A max-stable r.v. M is characterized by the fact that ifM1,M2, ...,Mn are i.i.d. copies of M then

MD=

nmaxi=1

(Mi − an) /bn.

We also have that

P (M ≤ x) = exp(− (1+ γx)−1/γ

)1+ γx > 0.

P (M ≤ x) = exp (− exp (−x)) ; γ = 0 (the Gumbel case).

In practice Zm = max{X(m−1)n+1, ...,Xmn}D= a+ bMm , apply MLE

to estimate a, b,γ & ready to extrapolate...

But in many cases it is important to account for spatialdependence...Blanchet (Columbia) 5 / 41

Page 10: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

What is a Catastrophe Bond?

Blanchet (Columbia) 6 / 41

Page 11: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Diagram Illustrating Catastrophe Bonds Risk Calculation

Blanchet (Columbia) 7 / 41

Page 12: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Case Study: MetroCat Re Ltd

The MTA (New York & New Jersey authorities) obtained parametrictriggered storm surge.

Motivated by high insurance costs after Hurricane Sandy in 10/2012.

The parametric trigger is based on weighted average of maximumwater levels in several locations.

Blanchet (Columbia) 8 / 41

Page 13: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Case Study: MetroCat Re Ltd

The MTA (New York & New Jersey authorities) obtained parametrictriggered storm surge.

Motivated by high insurance costs after Hurricane Sandy in 10/2012.

The parametric trigger is based on weighted average of maximumwater levels in several locations.

Blanchet (Columbia) 8 / 41

Page 14: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Case Study: MetroCat Re Ltd

The MTA (New York & New Jersey authorities) obtained parametrictriggered storm surge.

Motivated by high insurance costs after Hurricane Sandy in 10/2012.

The parametric trigger is based on weighted average of maximumwater levels in several locations.

Blanchet (Columbia) 8 / 41

Page 15: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-stable Random Fields

How does one define natural models of extremes in space?

Definition: M (·) is a max-stable field if

M (·) D= nmaxi=1

(Mi (·)− an (·)) /bn (·) ,

for i.i.d. M1 (·) , ...,Mn (·) of M (·) and some an (·) , bn (·).

How to construct max-stable fields?

Blanchet (Columbia) 9 / 41

Page 16: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-stable Random Fields

How does one define natural models of extremes in space?

Definition: M (·) is a max-stable field if

M (·) D= nmaxi=1

(Mi (·)− an (·)) /bn (·) ,

for i.i.d. M1 (·) , ...,Mn (·) of M (·) and some an (·) , bn (·).

How to construct max-stable fields?

Blanchet (Columbia) 9 / 41

Page 17: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-stable Random Fields

How does one define natural models of extremes in space?

Definition: M (·) is a max-stable field if

M (·) D= nmaxi=1

(Mi (·)− an (·)) /bn (·) ,

for i.i.d. M1 (·) , ...,Mn (·) of M (·) and some an (·) , bn (·).

How to construct max-stable fields?

Blanchet (Columbia) 9 / 41

Page 18: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Characterizations of Max-stable Fields

A large class of max-stable fields can be represented as:

M (t) = supn≥1{− log (An) + Xn (t)},

where Xn (·) is Gaussian.

An = n-th arrival of Poisson process with rate 1 (independent ofXn (·)).

Brown-Resnick, de Haan, Smith, Schlather, Kabluchko,...

Blanchet (Columbia) 10 / 41

Page 19: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Characterizations of Max-stable Fields

A large class of max-stable fields can be represented as:

M (t) = supn≥1{− log (An) + Xn (t)},

where Xn (·) is Gaussian.

An = n-th arrival of Poisson process with rate 1 (independent ofXn (·)).

Brown-Resnick, de Haan, Smith, Schlather, Kabluchko,...

Blanchet (Columbia) 10 / 41

Page 20: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Characterizations of Max-stable Fields

A large class of max-stable fields can be represented as:

M (t) = supn≥1{− log (An) + Xn (t)},

where Xn (·) is Gaussian.

An = n-th arrival of Poisson process with rate 1 (independent ofXn (·)).

Brown-Resnick, de Haan, Smith, Schlather, Kabluchko,...

Blanchet (Columbia) 10 / 41

Page 21: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

This is How a Max-Stable Field Looks Like

Blanchet (Columbia) 11 / 41

Page 22: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Computing Joint CDFs

P(eM (t1) ≤ ex1 , eM (t1) ≤ ex2

)= P (Poisson r.v. = 0)

= exp (−E max {exp (Xn (t1)− x1) , exp (Xn (t2)− x2)})

Blanchet (Columbia) 12 / 41

Page 23: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-Stable Fields: Computational Challenges

Joint densities for M (t1) , ...,M (td ) quickly become intractable(d = 10 contains more than 105 terms).

Likelihood methods applicable in low dimensions only.

In the end we want to effi ciently evaluate quantities such as

P(∫

Tw (t)M (t) dt > b

), <—CAT Bond Example

fM (t1),...,M (tk ) (x1, ..., xk ) ,

fM (t1),...,M (tk )|M (s1),...,M (sd ) (x1, ..., xk | z1, ..., zd ) .

Blanchet (Columbia) 13 / 41

Page 24: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-Stable Fields: Computational Challenges

Joint densities for M (t1) , ...,M (td ) quickly become intractable(d = 10 contains more than 105 terms).

Likelihood methods applicable in low dimensions only.

In the end we want to effi ciently evaluate quantities such as

P(∫

Tw (t)M (t) dt > b

), <—CAT Bond Example

fM (t1),...,M (tk ) (x1, ..., xk ) ,

fM (t1),...,M (tk )|M (s1),...,M (sd ) (x1, ..., xk | z1, ..., zd ) .

Blanchet (Columbia) 13 / 41

Page 25: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Max-Stable Fields: Computational Challenges

Joint densities for M (t1) , ...,M (td ) quickly become intractable(d = 10 contains more than 105 terms).

Likelihood methods applicable in low dimensions only.

In the end we want to effi ciently evaluate quantities such as

P(∫

Tw (t)M (t) dt > b

), <—CAT Bond Example

fM (t1),...,M (tk ) (x1, ..., xk ) ,

fM (t1),...,M (tk )|M (s1),...,M (sd ) (x1, ..., xk | z1, ..., zd ) .

Blanchet (Columbia) 13 / 41

Page 26: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Our Contributions

Theorem 1 (B., Dieker, Liu, Mikosch ’16): Algorithm for samplingM (t1) , ...,M (td ) with virtually the same asymptotic complexity as

sampling X1 (t1) , ...,X1 (td ) as d → ∞.

In other words, M (t1) , ...,M (td ) is basically as "easy" asX1 (t1) , ...,X1 (td )...

Blanchet (Columbia) 14 / 41

Page 27: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Our Contributions

Theorem 2 (B. and Liu ’16): Construction of a finite varianceW (y1, ..., yd ) such that

fM (t1),...,M (td ) (y1, ..., yd ) = E (W (y1, ..., yd )) .

The estimator takes O(ε−2 log2 (1/ε)

)samples to achieve ε error.

Theorem 3 (B. and Liu ’16): Construction of W (y1, ..., yk , z1, ..., zd )such that

fM (t1),...,M (tk )|M (s1),...,M (sd ) (y1, ..., yk | z1, ..., zd )= E (W (y1, ..., yk , z1, ..., zd )) ,

similar complexity as Theorem 2.

Blanchet (Columbia) 15 / 41

Page 28: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Our Contributions

Theorem 2 (B. and Liu ’16): Construction of a finite varianceW (y1, ..., yd ) such that

fM (t1),...,M (td ) (y1, ..., yd ) = E (W (y1, ..., yd )) .

The estimator takes O(ε−2 log2 (1/ε)

)samples to achieve ε error.

Theorem 3 (B. and Liu ’16): Construction of W (y1, ..., yk , z1, ..., zd )such that

fM (t1),...,M (tk )|M (s1),...,M (sd ) (y1, ..., yk | z1, ..., zd )= E (W (y1, ..., yk , z1, ..., zd )) ,

similar complexity as Theorem 2.

Blanchet (Columbia) 15 / 41

Page 29: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

A Quick Review of Current Methodology

State-of-the-art: Exact sampling algorithms due to Dieker andMikosch (2015), and Dombry, Engelke, Oesting (2016).

Summary of computational complexity (BDML = Our method):

Dieker & Mikosch = BDML ×d × log (d) .DEO = BDML ×d .

For example if Xn (·) is Brownian motion our method takes O (d)complexity to sample M (t1) , ...,M (td ). Both DM and DEO take atleast O

(d2)complexity.

Blanchet (Columbia) 16 / 41

Page 30: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

A Quick Review of Current Methodology

State-of-the-art: Exact sampling algorithms due to Dieker andMikosch (2015), and Dombry, Engelke, Oesting (2016).

Summary of computational complexity (BDML = Our method):

Dieker & Mikosch = BDML ×d × log (d) .DEO = BDML ×d .

For example if Xn (·) is Brownian motion our method takes O (d)complexity to sample M (t1) , ...,M (td ). Both DM and DEO take atleast O

(d2)complexity.

Blanchet (Columbia) 16 / 41

Page 31: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

A Quick Review of Current Methodology

State-of-the-art: Exact sampling algorithms due to Dieker andMikosch (2015), and Dombry, Engelke, Oesting (2016).

Summary of computational complexity (BDML = Our method):

Dieker & Mikosch = BDML ×d × log (d) .DEO = BDML ×d .

For example if Xn (·) is Brownian motion our method takes O (d)complexity to sample M (t1) , ...,M (td ). Both DM and DEO take atleast O

(d2)complexity.

Blanchet (Columbia) 16 / 41

Page 32: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Comparison vs Dieker & Mikosch

Log-log plot: Grid points vs time in secondsRED = Our Method vs BLUE = Alternative method.

Blanchet (Columbia) 17 / 41

Page 33: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

Find two crucial quantities:

1 NX such that for n ≥ NX :dmaxi=1|Xn (ti )| ≤

12log (n+ 1) .

2 NA such that for n ≥ NA :

An >n+ 12.

Note that for m ≥ max (NA,NX )

maxn≥m{Xn (ti )− log (An)} ≤ −

log (m+ 1)2

+ log (2) .

Need to detect when

− log (m+ 1) /2+ log (2) ≤dmini=1

X1 (ti )− log (A1) .

Blanchet (Columbia) 18 / 41

Page 34: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

Find two crucial quantities:1 NX such that for n ≥ NX :

dmaxi=1|Xn (ti )| ≤

12log (n+ 1) .

2 NA such that for n ≥ NA :

An >n+ 12.

Note that for m ≥ max (NA,NX )

maxn≥m{Xn (ti )− log (An)} ≤ −

log (m+ 1)2

+ log (2) .

Need to detect when

− log (m+ 1) /2+ log (2) ≤dmini=1

X1 (ti )− log (A1) .

Blanchet (Columbia) 18 / 41

Page 35: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

Find two crucial quantities:1 NX such that for n ≥ NX :

dmaxi=1|Xn (ti )| ≤

12log (n+ 1) .

2 NA such that for n ≥ NA :

An >n+ 12.

Note that for m ≥ max (NA,NX )

maxn≥m{Xn (ti )− log (An)} ≤ −

log (m+ 1)2

+ log (2) .

Need to detect when

− log (m+ 1) /2+ log (2) ≤dmini=1

X1 (ti )− log (A1) .

Blanchet (Columbia) 18 / 41

Page 36: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

Find two crucial quantities:1 NX such that for n ≥ NX :

dmaxi=1|Xn (ti )| ≤

12log (n+ 1) .

2 NA such that for n ≥ NA :

An >n+ 12.

Note that for m ≥ max (NA,NX )

maxn≥m{Xn (ti )− log (An)} ≤ −

log (m+ 1)2

+ log (2) .

Need to detect when

− log (m+ 1) /2+ log (2) ≤dmini=1

X1 (ti )− log (A1) .

Blanchet (Columbia) 18 / 41

Page 37: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

Find two crucial quantities:1 NX such that for n ≥ NX :

dmaxi=1|Xn (ti )| ≤

12log (n+ 1) .

2 NA such that for n ≥ NA :

An >n+ 12.

Note that for m ≥ max (NA,NX )

maxn≥m{Xn (ti )− log (An)} ≤ −

log (m+ 1)2

+ log (2) .

Need to detect when

− log (m+ 1) /2+ log (2) ≤dmini=1

X1 (ti )− log (A1) .

Blanchet (Columbia) 18 / 41

Page 38: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

If Xn (·) is continuous on the compact set T , then

maxt∈T|Xn (t)| = Op

((log (n))1/2

).

By the LLNsAn/n→ 1.

So detection of NX and NA should take O (1) time as d → ∞.

Blanchet (Columbia) 19 / 41

Page 39: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

If Xn (·) is continuous on the compact set T , then

maxt∈T|Xn (t)| = Op

((log (n))1/2

).

By the LLNsAn/n→ 1.

So detection of NX and NA should take O (1) time as d → ∞.

Blanchet (Columbia) 19 / 41

Page 40: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Optimal Simulation of Max-stable Processes

If Xn (·) is continuous on the compact set T , then

maxt∈T|Xn (t)| = Op

((log (n))1/2

).

By the LLNsAn/n→ 1.

So detection of NX and NA should take O (1) time as d → ∞.

Blanchet (Columbia) 19 / 41

Page 41: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

The Milestone / Record Breaking Events Technique

Used several times: B. & Sigman (2011), B. & Chen (2012), B. &Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).

Borrow intuition from rare event simulation.

Let us write Xn = {Xn (ti )}di=1 so ‖Xn‖∞ = maxdi=1 |Xn (ti )|.

Let τ0 = n0 − 1 (n0 chosen later) and let

τk+1 = inf{n > τk : ‖Xn‖∞ >12log (n+ 1)},

NX = sup{τk : τk < ∞}.

Can we sample Bernoulli with P (τ1 < ∞)? Can we simulateX1 (·) , ...,Xτ1 (·) given τ1 < ∞?

Blanchet (Columbia) 20 / 41

Page 42: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

The Milestone / Record Breaking Events Technique

Used several times: B. & Sigman (2011), B. & Chen (2012), B. &Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).

Borrow intuition from rare event simulation.

Let us write Xn = {Xn (ti )}di=1 so ‖Xn‖∞ = maxdi=1 |Xn (ti )|.

Let τ0 = n0 − 1 (n0 chosen later) and let

τk+1 = inf{n > τk : ‖Xn‖∞ >12log (n+ 1)},

NX = sup{τk : τk < ∞}.

Can we sample Bernoulli with P (τ1 < ∞)? Can we simulateX1 (·) , ...,Xτ1 (·) given τ1 < ∞?

Blanchet (Columbia) 20 / 41

Page 43: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

The Milestone / Record Breaking Events Technique

Used several times: B. & Sigman (2011), B. & Chen (2012), B. &Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).

Borrow intuition from rare event simulation.

Let us write Xn = {Xn (ti )}di=1 so ‖Xn‖∞ = maxdi=1 |Xn (ti )|.

Let τ0 = n0 − 1 (n0 chosen later) and let

τk+1 = inf{n > τk : ‖Xn‖∞ >12log (n+ 1)},

NX = sup{τk : τk < ∞}.

Can we sample Bernoulli with P (τ1 < ∞)? Can we simulateX1 (·) , ...,Xτ1 (·) given τ1 < ∞?

Blanchet (Columbia) 20 / 41

Page 44: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

The Milestone / Record Breaking Events Technique

Used several times: B. & Sigman (2011), B. & Chen (2012), B. &Dong (2013), B. & Wallwater (2014), B., Chen & Dong (2015).

Borrow intuition from rare event simulation.

Let us write Xn = {Xn (ti )}di=1 so ‖Xn‖∞ = maxdi=1 |Xn (ti )|.

Let τ0 = n0 − 1 (n0 chosen later) and let

τk+1 = inf{n > τk : ‖Xn‖∞ >12log (n+ 1)},

NX = sup{τk : τk < ∞}.

Can we sample Bernoulli with P (τ1 < ∞)? Can we simulateX1 (·) , ...,Xτ1 (·) given τ1 < ∞?

Blanchet (Columbia) 20 / 41

Page 45: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Borrow from Rare Event Simulation Intuition

Say n0 is large: How does the rare event

{τ1 < ∞} =∞⋃

n=n0

{‖Xn‖∞ >12log (n+ 1)} occur?

Approximate the optimal importance sampling distribution

P (τ1 = n|τ1 < ∞) =P(‖Xn‖∞ >

12 log (n+ 1) , τ1 > n− 1

)P (τ1 < ∞)

≈P(‖Xn‖∞ >

12 log (n+ 1)

)P (τ1 < ∞)

≈ ∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1))

P (τ1 < ∞).

This suggests a natural importance sampling strategy...

Blanchet (Columbia) 21 / 41

Page 46: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Borrow from Rare Event Simulation Intuition

Say n0 is large: How does the rare event

{τ1 < ∞} =∞⋃

n=n0

{‖Xn‖∞ >12log (n+ 1)} occur?

Approximate the optimal importance sampling distribution

P (τ1 = n|τ1 < ∞) =P(‖Xn‖∞ >

12 log (n+ 1) , τ1 > n− 1

)P (τ1 < ∞)

≈P(‖Xn‖∞ >

12 log (n+ 1)

)P (τ1 < ∞)

≈ ∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1))

P (τ1 < ∞).

This suggests a natural importance sampling strategy...

Blanchet (Columbia) 21 / 41

Page 47: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Borrow from Rare Event Simulation Intuition

Say n0 is large: How does the rare event

{τ1 < ∞} =∞⋃

n=n0

{‖Xn‖∞ >12log (n+ 1)} occur?

Approximate the optimal importance sampling distribution

P (τ1 = n|τ1 < ∞) =P(‖Xn‖∞ >

12 log (n+ 1) , τ1 > n− 1

)P (τ1 < ∞)

≈P(‖Xn‖∞ >

12 log (n+ 1)

)P (τ1 < ∞)

≈ ∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1))

P (τ1 < ∞).

This suggests a natural importance sampling strategy...

Blanchet (Columbia) 21 / 41

Page 48: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Will the First Record Breaking Event Occur?

1 Sample K so that for K ≥ n0

Q (K = n) =∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1))

∑∞k=n0 ∑d

i=1 P(|Xk (ti )| > 1

2 log (k + 1)) .

2 Define h (n) = P (τ1 = n) /Q (K = n) then

P (τ1 < ∞) = EQ (h (K )) =∞

∑n=n0

P (τ1 = n) .

3 If h (k) ≤ 1 then I{τ1 < ∞} is Bernoulli(h(K )) with K sampledunder Q.

Blanchet (Columbia) 22 / 41

Page 49: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Will the First Record Breaking Event Occur?

1 Sample K so that for K ≥ n0

Q (K = n) =∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1))

∑∞k=n0 ∑d

i=1 P(|Xk (ti )| > 1

2 log (k + 1)) .

2 Define h (n) = P (τ1 = n) /Q (K = n) then

P (τ1 < ∞) = EQ (h (K )) =∞

∑n=n0

P (τ1 = n) .

3 If h (k) ≤ 1 then I{τ1 < ∞} is Bernoulli(h(K )) with K sampledunder Q.

Blanchet (Columbia) 22 / 41

Page 50: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Will the First Record Breaking Event Occur?

1 Sample K so that for K ≥ n0

Q (K = n) =∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1))

∑∞k=n0 ∑d

i=1 P(|Xk (ti )| > 1

2 log (k + 1)) .

2 Define h (n) = P (τ1 = n) /Q (K = n) then

P (τ1 < ∞) = EQ (h (K )) =∞

∑n=n0

P (τ1 = n) .

3 If h (k) ≤ 1 then I{τ1 < ∞} is Bernoulli(h(K )) with K sampledunder Q.

Blanchet (Columbia) 22 / 41

Page 51: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Will the First Record Breaking Event Occur?

1 Choose n0 such that

h (n) =∞

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)×P

(‖Xk‖∞ ≤

12log (1+ k) ∀ n0 ≤ k < n

P(‖Xn‖∞ >

12 log (n+ 1)

)∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) < 1.

2 Sample a Bernoulli with parameter:

P(‖Xn‖∞ >

12 log (n+ 1)

)∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) .

Blanchet (Columbia) 23 / 41

Page 52: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Will the First Record Breaking Event Occur?

1 Choose n0 such that

h (n) =∞

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)×P

(‖Xk‖∞ ≤

12log (1+ k) ∀ n0 ≤ k < n

P(‖Xn‖∞ >

12 log (n+ 1)

)∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) < 1.

2 Sample a Bernoulli with parameter:

P(‖Xn‖∞ >

12 log (n+ 1)

)∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) .

Blanchet (Columbia) 23 / 41

Page 53: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

A Related Acceptance / Rejection Question

Sampling from P(· | ‖Xn‖∞ >

12 log (n+ 1)

)by acceptance /

rejection.

Proposal distribution Q (·) described next:1 Sample J with probability

Q (J = j) =P(|Xn (tj )| > 1

2 log (n+ 1))

∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) .

2 Given J = j , sample Xn = {Xn (ti )}di=1Q (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | J = j)

= P(Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | |Xn (tj )| >

12log (n+ 1)

)=

P (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd ) · I(|xn (tj )| > 1

2 log (n+ 1))

P(|Xn (tj )| > 1

2 log (n+ 1)) .

Blanchet (Columbia) 24 / 41

Page 54: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

A Related Acceptance / Rejection Question

Sampling from P(· | ‖Xn‖∞ >

12 log (n+ 1)

)by acceptance /

rejection.Proposal distribution Q (·) described next:

1 Sample J with probability

Q (J = j) =P(|Xn (tj )| > 1

2 log (n+ 1))

∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) .

2 Given J = j , sample Xn = {Xn (ti )}di=1Q (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | J = j)

= P(Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | |Xn (tj )| >

12log (n+ 1)

)=

P (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd ) · I(|xn (tj )| > 1

2 log (n+ 1))

P(|Xn (tj )| > 1

2 log (n+ 1)) .

Blanchet (Columbia) 24 / 41

Page 55: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

A Related Acceptance / Rejection Question

Sampling from P(· | ‖Xn‖∞ >

12 log (n+ 1)

)by acceptance /

rejection.Proposal distribution Q (·) described next:

1 Sample J with probability

Q (J = j) =P(|Xn (tj )| > 1

2 log (n+ 1))

∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) .

2 Given J = j , sample Xn = {Xn (ti )}di=1Q (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | J = j)

= P(Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | |Xn (tj )| >

12log (n+ 1)

)=

P (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd ) · I(|xn (tj )| > 1

2 log (n+ 1))

P(|Xn (tj )| > 1

2 log (n+ 1)) .

Blanchet (Columbia) 24 / 41

Page 56: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

A Related Acceptance / Rejection Question

Sampling from P(· | ‖Xn‖∞ >

12 log (n+ 1)

)by acceptance /

rejection.Proposal distribution Q (·) described next:

1 Sample J with probability

Q (J = j) =P(|Xn (tj )| > 1

2 log (n+ 1))

∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) .

2 Given J = j , sample Xn = {Xn (ti )}di=1Q (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | J = j)

= P(Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd | |Xn (tj )| >

12log (n+ 1)

)=

P (Xn (ti ) ∈ dxi , ...,Xn (td ) ∈ dxd ) · I(|xn (tj )| > 1

2 log (n+ 1))

P(|Xn (tj )| > 1

2 log (n+ 1)) .

Blanchet (Columbia) 24 / 41

Page 57: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Computing the Likelihood Ratio

Likelihood of Xn under Q

Q (Xn) = ∑jQ (Xn |J = j)Q (J = j)

= ∑jP (Xn)

I(|xn (tj )| > 1

2 log (n+ 1))

P(|Xn (tj )| > 1

2 log (n+ 1))Q (J = j)

= P (Xn)∑j

(I(|xn (tj )| > 1

2 log (n+ 1))

P(|Xn (tj )| > 1

2 log (n+ 1))

×P(|Xn (tj )| > 1

2 log (n+ 1))

∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)))

= P (Xn)∑j I

(|xn (tj )| > 1

2 log (n+ 1))

∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) .

Blanchet (Columbia) 25 / 41

Page 58: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Acceptance / Rejection Execution

Likelihood of Xn under Q

dQdP

(Xn) =∑dj=1 I (|Xn (tj )| > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

We conclude

dP(Xn | ‖Xn‖∞ >

log(n+1)2

)dQ

=I(‖Xn‖∞ >

log(n+1)2

)P(‖Xn‖∞ >

log(n+1)2

) dPdQ≤

∑di=1 P

(|Xn (ti )| > log(n+1)

2

)P(‖Xn‖∞ >

log(n+1)2

) .

By general acceptance / rejection theory we have:

Probability of accepting =P (‖Xn‖∞ > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

Blanchet (Columbia) 26 / 41

Page 59: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Acceptance / Rejection Execution

Likelihood of Xn under Q

dQdP

(Xn) =∑dj=1 I (|Xn (tj )| > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

We conclude

dP(Xn | ‖Xn‖∞ >

log(n+1)2

)dQ

=I(‖Xn‖∞ >

log(n+1)2

)P(‖Xn‖∞ >

log(n+1)2

) dPdQ≤

∑di=1 P

(|Xn (ti )| > log(n+1)

2

)P(‖Xn‖∞ >

log(n+1)2

) .

By general acceptance / rejection theory we have:

Probability of accepting =P (‖Xn‖∞ > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

Blanchet (Columbia) 26 / 41

Page 60: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Acceptance / Rejection Execution

Likelihood of Xn under Q

dQdP

(Xn) =∑dj=1 I (|Xn (tj )| > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

We conclude

dP(Xn | ‖Xn‖∞ >

log(n+1)2

)dQ

=I(‖Xn‖∞ >

log(n+1)2

)P(‖Xn‖∞ >

log(n+1)2

) dPdQ≤

∑di=1 P

(|Xn (ti )| > log(n+1)

2

)P(‖Xn‖∞ >

log(n+1)2

) .

By general acceptance / rejection theory we have:

Probability of accepting =P (‖Xn‖∞ > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

Blanchet (Columbia) 26 / 41

Page 61: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Summary

We sampled B = Bernoulli (h (n)) = I (τ1 < ∞) with h (n):

h (n) =∞

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)×P

(‖Xk‖∞ ≤

12log (1+ k) ∀ n0 ≤ k < n

P(‖Xn‖∞ >

12 log (n+ 1)

)∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) < 1.

Also sampled Xn given ‖Xn‖∞ >12 log (n+ 1) by acceptance

rejection:

Probability of accepting =P (‖Xn‖∞ > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

Blanchet (Columbia) 27 / 41

Page 62: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Summary

We sampled B = Bernoulli (h (n)) = I (τ1 < ∞) with h (n):

h (n) =∞

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)×P

(‖Xk‖∞ ≤

12log (1+ k) ∀ n0 ≤ k < n

P(‖Xn‖∞ >

12 log (n+ 1)

)∑di=1 P

(|Xn (ti )| > 1

2 log (n+ 1)) < 1.

Also sampled Xn given ‖Xn‖∞ >12 log (n+ 1) by acceptance

rejection:

Probability of accepting =P (‖Xn‖∞ > log (n+ 1) /2)

∑di=1 P (|Xn (ti )| > log (n+ 1) /2)

.

Blanchet (Columbia) 27 / 41

Page 63: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Exact Sampling Property

Also we actually obtain:

LawQ (X1, ...,XK ,K |B = 1) = LawP (X1, ...,Xτ1 , τ1|τ1 < ∞) .

Let’s check this identity:

Q(X1 ∈ dx1, ...,Xn ∈ dx ,K = n,B = 1)

= Q (K = n)∞

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)×P (Xn0 ∈ dx , ...,Xn−1 ∈ dxn−1 | τ1 > n− 1)

×P(Xn ∈ dx | ‖Xn‖∞ >

log (n+ 1)2

)= P (τ1 = n)P (X1 ∈ dx1, ...,Xn ∈ dx | τ1 = n)

= P (X1 ∈ dx1, ...,Xn ∈ dx , τ1 = n, τ1 < ∞) .

Blanchet (Columbia) 28 / 41

Page 64: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Exact Sampling Property

Also we actually obtain:

LawQ (X1, ...,XK ,K |B = 1) = LawP (X1, ...,Xτ1 , τ1|τ1 < ∞) .

Let’s check this identity:

Q(X1 ∈ dx1, ...,Xn ∈ dx ,K = n,B = 1)

= Q (K = n)∞

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)×P (Xn0 ∈ dx , ...,Xn−1 ∈ dxn−1 | τ1 > n− 1)

×P(Xn ∈ dx | ‖Xn‖∞ >

log (n+ 1)2

)= P (τ1 = n)P (X1 ∈ dx1, ...,Xn ∈ dx | τ1 = n)

= P (X1 ∈ dx1, ...,Xn ∈ dx , τ1 = n, τ1 < ∞) .

Blanchet (Columbia) 28 / 41

Page 65: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

How to Continue? What Drives the Complexity?

Subsequently sample τ2, ..., τL−1 = NX until τL = ∞.

Note that Xn can be easily simulated even if n > NX .

{Xn : n ≥ NX + 1} are still independent but conditionedon ‖Xn‖∞ ≤ log (n+ 1) /2) for n ≥ NX + 1

Total complexity turns out to be driven by n0 such that

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)< 1

=⇒ n0 = exp(c√log (d)

)= O (d ε) for any ε > 0.

Blanchet (Columbia) 29 / 41

Page 66: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

How to Continue? What Drives the Complexity?

Subsequently sample τ2, ..., τL−1 = NX until τL = ∞.

Note that Xn can be easily simulated even if n > NX .

{Xn : n ≥ NX + 1} are still independent but conditionedon ‖Xn‖∞ ≤ log (n+ 1) /2) for n ≥ NX + 1

Total complexity turns out to be driven by n0 such that

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)< 1

=⇒ n0 = exp(c√log (d)

)= O (d ε) for any ε > 0.

Blanchet (Columbia) 29 / 41

Page 67: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

How to Continue? What Drives the Complexity?

Subsequently sample τ2, ..., τL−1 = NX until τL = ∞.

Note that Xn can be easily simulated even if n > NX .

{Xn : n ≥ NX + 1} are still independent but conditionedon ‖Xn‖∞ ≤ log (n+ 1) /2) for n ≥ NX + 1

Total complexity turns out to be driven by n0 such that

∑k=n0

d

∑i=1P(|Xk (ti )| >

12log (k + 1)

)< 1

=⇒ n0 = exp(c√log (d)

)= O (d ε) for any ε > 0.

Blanchet (Columbia) 29 / 41

Page 68: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Milestone / Record Breaking for Random Walks

A similar technique used to sample the last time N such that

An <12n.

In this case it suffi ces to sample An jointly with

maxm≥n{Am −m/2}

rare event simulation techniques can be applied (see B. &

Wallwater (2014)).

Blanchet (Columbia) 30 / 41

Page 69: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Milestone / Record Breaking for Random Walks

A similar technique used to sample the last time N such that

An <12n.

In this case it suffi ces to sample An jointly with

maxm≥n{Am −m/2}

rare event simulation techniques can be applied (see B. &

Wallwater (2014)).

Blanchet (Columbia) 30 / 41

Page 70: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Density Estimation

Want to design a finite variance estimator W (y1, ..., yd ) so that

E (W (y1, ..., yd )) = fM (y1, ..., yd ).

Blanchet (Columbia) 31 / 41

Page 71: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

An Illustration of the Density Pictures

Blanchet (Columbia) 32 / 41

Page 72: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Some Pictures: 3-d Density

Blanchet (Columbia) 33 / 41

Page 73: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Some Malliavin Calculus

Follow an idea from Malliavin & Thalmaier.

Consider Poisson’s equation

∆u = f

formally if G (·) is the Poisson kernel we have

u (x) =∫f (y)G (x − y) dy .

So, formally

∆u (x) =∫f (y)∆G (x − y) dy = f (x)

∆G (x − y) dy = δ (x − y) dyfM (x1, ..., xd ) = E (∆G (x −M)) .

Blanchet (Columbia) 34 / 41

Page 74: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Some Malliavin Calculus

Follow an idea from Malliavin & Thalmaier.

Consider Poisson’s equation

∆u = f

formally if G (·) is the Poisson kernel we have

u (x) =∫f (y)G (x − y) dy .

So, formally

∆u (x) =∫f (y)∆G (x − y) dy = f (x)

∆G (x − y) dy = δ (x − y) dyfM (x1, ..., xd ) = E (∆G (x −M)) .

Blanchet (Columbia) 34 / 41

Page 75: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Some Malliavin Calculus

Follow an idea from Malliavin & Thalmaier.

Consider Poisson’s equation

∆u = f

formally if G (·) is the Poisson kernel we have

u (x) =∫f (y)G (x − y) dy .

So, formally

∆u (x) =∫f (y)∆G (x − y) dy = f (x)

∆G (x − y) dy = δ (x − y) dyfM (x1, ..., xd ) = E (∆G (x −M)) .

Blanchet (Columbia) 34 / 41

Page 76: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Applying Malliavin Thalmaier Formula

For d ≥ 3 we have that

∆G (x − y) =d

∑i=1

∂2G (x)∂x2i

(x − y) ,

Gi (x) =∂G (x)

∂xi= κd

xi‖x‖d2

, G (x) = κ′d1

‖x‖d−22

Higher order derivatives of G implies higher variability...

Two ways to fix this: Integration by parts & RandomizedMultilevel Monte Carlo.

Blanchet (Columbia) 35 / 41

Page 77: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Applying Malliavin Thalmaier Formula

For d ≥ 3 we have that

∆G (x − y) =d

∑i=1

∂2G (x)∂x2i

(x − y) ,

Gi (x) =∂G (x)

∂xi= κd

xi‖x‖d2

, G (x) = κ′d1

‖x‖d−22

Higher order derivatives of G implies higher variability...

Two ways to fix this: Integration by parts & RandomizedMultilevel Monte Carlo.

Blanchet (Columbia) 35 / 41

Page 78: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Applying Malliavin Thalmaier Formula

For d ≥ 3 we have that

∆G (x − y) =d

∑i=1

∂2G (x)∂x2i

(x − y) ,

Gi (x) =∂G (x)

∂xi= κd

xi‖x‖d2

, G (x) = κ′d1

‖x‖d−22

Higher order derivatives of G implies higher variability...

Two ways to fix this: Integration by parts & RandomizedMultilevel Monte Carlo.

Blanchet (Columbia) 35 / 41

Page 79: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Improving Variance: Integration by Parts for Finite Maxima

We claim

∂Gi (x −Mn)

∂xi= −∂Gi (x −Mn)

∂Mn (ti )= −

n

∑k=1

∂Gi (x −Mn)

∂Xk (ti ).

Let’s check second equality:

Mn (ti ) = max1≤k≤n

{Xk (ti )− ak}.n

∑k=1

∂Mn (ti )∂Xk (ti )

=n

∑k=1

I (Mn (ti ) = Xk (ti )− ak ) = 1.

∂Gi (x −Mn)

∂Xk (ti )=

∂Gi (x −Mn)

∂Mn (ti )∂Mn (ti )∂Xk (ti )

n

∑k=1

∂Gi (x −Mn)

∂Xk (ti )=

∂Gi (x −Mn)

∂Mn (ti ).

Blanchet (Columbia) 36 / 41

Page 80: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Improving Variance: Integration by Parts for Finite Maxima

We claim

∂Gi (x −Mn)

∂xi= −∂Gi (x −Mn)

∂Mn (ti )= −

n

∑k=1

∂Gi (x −Mn)

∂Xk (ti ).

Let’s check second equality:

Mn (ti ) = max1≤k≤n

{Xk (ti )− ak}.n

∑k=1

∂Mn (ti )∂Xk (ti )

=n

∑k=1

I (Mn (ti ) = Xk (ti )− ak ) = 1.

∂Gi (x −Mn)

∂Xk (ti )=

∂Gi (x −Mn)

∂Mn (ti )∂Mn (ti )∂Xk (ti )

n

∑k=1

∂Gi (x −Mn)

∂Xk (ti )=

∂Gi (x −Mn)

∂Mn (ti ).

Blanchet (Columbia) 36 / 41

Page 81: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Improving Variance: Integration by Parts for Finite Maxima

Integration by parts yields (with Σ = cov (Xk ))

E(

∂Gi (x −Mn)

∂Xk (ti )

)= −E

(Gi (x −Mn) · eTi Σ−1Xk

)

Therefore

E(

∂Gi (x −Mn)

∂xi

)= −

n

∑k=1

E(

∂Gi (x −Mn)

∂Xk (ti )

)

= E

(Gi (x −Mn) · eTi Σ−1

n

∑k=1

Xk

)

fMn (x1, ..., xd ) = E

(n

∑k=1

d

∑i=1Gi (x −Mn) eTi Σ−1Xk

).

Blanchet (Columbia) 37 / 41

Page 82: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Improving Variance: Integration by Parts for Finite Maxima

Integration by parts yields (with Σ = cov (Xk ))

E(

∂Gi (x −Mn)

∂Xk (ti )

)= −E

(Gi (x −Mn) · eTi Σ−1Xk

)Therefore

E(

∂Gi (x −Mn)

∂xi

)= −

n

∑k=1

E(

∂Gi (x −Mn)

∂Xk (ti )

)

= E

(Gi (x −Mn) · eTi Σ−1

n

∑k=1

Xk

)

fMn (x1, ..., xd ) = E

(n

∑k=1

d

∑i=1Gi (x −Mn) eTi Σ−1Xk

).

Blanchet (Columbia) 37 / 41

Page 83: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Improving Variance: Infinite Horizon Maxima

Let FN be the information generated by the exact sampling procedureso that

MN = M,

then we have that for m ≥ 1

E (XN+m |FN ) = 0,

because given n > N, we have that Xn (ti ) has a symmetricdistribution.

Thus

limn→∞

fMn (x1, ..., xd ) = fMn (x1, ..., xd )

= E

(N

∑k=1

d

∑i=1Gi (x −M) eTi Σ−1Xk

).

Blanchet (Columbia) 38 / 41

Page 84: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Improving Variance: Infinite Horizon Maxima

Let FN be the information generated by the exact sampling procedureso that

MN = M,

then we have that for m ≥ 1

E (XN+m |FN ) = 0,

because given n > N, we have that Xn (ti ) has a symmetricdistribution.

Thus

limn→∞

fMn (x1, ..., xd ) = fMn (x1, ..., xd )

= E

(N

∑k=1

d

∑i=1Gi (x −M) eTi Σ−1Xk

).

Blanchet (Columbia) 38 / 41

Page 85: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Continue Integrating by Parts

The estimator

W (x −M) =N

∑k=1

d

∑i=1Gi (x −M) eTi Σ−1Xk .

One can continue obtaining

quadratic weight ⇒ finite variance d ≤ 3Cubic weight ⇒ finite variance d ≤ 5

...

Blanchet (Columbia) 39 / 41

Page 86: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Continue Integrating by Parts

The estimator

W (x −M) =N

∑k=1

d

∑i=1Gi (x −M) eTi Σ−1Xk .

One can continue obtaining

quadratic weight ⇒ finite variance d ≤ 3Cubic weight ⇒ finite variance d ≤ 5

...

Blanchet (Columbia) 39 / 41

Page 87: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Applying Multilevel Monte Carlo

Out starting point is estimator

W (x) =N

∑k=1

d

∑i=1Gi (x −M) eTi Σ−1Xk .

Randomized Multilevel Monte Carlo, introducing the differences

∆n = G n+1i (x −M)− G ni (x −M) ;

G ni (x −M) = κdxi −M (ti )

‖x −M‖d2 + ‖x −M‖2 / log(n+ 1).

Blanchet (Columbia) 40 / 41

Page 88: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Applying Multilevel Monte Carlo

Out starting point is estimator

W (x) =N

∑k=1

d

∑i=1Gi (x −M) eTi Σ−1Xk .

Randomized Multilevel Monte Carlo, introducing the differences

∆n = G n+1i (x −M)− G ni (x −M) ;

G ni (x −M) = κdxi −M (ti )

‖x −M‖d2 + ‖x −M‖2 / log(n+ 1).

Blanchet (Columbia) 40 / 41

Page 89: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Conclusions

Max-stable fields are natural models for extremes, but presentcomputational challenges.

First asymptotically optimal exact simulation algorithms formax-stable fields.

Ideas based on record-breaking events & rare-event simulation.

Malliavin calculus ideas for first effi cient density estimators formax-stable fields.

Blanchet (Columbia) 41 / 41

Page 90: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Conclusions

Max-stable fields are natural models for extremes, but presentcomputational challenges.

First asymptotically optimal exact simulation algorithms formax-stable fields.

Ideas based on record-breaking events & rare-event simulation.

Malliavin calculus ideas for first effi cient density estimators formax-stable fields.

Blanchet (Columbia) 41 / 41

Page 91: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Conclusions

Max-stable fields are natural models for extremes, but presentcomputational challenges.

First asymptotically optimal exact simulation algorithms formax-stable fields.

Ideas based on record-breaking events & rare-event simulation.

Malliavin calculus ideas for first effi cient density estimators formax-stable fields.

Blanchet (Columbia) 41 / 41

Page 92: Monte Carlo Methods for Spatial Extremesmcqmc2016.stanford.edu/Blanchet-Jose.pdf · Monte Carlo Methods for Spatial Extremes Jose Blanchet (joint with Liu, Dieker, Mikosch). ... Case

Conclusions

Max-stable fields are natural models for extremes, but presentcomputational challenges.

First asymptotically optimal exact simulation algorithms formax-stable fields.

Ideas based on record-breaking events & rare-event simulation.

Malliavin calculus ideas for first effi cient density estimators formax-stable fields.

Blanchet (Columbia) 41 / 41