34
__________________________________________________________ ___ EE 666 April 14, 2005 Molecular quantum-dot cellular automata Yuhui Lu Department of Electrical Engineering University of Notre Dame

Molecular quantum-dot cellular automata

  • Upload
    giles

  • View
    55

  • Download
    0

Embed Size (px)

DESCRIPTION

Molecular quantum-dot cellular automata. Yuhui Lu Department of Electrical Engineering University of Notre Dame. Outline of presentation. QCA overview Metal-dot QCA devices Molecular QCA Clocking molecular QCA Summary. Cell-cell response function. A cell with 4 dots. 2 extra electrons. - PowerPoint PPT Presentation

Citation preview

Page 1: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Molecular quantum-dot cellular automata

Yuhui LuDepartment of Electrical Engineering

University of Notre Dame

Page 2: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Outline of presentation

• QCA overview• Metal-dot QCA devices• Molecular QCA• Clocking molecular QCA• Summary

Page 3: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Quantum-dot Cellular AutomataRepresent binary information by

charge configuration

A cell with 4 dots

Tunneling between dots

Polarization P = +1Bit value “1”

2 extra electrons

Polarization P = -1Bit value “0”

Bistable, nonlinear cell-cell responseRestoration of signal levels

cell1 cell2

cell1 cell2

Cell-cell response function

Neighboring cells tend to align.Coulombic coupling

Page 4: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

0 01 1

01 10

Binary wire

Inverter

A

B

C

Out

Majority gate

MABC

Programmable 2-input AND or OR gate.

QCA devices

Page 5: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Metal-dot QCA cells and devices

“dot” = metal island

electrometers

70 mK

Al/AlOx on SiO2

Metal-dot QCA implementation

Greg Snider, Alexei Orlov, and Gary Bernstein

Page 6: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Metal-dot QCA cells and devices

• Demonstrated 4-dot cell

A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, and G.L. Snider, Science, 277, pp. 928-930, (1997).

1

2

3

4

Page 7: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Metal-dot QCA cells and devices

• Majority Gate

MABC

Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, Science 284, pp. 289-291 (1999).

Page 8: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

From metal-dot to molecular QCA

Key strategy: use nonbonding orbitals ( or d) to act as dots.

“dot” = redox centerMixed valence compounds

Why molecule?

1. Natural, uniform quantum dots. 2. Small. High density. 3. Room temperature operation.

Page 9: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Binary information encoded in the molecular charge configuration

“0” “1” “0” “1”

“0” “0”“1” “1”

Mobile charges are created by chemical oxidation or reduction.

Page 10: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Experiments on molecular double-dot

Fehlner, Snider, et al. (Notre Dame QCA group)Journal of American Chemical Society,125:15250, 2003

Ru Ru

Fe Fe

“0” “1”

Fe group and Ru group act as two unequal quantum dots.

trans-Ru-(dppm)2(C≡CFc)(NCCH2CH2NH2) dication

Page 11: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Surface attachment and orientation

N

Si Si3.8

2.4 106o

PHENYL GROUPS“TOUCHING” SILICON

Molecule is covalent bonded to Si and oriented vertically by “struts.”

Si(111)

molecule Si-N bonds

“struts”

Page 12: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

FeRu Fe Ru Fe

Ru

Si

HgFe

Ru

Si

HgFe

Ru

Si

HgFe

Ru

ac C

apac

itanc

e

voltage

excited stateswitching

Ene

rgy

ground state

Applied field equalizes the energy of the two dots

When equalized, capacitance peaks.

appliedpotential

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

C(oxidized) C(reduced) C

VHg

(V)C

(nF)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

C

(nF)

Measurement of molecular bistabilitylayer of molecules

Ru

Fe

Ru

Fe

2 counterion charge configurations on surface

Page 13: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Charge configurations

HOMO orbitals from quantum chemistry calculation show the localization of mobile electron.

“1”“0”

Bistable charge configuration.

Ru

Fe

Ru

Fe

Page 14: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Switching by an applied field

FeRu

FeRu

Fe Ru

Mobile electron driven by electric field, the effect of counterions shift the response function.

Click-clack correspond to:

Page 15: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

4-dot molecule

Each ferrocene acts as a quantum dot, the Co group connects 4 dots.

Fehlner et al(Notre Dame chemistry group)Journal of American Chemical Society125:7522, 2003

6 Å

Advantage:neighboring molecules have the samecharge configurations. No need to keeptrack on the numbers in the array.

Page 16: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Bistable configurations

“0” “1”

Guassian-98 UHF/STO-3G/LANL2DZ

HOMO orbital show the localization of mobile electron.

Page 17: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Can one molecule switch the other ?

Page 18: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Switching molecule by a neighboring molecule

Coulomb interaction is sufficient to couple molecular states.

driver response

driver response

Page 19: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Intermolecular Interaction

Ekink=0.25 eV

Kink energy is greater than kBT, thus room temperature operation is possible.

“1” “1”

Ground State

“1” “0”

Excited State

Ene

rgy

Page 20: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Kroemer’s lemma• If, in discussing a semiconductor problem,

you cannot draw an Energy-Band-Diagram, this shows that you don't know what you are talking about.

• If you can draw one, but don't, then your audience won't know what you are talking about.

• There is no energy band for single molecule. Single molecule only has discrete energy levels.

Page 21: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Origin of energy band

Bonding orbital

Anti-bonding orbital

…. ….

Atomicorbital The interaction between two atomic orbitals

form a bonding orbital and an anti-bondingorbital.

band

band

Band originated from theinteraction of large numberof atomic orbitals in the periodic potential.

In single molecules, energy levels are discrete.

Page 22: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

• Ground state• First excited state

The ground and first excited energy levels

“1” “0”

1,4-diallyl butaneradical cation

Page 23: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Discrete energy levels under the switching field

• Ground state• First excited state

+

Page 24: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Discrete energy levels under the switching field

• Ground state• First excited state

+

Page 25: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Discrete energy levels under the switching field

• Ground state• First excited state

+

Page 26: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Clocked QCA

input

How to control the information flow?

Clocking:

1. Control of information flow around the circuit.2. Restore the dissipative energy. Cells fully polarized to be “0” or “1”.

Page 27: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Clocking field

“1”

“0”

null

E

E

E

or

Use local electric field to switch molecule between active and null states.

active

“null”

Page 28: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Adiabatic switching

0 1

0 1

null

ener

gy

x

Page 29: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Clocked molecular QCA

Page 30: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Model clock QCA

Clocking field

Switching field

“null” “1”“0”

1,5,9 decatrieneUsing ethene asquantum dot.

Page 31: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Molecular energy

“0” “1”“null”

Gaussian 03CASSCF(5,6)6-31G*

“0” “1”

“null”

The molecule is locked in “null” state, thus carries no information.

• ground state• first excited state• second excited state

Page 32: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Molecular energy

“0” “1”

“null”

A clock voltage “turns on” the devices.

“0” “null” “1”

• ground state• first excited state• second excited state

Page 33: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Molecular energy

“0” “1”

“null”

“0” “1”

“null”

Large enough clock voltage “pins” the mobile charge.

• ground state• first excited state• second excited state

Page 34: Molecular quantum-dot cellular automata

_____________________________________________________________ EE 666 April 14, 2005

Summary

• The binary information is encoded in the molecular charge configuration.

• Coulomb interaction couples the information transport.• Room temperature operation.• Clocking controls the information flow.