15
Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109 AENSI Journals Advances in Environmental Biology ISSN-1995-0756 EISSN-1998-1066 Journal home page: http://www.aensiweb.com/AEB/ Copyright © 2017 by authors and Copyright, American-Eurasian Network for Scientific Information (AENSI Publication). Molecular characterization of genetic variation in algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 Belattar. R, 2 Chaib. G, 2 Boudour.L, 2 Bouchteb K. 1 Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, University Ferhat Abbas Setif, Algeria .. 2 Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, Brothers University Mentouri Constantine 1 Algeria. Address For Correspondence: Belattar. R, Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, University Ferhat Abbas Setif, Algeria. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Received 8 January 2017; Accepted 28 April 2017; Available online 24 May 2017 ABSTRACT Durum wheat (Triticum turgidum L. var. durum) is an important crop with high protein content and superior cooking quality which used for Pasta production. To estimate genetic the relationships of 50 Algerian durum wheat accessions, RAPD and ISSR analysis was performed with 10 primers for both RAPD and ISSR. The most discriminating primers were ISSR M9, ISSR F2, ISSRM1, RAPDL2, RAPD B10, RAPD b5, RAPD B13 CRAPD1, CRAPD2, and RAPDb3 which showed the highest values of the polymorphism percentage. in RAPD analyses, 35 out of 38 bands (92%) were polymorphic. The different primers produce a number of amplifications ranging from 2 to 7, the size of the amplified fragments ranging from 100 to 1600 bp. in ISSR analyses, a total of 32 alleles were detected, among which 22 alleles (68,7%) were polymorphic. Cluster analyses indicated that both RAPD and ISSR markers could distinguish all 50 wheat accessions. although the analysis of RAPD and ISSR markers could successfully be used to investigate the genetic diversity of the wheat accessions. The classification of the two markers RAPD and ISSR of the studied 50 genotypes made it possible to distinguish many groups. These results indicate a high level of polymorphism in an accession of durum wheat . We found that the genotypes were grouped according to their botanical varieties and, in some cases, their namesake. In addition, ISSR analyses are more specifi than RAPD analyses,due to the longer SSR-based primers with higher primer annealing temperature, which enable higher-stringency and greater band reproducibility amplifiations. The present study has provided the genetic data that diagnose the level of polymorphisms between 50 genotypes of durum wheats. KEYWORDS: Durum wheat accessions, genetic diversity, ISSR, RAPD INTRODUCTION Modern wheat cultivars usually refer to two species: hexaploid bread wheat, Triticum aestivumand tetraploid, hard or durum-type wheat, T. durum [26]. Durum wheat is traditionally grown around the Mediterranean Sea and it is the most commoncultivated form of allotetraploid wheat. Currently,more than half of the durum wheat is still grown in the Mediterranean basin, mainly in Italy, Spain, France, Greece, West Asian, and North African countries [27]. In the last 50 years, wheat persisted as one of the most used and stable food grain cereals with 1% yearly gain due to the implementation of advanced agricultural techniques and involvement of productive cultivars. However, to cover up the population needs, it is necessary to raise the annual productivity gains to 2.5% up to 2025[12].

Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

  • Upload
    vananh

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

AENSI Journals

Advances in Environmental Biology

ISSN-1995-0756 EISSN-1998-1066

Journal home page: http://www.aensiweb.com/AEB/

Copyright © 2017 by authors and Copyright, American-Eurasian Network for Scientific Information (AENSI Publication).

Molecular characterization of genetic variation in algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers

1Belattar. R, 2Chaib. G, 2Boudour.L, 2Bouchteb K.

1Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, University Ferhat Abbas Setif, Algeria..

2Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, Brothers University Mentouri Constantine 1 Algeria.

Address For Correspondence: Belattar. R, Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, University Ferhat Abbas Setif, Algeria. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Received 8 January 2017; Accepted 28 April 2017; Available online 24 May 2017

ABSTRACT Durum wheat (Triticum turgidum L. var. durum) is an important crop with high protein content and superior cooking quality which used for

Pasta production. To estimate genetic the relationships of 50 Algerian durum wheat accessions, RAPD and ISSR analysis was performed

with 10 primers for both RAPD and ISSR. The most discriminating primers were ISSR M9, ISSR F2, ISSRM1, RAPDL2, RAPD B10, RAPD b5, RAPD B13 CRAPD1, CRAPD2, and RAPDb3 which showed the highest values of the polymorphism percentage. in RAPD

analyses, 35 out of 38 bands (92%) were polymorphic. The different primers produce a number of amplifications ranging from 2 to 7, the

size of the amplified fragments ranging from 100 to 1600 bp. in ISSR analyses, a total of 32 alleles were detected, among which 22 alleles (68,7%) were polymorphic. Cluster analyses indicated that both RAPD and ISSR markers could distinguish all 50 wheat accessions.

although the analysis of RAPD and ISSR markers could successfully be used to investigate the genetic diversity of the wheat accessions.

The classification of the two markers RAPD and ISSR of the studied 50 genotypes made it possible to distinguish many groups. These results indicate a high level of polymorphism in an accession of durum wheat . We found that the genotypes were grouped according to their

botanical varieties and, in some cases, their namesake. In addition, ISSR analyses are more specifi than RAPD analyses,due to the longer

SSR-based primers with higher primer annealing temperature, which enable higher-stringency and greater band reproducibility amplifiations. The present study has provided the genetic data that diagnose the level of polymorphisms between 50 genotypes of durum

wheats.

KEYWORDS: Durum wheat accessions, genetic diversity, ISSR, RAPD

INTRODUCTION

Modern wheat cultivars usually refer to two species: hexaploid bread wheat, Triticum aestivumand

tetraploid, hard or durum-type wheat, T. durum [26]. Durum wheat is traditionally grown around the

Mediterranean Sea and it is the most commoncultivated form of allotetraploid wheat. Currently,more than half

of the durum wheat is still grown in the Mediterranean basin, mainly in Italy, Spain, France, Greece, West

Asian, and North African countries [27].

In the last 50 years, wheat persisted as one of the most used and stable food grain cereals with 1% yearly

gain due to the implementation of advanced agricultural techniques and involvement of productive cultivars.

However, to cover up the population needs, it is necessary to raise the annual productivity gains to 2.5% up to

2025[12].

Page 2: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

96 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

The availability of the information on the genetic variation within samples and the differentiation between

samples plays a significant role in the formulation of appropriate management strategies for conservation of

genetic resources .

Molecular markers are powerful tools in the study of genetic diversity, genotype description and genetic

structure of wheat populations [1].

Random Amplified Polymorphic DNA (RAPD) molecular marker systems used in this study are

significantly quicker and simpler in comparison to few other molecular strategies, making the technique famous

for evaluating genetic polymorphism in wheat species [11,25]. RAPD has several advantages, such as low cost,

and the use of small amount of plant material. RAPD’s were proved to be useful as genetic markers in the case

of self-pollinating species with a relatively low level of intraspecific polymorphism, such as hexaploidy wheat.

Due to the distinguishing features like abundance, good reproducibility, high polymorphism, vastly informative

and quick to use, Inter Simple Sequence Repeats (ISSR) markers can be supportive to RAPD markers. ISSR are

a new kind of molecular markers involving PCR amplification of DNA by a single primer 16-18 bp. long

composed of a repeated sequence anchored at the 3' or 5' end by 2-4 arbitrary nucleotides. [21],revealed that the

ISSR markers provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic

diversity of wheat genotypes. Similar to RAPD primers, no aforementioned sequence information is necessitated

for the genetic studies. High annealing temperature contributes significantly towards the elevated reproducibility

among ISSR markers as compared to RAPD markers. A number of researchers all over the world estimated

genetic diversity/genetic similarity among bread wheat varieties using ISSR markers [8,21,17].

Molecular variation evaluated in their study in combination with agronomic and morphological characters

of wheat can be useful in traditional and molecular breeding programs.

Our objectives in the present study were: to determine the genetic diversity in durum wheat genotypes

using ISSR and RAPD markers, and to assess the suitability of the ISSR and RAPD markers for detecting

molecular variation. in addition, we aim to report the usefulness of RAPD and ISSR for the assessment of

genetic diversity and relationships among wheat accessions.

MATERIALS AND METHODS

Plant materials:

The plant material is composed of Algerian durum wheat accession, containing 50 genotypes belonging to

reichenbachi and leucomelan varieties [7]. This collection comes from different regions of Algeria and stored at

the ITGC "El Khroub Constantine" (Tab.1).

Table 1: Characteristics of the varieties and number of individuals per variety [7].

variety Characteristics Number of

genotypes

Ear glume Seed Straw precocity

White, compact, glabrous

or smooth, pyramidal, triangular flattened

White,

elongated

Shaded bright,

big, elongated

and hunchbacked

Hollow or

half-hollow

to ¾ hollow.

Half early

25

White, glabrous, compact,

long spindle-shaped

pyramidal.

White, weakly

diverging black

beards.

Dark shaded

(red), medium-

sized and

hunchbacked.

Hollow or

half-hollow

to ¾

hollow..

early

25

Methodology adopted for DNA marker analysis:

DNA Isolation:

Seed samples grown in Petri dishes and then transferred to hydroponic system to get the fresh seedling leaf

tissue for DNA extraction. The DNA Isolation was carried out following CTAB method of [13], with

modifications. Approximately 0.1 to 0.2 g of fresh seedling leaf tissue was crushed in mortar and pestle using

liquid nitrogen to obtain fine powder. The powder was added to 750 µl CTAB and 7.5 µl of β-mercaptoethanol

leu

com

ela

n

reic

hen

ba

ch

i

Page 3: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

97 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

present in Eppendorf tube. Later, 10 µl RNase A was added to the mixture and kept on a hot block at 65⁰C for

incubation for 30 minutes. Following incubation, 750 µl of Phenol: chloroform: isoamyl alcohol reagent

(25:24:1) was supplemented to the mixture containing tissue sample further centrifuged at 7000 rpm for 5

minutes at 25⁰C and supernatant was collected in a fresh vial. To the remaining mixture, 300µl CTAB with β-

mercaptoethanol was included and again centrifuged at 15000 rpm for 5 minutes at 25⁰C. The supernatant

obtained was mixed with the previous one. On adding and gently shaking, 0.6 volume of chilled isopropanol to

the total collected supernatant, DNA strands were observed. Again, the mixture was revolved at 15000 rpm for 5

minutes at 25⁰C so that the pellet was collected at the bottom and the remaining isopropanol portion was

removed. The DNA pellet was washed using 1000 µl of 70% ethanol and spanned at 15000 rpm at 25⁰C for 5

minutes. The DNA Pellet was dried and 100µl DNase RNase free water was added to dissolve and later stored

in the deep freezer at -20⁰C.

DNA Quantification:

The quantity and clarity of the extracted DNA was measured with the help of Nanodrop spectrophotometer

by measuring absorbance at 260, 280 and 230 nm. Purity was checked at 260 / 280 and 260 / 230 nm and pure

DNA solutions were diluted to make up 50 ng/µl concentration for PCR reactions.

DNA Quality Analysis:

The 50 ng/µl DNA was loaded on 1% (w/v) agarose gel in 1x TBE buffer having 10 µg/ml ethidium

bromides. Gene Ruler DNA ladder 100 bp was employed for estimating the rough DNA size range.

Optimization of RAPD and ISSR PCR volumes and conditions:

The optimization of RAPD and ISSR reactions were executed by following the set protocols of [31] and

[32] respectively. Other protocols including [5,6], (for RAPD) and [23], (for ISSR) were also tried for

optimizing the concentrations of various chemical components of PCR, like primers, magnesium chloride,

dNTPs, Taq DNA polymerase and DNA template. The annealing temperatures and number of cycles for each

individual primer were optimized. For PCR reactions, three types of Taq buffers were tried, one with

ammonium sulfate, the second one with potassium chloride and in the third one both ammonium sulfate and

potassium chloride were included.

DNA Amplification using RAPD primers:

RAPD analysis is performed by the use of 10 random primers (Table 1). For each primer, a 15 µl

amplification reaction mixture was prepared containing 1.5 µl of 10 X Taq buffer with ammonium sulfate, 2.5

µl of 25 mM MgCl2, 3 µl of 1 mM dNTP, 3 units Taq DNA polymerase (Thermoscientific), 1.5 µl of 5 µM

RAPD primer and 50 ng of template DNA. Eppendorf Master Cycler was utilized to carry out PCR reactions

with initial denaturation at 94⁰C for 3 minutes, trailed by repeated cycles of denaturation at 94⁰C for 45

seconds, annealing as per the primer’s melting temperature for 1 min and primer extension at 72⁰C for 1 min.

On the completion of repeated number of cycles, final extension was performed at 72⁰C for 10 min.

DNA Amplification using ISSR primers:

For detecting the polymorphism, we used ten (10) ISSR primers (Table 2). For every reaction, 25µl reaction

mixture was prepared with 2.5µl of 10X Taq Buffer containing ammonium sulfate (except ISSR F3 where KCl

was used), 3µl of 25mM MgCl2, 0.4µl of 25mM dNTP, 0.5µl of 10µM primer, 1.5 units of Taq Polymerase and

100ng of template DNA. The 2-step ISSR PCR reactions were performed in Eppendorf Master Cycler. The

physical reaction conditions and the number of initial and final PCR cycles were optimized for each individual

ISSR primer.

Identification of reproducible amplified bands:

All the RAPD and ISSR reactions were repeated thrice to confirm the total reproducible bands count. Only

the reliable bands in all the repeated amplifications were scored for the final analysis.

Gel Electrophoresis:

After PCR reactions, 3 µl and 5 µl of 6X loading dye has been added to 15 µl RAPD and 25 µl ISSR

reaction products respectively and electrophoresed on 1.5% agarose gel with 10µg/ml ethidium bromide at 80 V

for 5-6 hours in Gel Documentation System. Thermoscientific Gene ruler 100 bp Plus DNA ladder was

employed for estimating the size and weight of bands scored in the gel.

Data Scoring and Genetic Diversity Analysis:

Ethidium bromide staining of agarose gels generally showed several bands. The size of the most intensively

amplified band for each microsatellite marker was determined based on its electrophoretic mobility relative to

Page 4: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

98 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

the molecular weight markers. Amplified products from ISSR/RAPD analysis were scored qualitatively for

presence and absence of each marker allele-genotype combination (0 for absence and 1 for presence). Each

ISSR band amplified by a given primer was treated as a unit character. Data was entered into a binary matrix as

discrete variables, 1 for presence and 0 for absence of the character.

The most informative primers were selected based on the extent of polymorphism. The polymorphic

information content (PIC) value of a marker was calculated according to [4]. Average allele numbers, PIC

values, and genetic similarities were calculated on the basis of different wheat genotypes, chromosomes and

microsatellite classes. Pair-wise comparisons of the genotypes based on the proportion of unique and shared

amplification products (alleles) were used to measure the genetic similarity by Dice coefficients using PAST

program [15]. Genetic similarities (F) between all genotypes were calculated according to [22]. A dendrogram

was constructed using pair-group method to get genetic relationships among genotypes.

RESULTS AND DISCUSSIONS

RAPD -ISSR anlyses for fivty (50) genotyps:

The quality of the samples of purified diluted genomic DNA is checked by electrophoresis on 1% agarose

gels [18] (fig. 1).

Fig. 1: The ADN of the 50 genotyps electrophoresis ,L; leucomelan, R;rechenbachi

1. RAPD analyses:

The RAPD markers are dispersed in the non-coding regions of the genome and are more likely to mutate in

comparison with the coding genes. Also, they have become indicators of genetic variation in phylogenetic

studies. The difference in density of the strips reflects the number of copies for each amplified sequence. The

number of fragments differs according to the primers used and which have responded positively in numbers of

bands / primer and have proved polymorphic (Fig. 2). Each band corresponds to the amplification of the same

amplified DNA sequence.

Fig. 2: 50 genotypes RAPD electrophoretic Diagram (tow varieties rechenbachi et leucomelan) of durum wheat

generated by the ten (10) RAPD primers: RAPDL6 (1), RAPDL4 (2), RAPDL2 (3), RAPDB10 (4),

RAPDB13 (5), CRAPD1 (6), CRAPD2 (7), RAPDB3 (8), RAPDB5 (9), RAPDB4 (10).

The ten primers represent a high level of polymorphism equivalent to 91.60%. While all primers reached a

maximum polymorphism of 100%, with the exception, the two primers RAPD L4 and RAPD L6 differed from a

polymorphism equal to 66% and 50% respectively (Tab. 2)

1 2 3 4 5

6 7 8 9 10

0

Page 5: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

99 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

Table 2: Number’s and types of amplified DNA and the polymorphism percentage issued from ten (10) RAPD primer’s in the durum

wheat 50 genotypes accession.

Primer

RAPD

Total Band Monomorphic Band Polymorphic Band % Polymorphism

unique non unique

RAPD L6 4 2 0 2 50%

RAPD L4 3 1 0 2 66%

RAPD L2 4 0 0 4 100%

RAPD B10 7 0 0 7 100%

RAPD B13 3 0 0 3 100%

CRAPD 1 3 0 0 3 100%

CRAPD 2 3 0 1 2 100%

RAPD b3 2 0 1 1 100%

RAPD b4 4 0 0 4 100%

RAPD b5 5 0 0 5 100%

The element of the amplified DNA fragments is between 0 and 6 bands. The different primers produce an

amplification number ranging from 2 to 7 bands in RAPD b3 and RAPD B10 respectively (Tab. 3). The size of

the amplified fragments ranges from 100 to 1600 bp. The primers RAPD L4, RAPD B13, CRAPD 1 and

CRAPD 2 reveal the same number of bands which is 3 bands. The three primers RAPD L6, RAPD L2 and

RAPD b4 also have 4 bands. The RAPD b5 primer reveals 5 bands.

A total of 38 fragments are obtained. The two primers CRAPD2, RAPD b3 revealed two specific markers

for the two genotypes L132 [220 (+) bp] and L15 [110 (+) bp]. Thus, it appears that of the 38 fragments, 36 are

polymorphic.

All the bands are convergent in all genotypes for the ten primers. It varies from 14 bands to 25 bands. The

genotype R68 shows the highest number of bands of 25 bands, 22 of which are polymorphic, genotypes R19,

L119, L113 and L45 show only 14 bands followed by the L88, L20, R76 and R75 genotypes (15 bands). As for

the other genotypes, they have a number of intermediate bands (Tab. 3).

Table 3: The durum wheat 50 genotypes RAPD-PCR analysis generated by ten primers

P: polymorphic band, U +: specific band, M: mono morphic band

Amor

ces

Géno

types

Amor

cePM

(Pb)

L95

L28

L61

L138

L93

L139

L17

L99

L74

L111

L136

L137

L20

L88

L14

L45

L72

L132

L113

L92

L120

L15

L26

L57

L119

R76

R68

R26

R36

R31

R4R1

5R1

9R1

8R1

4R1

1R3

2R5

9R8

R35

R34

R38

R57

R63

R41

R67

R53

R52

R75

R72

RAPD

L650

01

10

00

00

00

00

00

11

01

10

11

11

01

00

00

00

00

00

00

10

00

00

10

00

00

0P

300

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

220

11

11

10

11

11

11

00

00

00

01

11

11

10

00

00

00

00

00

01

01

01

01

11

11

11

P

100

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

Total

44

33

32

33

33

33

23

32

33

24

44

43

42

22

22

22

22

22

24

23

23

24

33

33

33

RAPD

L460

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1M

350

10

11

11

11

11

11

11

11

11

11

11

11

11

10

11

10

11

11

11

11

11

11

11

11

01

P

150

10

11

11

00

11

11

11

10

11

11

01

11

11

10

11

10

10

11

11

11

11

11

11

11

01

P

Total

31

33

33

22

33

33

33

32

33

33

23

33

33

31

33

31

32

33

33

33

33

33

33

33

13

RAPD

L268

00

00

01

00

00

00

00

00

00

00

00

00

11

00

00

01

00

00

00

00

00

00

01

10

00

0P

400

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

01

01

11

11

11

11

11

11

11

10

P

380

00

00

10

00

00

00

00

01

11

00

11

11

10

00

00

00

00

00

00

00

00

00

00

10

00

P

125

00

00

00

00

00

00

00

01

11

00

11

11

10

00

00

00

00

00

00

00

00

00

00

00

00

P

Total

11

11

31

11

11

11

11

13

33

11

33

34

41

10

00

11

01

11

11

11

11

11

22

21

10

RAPD

B10

1600

00

00

00

00

00

00

00

00

00

00

00

00

00

11

00

00

01

00

00

10

00

01

00

01

00

P

1500

10

00

00

00

00

00

00

10

01

00

00

00

00

11

00

11

01

01

00

00

10

01

00

01

00

P

800

00

00

00

00

00

00

00

00

00

00

00

00

00

00

10

00

00

00

00

00

00

01

00

00

00

P

660

01

00

01

11

00

10

00

11

11

10

10

00

00

11

01

11

01

01

11

11

10

10

10

01

11

P

455

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

01

11

11

11

11

11

11

11

11

P

359

11

00

01

11

00

11

10

11

11

10

11

00

10

11

11

11

01

01

11

11

10

11

00

01

11

P

255

00

00

00

01

00

00

00

00

00

00

00

00

00

11

00

01

01

00

00

01

00

00

00

01

00

P

Total

33

11

13

34

11

32

21

43

34

31

32

11

21

56

23

45

06

14

33

44

41

35

21

16

33

RAPD

B13

550

01

11

01

11

01

00

10

10

11

01

11

11

00

11

11

11

01

11

11

11

11

11

11

11

10

P

390

00

11

01

01

00

00

00

00

10

01

11

11

01

11

11

11

00

01

10

11

11

11

11

11

10

P

245

00

00

00

00

00

00

00

00

00

01

00

10

00

11

10

11

00

01

00

11

11

10

11

01

00

P

Total

01

22

02

12

01

00

10

10

21

03

22

32

01

33

32

33

01

13

21

33

33

32

33

23

20

C RAP

D 115

500

11

00

01

01

01

01

10

00

11

00

00

00

11

11

11

11

11

00

00

00

00

00

00

00

1P

1100

00

00

00

10

00

10

00

00

00

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

P

560

00

00

00

10

00

00

00

00

00

00

00

00

01

11

10

01

11

11

00

00

00

00

00

01

01

P

Total

01

10

00

30

10

20

11

00

01

20

00

00

02

22

21

12

22

32

00

00

00

00

00

01

02

C RAP

D 212

001

00

01

11

01

11

10

00

00

00

00

00

00

01

10

11

11

11

01

01

01

01

10

01

11

1P

645

10

01

11

11

11

11

00

00

00

00

00

00

01

11

01

11

11

10

11

10

10

11

00

11

11

P

220

00

00

00

00

00

00

00

00

01

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

U+

Total

20

01

22

21

22

22

00

00

01

00

00

00

01

22

02

22

22

20

21

20

20

22

00

22

22

RAPD

b325

40

00

00

00

00

00

00

00

10

00

00

00

00

00

00

00

00

11

00

00

00

00

11

00

01

0P

110

00

00

00

00

00

00

00

00

00

00

01

00

00

00

00

00

00

00

00

00

00

00

00

00

00

U+

Total

00

00

00

00

00

00

00

01

00

00

01

00

00

00

00

00

01

10

00

00

00

01

10

00

10

RAPD

b490

01

11

11

11

11

10

11

11

11

11

11

11

10

11

11

11

11

11

11

11

11

11

11

11

11

1P

669

10

10

11

00

11

01

11

11

11

11

11

11

01

11

11

11

11

11

01

11

11

11

11

11

01

P

280

00

00

11

00

00

00

00

00

00

00

00

00

00

00

00

00

10

10

00

00

00

00

00

00

00

P

165

10

11

11

11

11

01

11

11

11

11

11

11

01

11

11

11

11

11

11

11

11

11

11

10

01

P

Total

31

32

44

22

33

03

33

33

33

33

33

33

03

33

33

33

43

43

23

33

33

33

33

32

13

RAPD

b510

000

11

10

10

01

11

11

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

0P

850

01

11

11

11

11

11

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

P

700

01

11

01

00

01

10

01

10

10

01

11

00

11

11

11

11

11

11

01

11

11

11

11

11

11

P

529

01

11

01

00

01

11

00

00

00

00

00

00

00

10

00

00

00

00

10

11

00

11

00

00

01

P

235

11

11

11

10

11

11

01

10

10

01

01

11

00

11

11

11

00

00

00

11

11

11

10

11

00

P

Total

15

55

25

21

35

54

23

20

20

02

12

11

11

32

22

22

11

11

11

33

22

33

21

22

12

Nomb

re tot

al17

1719

1818

2219

1616

1919

1715

1517

1419

1914

1718

2018

1714

1525

2118

1821

2114

2119

1916

1721

2020

1620

2419

1618

2315

18

Page 6: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

100 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

These results were compared with other reports on wheat; [24], determined 273 polymorphic bands from

102 doubled haploid wheat accessions, while [3],detected 89.96% of the polymorphic bands in local varieties of

Turkish durum wheat, which is Close and consistent with our results. In 2012, in a study by [11]. of 16 varieties

of soft wheat using RAPD primers, genetic similarity ranged from 0.316 to 0.860. [29], used twenty-two RAPD

primers of the size of the amplification products selected for statistical analysis ranging from 160 to 2800 bp.

DNA PCR amplification isolated from thirty-three wheat genotypes yielded a total of 374 amplified products,

315 of which were polymorphic. For each primer, the number of bands varied from 8 to 30, with an average of

17. The hierarchical classification of the RAPD molecular markers divides the different genotypes into eight

large distinct clusters of equivalent similarity of 100%. The first class contains the genotype R67 which differs

from the other genotypes of two varieties leucomelan and rechenbachi with a similarity of 0%. The second

cluster encompasses the L57 and L119 genotypes with a strong similarity of 72.7%. The third cluster includes

the four genotypes L14, L45, L120 and L92, the first two genotypes of which are identical with a similarity of

71.2%, the L120 and L92 genotypes have a similarity of 76.9%. While the L45 genotype correlates with a

strong similarity equivalent to 92.3% with the L120 genotype. The fourth major cluster is divided into two sub-

groups (Tab.4). The first subgroup represents the five identical genotypes L93, L26, L137, L20 and L88 with a

maximum similarity of 100%, the L93 genotype is correlated to a similarity of 83.3% with the L88 genotype.

The second subgroup groups together the five genotypes L138, L28, L61, R38 and R36 with a similarity ranging

from 73.3% to 81.5%. The fifth Cluster consists of three subgroups. The first subgroup includes nine L139,

L111, L74, R32, R8, R38, R35, R34 and L95 genotypes with a maximum similarity of 100% between L139 and

L111 and strong similarity between the nine genotypes around 90%. The second subgroup is distinguished by

the six genotypes L72, R53, L63, R41, L26 and R52 with a similarity of 70% to 93.37% simultaneously. The

third subgroup comprises the two genotypes L132, L113 with a maximum similarity of 100% and the genotype

R59 which differs from 80.3% with the first two genotypes. The sixth group is divided into two subgroups: One

combines the four genotypes R68, R36, R11 and R4 which have a level between 84.7% and 94.7%. The other

subgroup consists of four genotypes R26, R15, R18 and R72, the first three of which appear to be very similar

with a similarity rate of about 88%. The seventh Cluster encompasses the three genotypes R76, R14 and R19,

the latter two appear to be very similar with a similarity rate of approximately 85%. The last Cluster regroups

the four L17, L136, L99 and R75 genotypes with a similarity of 87, 5%, 73% and 75% correlated successively

(Fig 3).

Fig. 3: Dendrogram of RAPD markers based on the Euclidean distance of the fifty genotypes of durum wheat.

Page 7: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

101 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

Table 4: Matrix of the genetic similarity of five genotypes of the two varieties rechenbachi and leucomelan based on PCR-RAPD variation

L95

L28

L61

L13

8L

93L

139

L17

L99

L74

L11

1L

136

L13

7L

20L

88L

14L

45L

72L

132

L11

3L

92L

120

L15

L26

L57

L11

9R

76R

68R

26R

36R

31R

4R

15R

19R

18R

14R

11R

32R

59R

8R

35R

34R

38R

57R

63R

41R

67R

53R

52R

75R

76

L95

1

L28

0,63

1

L61

0,75

0,86

1

L13

80,

80,

790,

81

L93

0,79

0,64

0,79

0,71

1

L13

90,

880,

650,

760,

810,

691

L17

0,61

0,69

0,61

0,65

0,44

0,72

1

L99

0,56

0,44

0,39

0,5

0,47

0,59

0,73

1

L74

0,82

0,71

0,82

0,76

0,65

0,94

0,78

0,56

1

L11

10,

880,

650,

760,

810,

691

0,72

0,59

0,94

1

L13

60,

610,

590,

610,

650,

440,

720,

880,

630,

780,

721

L13

70,

730,

60,

730,

670,

770,

750,

50,

530,

710,

750,

51

L20

0,63

0,6

0,73

0,56

0,77

0,65

0,5

0,53

0,71

0,65

0,5

0,85

1

L88

0,67

0,64

0,79

0,6

0,83

0,59

0,44

0,47

0,65

0,59

0,44

0,77

0,92

1

L14

0,53

0,5

0,63

0,56

0,64

0,65

0,5

0,53

0,61

0,65

0,5

0,71

0,71

0,64

1

L45

0,63

0,6

0,63

0,67

0,64

0,75

0,59

0,64

0,71

0,75

0,5

0,71

0,71

0,64

0,71

1

L72

0,87

0,63

0,75

0,8

0,79

0,88

0,61

0,56

0,82

0,88

0,61

0,63

0,63

0,67

0,63

0,73

1

L13

20,

710,

590,

710,

560,

730,

720,

670,

630,

780,

720,

670,

690,

80,

730,

690,

590,

711

L11

30,

710,

590,

710,

560,

730,

720,

670,

630,

780,

720,

670,

690,

80,

730,

690,

590,

711

1

L92

0,6

0,69

0,71

0,64

0,75

0,63

0,47

0,4

0,59

0,63

0,39

0,57

0,57

0,62

0,69

0,69

0,71

0,56

0,56

1

L12

00,

690,

670,

690,

730,

710,

810,

650,

60,

760,

810,

560,

670,

670,

60,

670,

920,

80,

650,

650,

771

L15

0,81

0,59

0,71

0,75

0,73

0,94

0,67

0,63

0,88

0,94

0,67

0,69

0,69

0,63

0,69

0,8

0,93

0,76

0,76

0,67

0,87

1

L26

0,79

0,64

0,79

0,71

10,

690,

440,

470,

650,

690,

440,

770,

770,

830,

640,

640,

790,

730,

730,

750,

710,

731

L57

0,53

0,5

0,53

0,57

0,67

0,56

0,5

0,54

0,53

0,56

0,6

0,62

0,62

0,54

0,5

0,5

0,53

0,6

0,6

0,46

0,57

0,6

0,67

1

L11

90,

60,

570,

60,

770,

620,

630,

560,

50,

590,

630,

670,

470,

470,

50,

470,

570,

710,

470,

470,

540,

640,

670,

620,

731

R76

0,63

0,6

0,73

0,56

0,77

0,56

0,42

0,35

0,61

0,56

0,42

0,6

0,71

0,77

0,5

0,5

0,63

0,69

0,69

0,57

0,56

0,59

0,77

0,5

0,47

1

R68

0,63

0,61

0,72

0,58

0,56

0,74

0,68

0,47

0,79

0,74

0,68

0,61

0,61

0,56

0,61

0,53

0,63

0,78

0,78

0,5

0,58

0,68

0,56

0,44

0,42

0,71

1

R26

0,47

0,53

0,56

0,42

0,47

0,58

0,61

0,47

0,63

0,58

0,53

0,44

0,53

0,47

0,63

0,53

0,56

0,71

0,71

0,6

0,59

0,61

0,47

0,35

0,33

0,63

0,82

1

R36

0,61

0,69

0,81

0,65

0,63

0,72

0,58

0,37

0,78

0,72

0,58

0,69

0,69

0,63

0,59

0,59

0,61

0,67

0,67

0,56

0,65

0,67

0,63

0,5

0,47

0,8

0,88

0,71

1

R31

0,68

0,58

0,68

0,63

0,53

0,79

0,74

0,53

0,84

0,79

0,74

0,58

0,58

0,53

0,58

0,58

0,68

0,74

0,74

0,47

0,63

0,74

0,53

0,42

0,47

0,67

0,94

0,78

0,83

1

R4

0,78

0,58

0,68

0,63

0,61

0,79

0,74

0,61

0,84

0,79

0,74

0,67

0,67

0,61

0,58

0,58

0,68

0,83

0,83

0,47

0,63

0,74

0,61

0,5

0,47

0,67

0,84

0,68

0,74

0,89

1

R15

0,58

0,56

0,58

0,53

0,42

0,68

0,72

0,5

0,74

0,68

0,63

0,47

0,47

0,42

0,56

0,56

0,58

0,63

0,63

0,53

0,61

0,63

0,42

0,32

0,37

0,56

0,83

0,88

0,72

0,89

0,79

1

R19

0,59

0,47

0,59

0,44

0,6

0,53

0,4

0,41

0,58

0,53

0,4

0,56

0,67

0,71

0,47

0,47

0,59

0,65

0,65

0,44

0,44

0,56

0,6

0,38

0,35

0,67

0,58

0,5

0,56

0,55

0,63

0,45

1

R18

0,5

0,47

0,5

0,45

0,42

0,6

0,63

0,5

0,65

0,6

0,55

0,4

0,47

0,42

0,56

0,56

0,58

0,63

0,63

0,53

0,61

0,63

0,42

0,32

0,37

0,56

0,74

0,88

0,63

0,79

0,7

0,88

0,53

1

R14

0,75

0,53

0,65

0,59

0,67

0,67

0,53

0,47

0,72

0,67

0,53

0,53

0,63

0,67

0,44

0,53

0,75

0,71

0,71

0,5

0,59

0,71

0,67

0,44

0,5

0,86

0,72

0,65

0,71

0,78

0,78

0,67

0,69

0,67

1

R11

0,74

0,63

0,74

0,68

0,58

0,84

0,79

0,58

0,89

0,84

0,79

0,63

0,63

0,58

0,63

0,63

0,74

0,79

0,79

0,53

0,68

0,79

0,58

0,47

0,53

0,63

0,89

0,74

0,79

0,95

0,95

0,84

0,6

0,75

0,74

1

R32

0,88

0,56

0,67

0,71

0,69

0,88

0,72

0,69

0,83

0,88

0,72

0,75

0,65

0,59

0,65

0,65

0,76

0,82

0,82

0,53

0,71

0,82

0,69

0,56

0,53

0,56

0,74

0,58

0,63

0,79

0,89

0,68

0,53

0,6

0,67

0,84

1

R59

0,75

0,44

0,56

0,59

0,67

0,76

0,61

0,79

0,72

0,76

0,61

0,73

0,73

0,67

0,73

0,73

0,75

0,81

0,81

0,5

0,69

0,81

0,67

0,53

0,5

0,53

0,63

0,56

0,53

0,68

0,78

0,58

0,59

0,58

0,65

0,74

0,88

1

R8

0,82

0,61

0,72

0,76

0,65

0,94

0,78

0,65

0,89

0,94

0,78

0,71

0,61

0,56

0,71

0,71

0,82

0,78

0,78

0,59

0,76

0,88

0,65

0,53

0,59

0,53

0,79

0,63

0,68

0,84

0,84

0,74

0,5

0,65

0,63

0,89

0,94

0,82

1

R35

0,76

0,65

0,76

0,71

0,69

0,88

0,72

0,59

0,83

0,88

0,72

0,75

0,65

0,59

0,75

0,65

0,76

0,82

0,82

0,63

0,71

0,82

0,69

0,56

0,53

0,56

0,83

0,67

0,72

0,79

0,79

0,68

0,53

0,6

0,58

0,84

0,88

0,76

0,94

1

R34

0,88

0,65

0,76

0,81

0,69

0,88

0,72

0,59

0,83

0,88

0,72

0,65

0,56

0,59

0,65

0,65

0,88

0,72

0,72

0,63

0,71

0,82

0,69

0,47

0,63

0,56

0,74

0,58

0,63

0,79

0,79

0,68

0,53

0,6

0,67

0,84

0,88

0,76

0,94

0,88

1

R38

0,75

0,73

0,87

0,8

0,79

0,88

0,61

0,47

0,82

0,88

0,61

0,86

0,73

0,67

0,73

0,73

0,75

0,71

0,71

0,71

0,8

0,81

0,79

0,64

0,6

0,63

0,72

0,56

0,81

0,68

0,68

0,58

0,5

0,5

0,56

0,74

0,76

0,65

0,82

0,88

0,76

1

R57

0,82

0,61

0,72

0,76

0,65

0,94

0,78

0,65

0,89

0,94

0,78

0,71

0,61

0,56

0,71

0,71

0,82

0,78

0,78

0,59

0,76

0,88

0,65

0,53

0,59

0,53

0,79

0,63

0,68

0,84

0,84

0,74

0,5

0,65

0,63

0,89

0,94

0,82

10,

940,

940,

821

R63

0,76

0,56

0,67

0,71

0,69

0,88

0,63

0,59

0,83

0,88

0,63

0,65

0,65

0,59

0,65

0,75

0,88

0,72

0,72

0,63

0,81

0,94

0,69

0,56

0,63

0,56

0,65

0,58

0,63

0,7

0,7

0,6

0,61

0,68

0,67

0,75

0,78

0,76

0,83

0,78

0,78

0,76

0,83

1

R41

0,76

0,56

0,67

0,71

0,69

0,88

0,63

0,59

0,83

0,88

0,63

0,65

0,65

0,59

0,65

0,75

0,88

0,72

0,72

0,63

0,81

0,94

0,69

0,56

0,63

0,56

0,65

0,58

0,63

0,7

0,7

0,6

0,61

0,68

0,67

0,75

0,78

0,76

0,83

0,78

0,78

0,76

0,83

11

R67

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

01

R53

0,81

0,59

0,71

0,75

0,73

0,82

0,58

0,53

0,78

0,82

0,58

0,59

0,59

0,63

0,59

0,69

0,93

0,67

0,67

0,67

0,75

0,88

0,73

0,5

0,67

0,59

0,6

0,53

0,58

0,65

0,65

0,55

0,65

0,63

0,71

0,7

0,72

0,71

0,78

0,72

0,82

0,71

0,78

0,94

0,94

01

R52

0,68

0,58

0,68

0,63

0,61

0,79

0,74

0,61

0,84

0,79

0,74

0,58

0,67

0,61

0,67

0,67

0,78

0,83

0,83

0,56

0,72

0,83

0,61

0,5

0,56

0,58

0,75

0,68

0,65

0,8

0,8

0,7

0,63

0,79

0,68

0,85

0,79

0,78

0,84

0,79

0,79

0,68

0,84

0,89

0,89

00,

831

R75

0,5

0,47

0,42

0,53

0,41

0,61

0,75

0,71

0,58

0,61

0,65

0,39

0,39

0,33

0,56

0,56

0,59

0,56

0,56

0,53

0,63

0,65

0,41

0,47

0,53

0,32

0,5

0,59

0,4

0,55

0,55

0,61

0,37

0,71

0,42

0,6

0,61

0,59

0,67

0,61

0,61

0,5

0,67

0,71

0,71

00,

650,

721

R72

0,61

0,59

0,61

0,56

0,53

0,72

0,76

0,63

0,78

0,72

0,67

0,5

0,59

0,53

0,69

0,69

0,71

0,76

0,76

0,67

0,75

0,76

0,53

0,41

0,47

0,5

0,68

0,81

0,58

0,74

0,74

0,82

0,47

0,82

0,61

0,79

0,72

0,71

0,78

0,72

0,72

0,61

0,78

0,72

0,72

00,

670,

830,

751

Page 8: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

102 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

2. The ISSR analysis:

The use of ISSR primers, led to DNA amplification of the 50 genotypes of durum wheat. Indeed, each

primer showed reproducible and readable genomic profiles, as evidenced by the clarity of the markers and the

diversity revealed by the primers (Fig. 4).

Fig. 4: ISSR electrophoretic diagram of the 50 genotypes (two varieties reichenbachi (R) and leucomelan (L))

of durum wheat generated by ten ISSR primers: ISSR F2 (1), ISSR F4 (2), ISSR F9 (3), ISSR M3 (4),

ISSR M1 (5), ISSR M2 (6), ISSR M8 (7), ISSR M9 (8), ISSR 17(9), ISSR 12(10).

The percentage polymorphism of the ten ISSR primers used is less than the percentage of RAPD

polymorphism. It is 68.7%. On the other hand, [16], explained that the number of polymorphic bands (58.62%)

detected by ISSR markers was much higher than that of the RAPD marker (46.02%). The polymorphic

percentage of ISSR primers M9, ISSR F2 and ISSR F9 is the highest and equal to 100%. While the ISSR M12

primer showed no equivalent polymorphism of 0%. The ISSR M1 primer revealed 75% polymorphism. The

lowest percentage of polymorphism at 33% is recorded by the ISSR M17 primer. The rest of the primers (ISSR

M2, ISSR M3, ISSR M8 and ISSR F4) detected 50% polymorphism (Tab.5).

Table 5: of Number and type of amplified DNA and percentage of polymorphism generated by ten ISSR primers in an accession of fifty

genotypes durum wheat

Primer ISSR Total Band Monomorphic Band Polymorphic Band % Polymorphism

unique non unique

ISSR M1 4 1 0 3 75%

ISSR M2 4 2 0 2 50%

ISSR M3 2 1 0 1 50%

ISSR M8 2 1 0 1 50%

ISSR M9 3 0 0 3 100%

ISSR M12 1 1 0 0 0%

ISSR M17 3 2 0 1 33%

ISSR F2 5 0 0 5 100%

ISSR F4 4 2 0 2 50%

ISSR F9 4 0 0 4 100%

The element of the amplified DNA fragments is between 0 and 4 bands whose size varies from 230 bp to

about 1500 bp. A total of 32 amplified DNA fragments were produced, in the fifty genotypes, by the ten ISSR

primers used. Among which 22 bands are non-single polymorphs (68.7%), of which 5 bands belong to the ISSR

F2 primer, 4 bands to the ISSR F9 primer, 3 bands to the ISSR M1 primer with a mono morphic band, 3 bands

at the M 9 primer, the ISSR primer M2 and F4 with 2 mono-morphic bands and 1 band at the ISSR M3, M8 and

M17 primer with molecular weights of 550 bp, 260 bp and 745 bp respectively. The number of DNA fragments

obtained varies from 1 for the primer M12 to 5 fragments for the primer F2. The two genotypes L137 and R36

reveal the highest number of bands, 24. Unlike the previous one in variety L113, the lowest number of bands is

13 bands. The genotypes L92, L111, L15, L119, R11, R32, R57, R67, R53, R52, R75 and R72, L88, L57, R68,

R26, R31, R4, R15, R19 and R14 genotypes and L61, L132, R76, R35, R38 and R63 are characterized by the

same number of bands equal to 19.22 and 21 successively between monomorphic and polymorphic. The rest of

the genotypes amplified an intermediate number of bands between 18 and 14 bands. The L99 genotype only

amplifies 14 bands (Tab. 6).

Our results conclude with the studies of [20],who studied the genetic diversity of wheat varieties (Triticum

aestivum L.) released for high yield, quality and abiotic stress in India and found 68.42% polymorphism using

1 2 3 4

5 6 7 8

9 10

Page 9: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

103 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

20 UBC series of ISSR markers. [21], used 10 ISSR primers which generated 80.2% polymorphism of wheat

accessions. Similarly, [30], used fifteen ISSR primers amplified a total of 221 groups throughout the forty-one-

durum accession, of which 163 bands were polymorphic. The number of bands varies from ten to nineteen. The

percentage of polymorphic bands (PBP) varied between 61.5 and 82.3 with an average of 73.6%. It is generally

accepted that the genetic diversity of the plant is abundant when the percentage of polymorphism in bands

reaches about 50% at the population level [19,28]. The dendrogram of the ISSR molecular markers revealed

four distinct heterogeneous groups with a similarity slightly less than 68%. The first distinct cluster of similarity

greater than 76% is composed of the four subgroup (Tab. 7, Fig.5).

Table 6: ISSR-PCR analysis of the 50 genotypes of durum wheat generated by ten primers

P: polymorphic band, M: mono morphic band.

Gén

otyp

es

Am

orce

PM(p

b)L9

5L2

8L6

1L1

38L9

3L1

39L1

7L9

9L7

4L1

11L1

36L1

37L2

0L8

8L1

4L4

5L7

2L1

32L1

13L9

2L1

20L1

5L2

6L5

7L1

19R7

6R6

8R2

6R3

6R3

1R4

R15

R19

R18

R14

R11

R32

R59

R8R3

5R3

4R3

8R5

7R6

3R4

1R6

7R5

3R5

2R7

5R7

2

M1

1000

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

780

00

00

00

01

11

11

11

11

11

01

01

11

01

11

11

11

11

11

11

11

11

11

11

11

11

P

500

11

11

10

11

11

11

11

11

11

01

01

11

11

00

00

00

00

00

00

01

00

00

00

00

00

P

250

00

00

10

00

00

11

00

10

11

00

01

10

00

00

00

00

00

00

00

01

01

00

00

00

00

P

Tot

al2

22

23

12

33

34

43

34

34

41

31

44

32

32

22

22

22

22

22

22

42

32

22

22

22

2

M2

1500

11

10

11

10

11

01

01

11

11

00

10

01

00

00

00

00

00

00

00

00

00

00

00

00

00

P

750

11

10

11

10

00

01

01

11

11

00

10

01

00

00

00

00

00

00

00

00

00

00

00

00

00

P

600

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

255

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

Tot

al4

44

24

44

23

32

42

44

44

44

24

22

42

22

22

22

22

22

22

22

22

22

22

22

22

2

M3

750

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

550

10

10

00

00

00

00

11

01

00

00

00

11

10

00

00

00

00

00

00

00

00

00

00

00

00

P

Tot

al2

12

11

11

11

11

12

21

21

11

11

12

22

11

11

11

11

11

11

11

11

11

11

11

11

1

M8

770

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

260

00

00

00

00

00

00

00

00

00

00

00

00

01

11

11

11

11

11

10

11

11

10

01

11

11

P

Tot

al1

11

11

11

11

11

11

11

11

11

11

11

11

22

22

22

22

22

22

12

22

22

11

22

22

2

M9

700

10

10

10

00

01

11

00

11

11

00

11

01

11

11

11

11

10

10

10

11

11

11

11

11

11

P

450

11

10

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

P

270

01

01

01

10

00

00

11

11

10

11

01

01

10

01

11

10

10

01

01

10

11

01

00

00

00

P

Tot

al2

22

12

22

11

22

22

23

33

22

22

31

33

22

33

33

23

12

22

23

23

32

32

22

22

2

M12

580

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

Tot

al1

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1

M17

745

10

10

00

00

00

01

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

P

630

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

230

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

Tot

al3

23

22

22

22

22

33

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

2

F2

1100

00

00

00

00

00

00

00

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

P

764

01

11

11

00

01

01

01

01

01

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

P

555

01

11

11

00

01

01

01

01

01

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

P

300

01

00

10

10

01

01

01

01

01

01

10

11

11

11

10

00

00

00

00

00

00

01

00

00

00

P

280

01

00

10

00

01

01

01

01

00

11

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

P

Tot

al0

42

24

21

00

40

40

40

40

31

44

34

44

44

44

33

33

33

33

33

33

33

43

33

33

3

F4

5000

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

P

785

00

01

10

00

00

00

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

01

00

00

00

P

552

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

245

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

M

Tot

al2

22

33

22

22

22

22

22

22

22

22

22

22

22

33

22

22

22

22

22

22

22

32

22

22

2

F9

1000

00

00

00

00

00

00

00

00

00

00

00

00

00

01

01

11

11

01

00

00

00

00

00

00

00

0P

5000

00

00

00

00

00

00

00

00

00

00

00

00

00

10

11

11

10

10

00

00

00

00

00

00

00

P

785

01

11

00

11

10

01

01

01

01

01

00

10

01

11

11

11

10

11

11

11

11

11

11

11

11

P

599

00

11

00

00

10

01

00

00

00

00

00

00

01

11

11

11

10

11

11

11

11

11

11

11

11

P

Tot

al0

12

20

01

12

00

20

10

10

10

10

01

00

24

24

44

44

04

22

22

22

22

22

22

22

2

Nom

bre

tota

l17

2021

1721

1617

1416

1915

2416

2218

2318

2113

1917

1920

2219

2122

2224

2222

2222

1722

1919

1820

2120

2119

2118

1919

1919

19

Page 10: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

104 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

Fig. 5: Dendrogram of the ISSR markers based on the Euclidean distance of the fifty genotypes of durum wheat.

The first subgroup encompasses the 11 genotypes of the rechenbachi (R76, R35, R15, R14, R32, R57, R41,

R67, R53, R52 and R75) varieties that show 94% strong similarity and 100% maximum similarity between the

genotype And the one that is followed. The second subgroup contains the four genotypes of the rechenbachi

variety (R38, R63, R11 and R59) with a rate between 94.4% and 100%. Intermediate genotypes (R8, R72, R31,

R4, R19 and R34) are very similar genotypes with the highest 100% similarity linked to previous genotypes

with a maximum similarity of 100%. The third subgroup consists of three genotypes (R68, R26 and R36) appear

to be very similar with a similarity rate of about 94.7% and 100%. The genotype R18 is linked to the other

genotypes of the reichenbachi variety by a similarity of 77.8% and 82.4%. The fourth subgroup includes

genotypes L61 and L138, genotypes L111, R87 and L125 with similarity around 82.4%. The second class

comprises 14 genotypes and subdivides into three subgroups. The first one encompasses the six genotypes (L93,

L111, L132, L137, L45 and L26) with 94% similarity between the first five genotypes, a maximum 100%

similarity between the two L111 and L132 genotypes. These genotypes are related to L26 genotypes with a

similarity of 77.8%, 83.3%, 68.4%, 88.9% and 84.2%, respectively. The second subgroup contains the four

genotypes of the leucomelan variety (L28, L88, L92 and L17), the first two appear to be very similar with a

maximum similarity rate of 100%. which are correlated by 94% similarity with the other two genotypes. The

third subgroup includes genotypes (L120, L15, L57, L119), the two genotypes L15 and L57 are identical with a

very high 100% similarity, the L120 genotype is correlated by 77.8% and 88. 2% similarity with each of them.

The third cluster is composed of the two subgroups, the first containing the four genotypes (L99, L74, L136 and

L95), with a similarity of 93.3%, 81.3% and 86.7%, 87.5% correlated seccusively. The second subgroup

consists of three genotypes (L20, L14, L72), with the last two genotypes L14 and L72 presenting a maximum

similarity of 100%. Whereas the L20 genotype is correlated by a 93.3% similarity with the last two genotypes.

The last cluster unites the two genotypes L139 and L113 with a similarity of 92.3% (Table 7). [8],used ISSR

markers for fingerprints and to estimate genetic diversity in a set of 27 genotypes that included Indian varieties

of bread wheat released for high yield. Quality, abiotic stress and specific traces of traits with known pedigrees.

They found that dendrogram analysis placed these genotypes into six groups and is consistent with their known

origin. [2],analyzed genetic diversity and relationships between wheat genotypes including Hexaploid,

Tetraploid and Diploid varieties. The dendrogram indicates that ISSR markers have been able to distinguish

most of the 20 varieties from their genetic and geographic origins, and that the tetraploid varieties have been

grouped together as well as the diploid varieties.

Page 11: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

105 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

Table 7: Matrix of the genetic similarity of the two varieties rechenbachi and leucomelan five genotypes based on the PCR-ISSR variation

L95

L28

L61

L13

8L

93L

139

L17

L99

L74

L11

1L

136

L13

7L

20L

88L

14L

45L

72L

132

L11

3L

92L

120

L15

L26

L57

L11

9R

76R

68R

26R

36R

31R

4R

15R

19R

18R

14R

11R

32R

59R

8R

35R

34R

38R

57R

63R

41R

67R

53R

52R

75R

72

L95

1

L28

0,71

1

L61

0,81

0,78

1

L13

80,

650,

820,

821

L93

0,87

0,82

0,82

0,67

1

L13

90,

730,

810,

710,

750,

751

L17

0,75

0,94

0,72

0,76

0,76

0,75

1

L99

0,75

0,72

0,82

0,76

0,67

0,65

0,76

1

L74

0,8

0,76

0,76

0,71

0,71

0,69

0,81

0,93

1

L11

10,

810,

780,

780,

630,

940,

710,

720,

720,

761

L13

60,

870,

630,

820,

670,

760,

650,

670,

880,

810,

821

L13

70,

760,

830,

830,

680,

880,

670,

780,

780,

820,

940,

781

L20

0,8

0,76

0,67

0,71

0,71

0,8

0,81

0,81

0,87

0,76

0,81

0,72

1

L88

0,71

10,

780,

820,

820,

810,

940,

720,

760,

780,

630,

830,

761

L14

0,87

0,72

0,72

0,67

0,76

0,75

0,76

0,76

0,81

0,82

0,88

0,78

0,93

0,72

1

L45

0,72

0,89

0,79

0,74

0,83

0,72

0,83

0,74

0,78

0,89

0,74

0,94

0,78

0,89

0,83

1

L72

0,87

0,72

0,72

0,67

0,76

0,75

0,76

0,76

0,81

0,82

0,88

0,78

0,93

0,72

10,

831

L13

20,

810,

780,

780,

630,

940,

710,

720,

720,

761

0,82

0,94

0,76

0,78

0,82

0,89

0,82

1

L11

30,

790,

750,

650,

690,

690,

920,

80,

690,

730,

650,

690,

610,

860,

750,

80,

670,

80,

651

L92

0,67

0,94

0,74

0,78

0,78

0,76

0,88

0,78

0,82

0,83

0,68

0,89

0,82

0,94

0,78

0,94

0,78

0,83

0,71

1

L12

00,

750,

720,

720,

580,

880,

750,

670,

580,

610,

820,

670,

780,

610,

720,

670,

740,

670,

820,

690,

681

L15

0,76

0,74

0,74

0,68

0,78

0,76

0,68

0,68

0,72

0,83

0,78

0,79

0,82

0,74

0,88

0,84

0,88

0,83

0,71

0,79

0,78

1

L26

0,67

0,83

0,74

0,68

0,78

0,67

0,78

0,78

0,82

0,83

0,68

0,89

0,72

0,83

0,68

0,84

0,68

0,83

0,61

0,89

0,78

0,79

1

L57

0,76

0,74

0,74

0,68

0,78

0,76

0,68

0,68

0,72

0,83

0,78

0,79

0,82

0,74

0,88

0,84

0,88

0,83

0,71

0,79

0,78

10,

791

L11

90,

760,

830,

740,

680,

880,

760,

780,

60,

630,

830,

680,

790,

720,

830,

780,

840,

780,

830,

710,

790,

880,

890,

790,

891

R76

0,72

0,7

0,89

0,74

0,74

0,63

0,65

0,83

0,78

0,79

0,83

0,84

0,68

0,7

0,74

0,8

0,74

0,79

0,58

0,75

0,74

0,84

0,84

0,84

0,75

1

R68

0,63

0,7

0,79

0,65

0,74

0,63

0,65

0,74

0,68

0,79

0,74

0,84

0,6

0,7

0,65

0,8

0,65

0,79

0,58

0,75

0,83

0,75

0,84

0,75

0,75

0,89

1

R26

0,6

0,75

0,75

0,7

0,7

0,68

0,7

0,7

0,65

0,75

0,7

0,8

0,65

0,75

0,7

0,85

0,7

0,75

0,63

0,8

0,79

0,8

0,8

0,8

0,8

0,85

0,95

1

R36

0,6

0,75

0,75

0,7

0,7

0,68

0,7

0,7

0,65

0,75

0,7

0,8

0,65

0,75

0,7

0,85

0,7

0,75

0,63

0,8

0,79

0,8

0,8

0,8

0,8

0,85

0,95

11

R31

0,63

0,7

0,79

0,74

0,65

0,72

0,65

0,74

0,68

0,7

0,74

0,75

0,68

0,7

0,74

0,8

0,74

0,7

0,67

0,75

0,74

0,84

0,75

0,84

0,75

0,89

0,89

0,95

0,95

1

R4

0,63

0,7

0,79

0,74

0,65

0,72

0,65

0,74

0,68

0,7

0,74

0,75

0,68

0,7

0,74

0,8

0,74

0,7

0,67

0,75

0,74

0,84

0,75

0,84

0,75

0,89

0,89

0,95

0,95

11

R15

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

1

R19

0,63

0,7

0,79

0,74

0,65

0,72

0,65

0,74

0,68

0,7

0,74

0,75

0,68

0,7

0,74

0,8

0,74

0,7

0,67

0,75

0,74

0,84

0,75

0,84

0,75

0,89

0,89

0,95

0,95

11

0,94

1

R18

0,69

0,67

0,67

0,61

0,71

0,8

0,61

0,71

0,75

0,76

0,71

0,72

0,75

0,67

0,71

0,68

0,71

0,76

0,73

0,72

0,81

0,82

0,82

0,82

0,72

0,78

0,78

0,74

0,74

0,78

0,78

0,82

0,78

1

R14

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

R11

0,58

0,74

0,74

0,78

0,6

0,76

0,68

0,78

0,72

0,65

0,68

0,7

0,72

0,74

0,68

0,75

0,68

0,65

0,71

0,79

0,68

0,79

0,79

0,79

0,7

0,84

0,84

0,89

0,89

0,94

0,94

0,89

0,94

0,82

0,89

1

R32

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

1

R59

0,58

0,74

0,74

0,78

0,6

0,76

0,68

0,78

0,72

0,65

0,68

0,7

0,72

0,74

0,68

0,75

0,68

0,65

0,71

0,79

0,68

0,79

0,79

0,79

0,7

0,84

0,84

0,89

0,89

0,94

0,94

0,89

0,94

0,82

0,89

10,

891

R8

0,63

0,7

0,79

0,74

0,65

0,72

0,65

0,74

0,68

0,7

0,74

0,75

0,68

0,7

0,74

0,8

0,74

0,7

0,67

0,75

0,74

0,84

0,75

0,84

0,75

0,89

0,89

0,95

0,95

11

0,94

10,

780,

940,

940,

940,

941

R35

0,72

0,7

0,89

0,74

0,74

0,63

0,65

0,83

0,78

0,79

0,83

0,84

0,68

0,7

0,74

0,8

0,74

0,79

0,58

0,75

0,74

0,84

0,84

0,84

0,75

10,

890,

850,

850,

890,

890,

940,

890,

780,

940,

840,

940,

840,

891

R34

0,67

0,74

0,83

0,78

0,68

0,76

0,68

0,72

0,67

0,68

0,72

0,74

0,67

0,74

0,72

0,79

0,72

0,68

0,71

0,74

0,78

0,83

0,74

0,83

0,79

0,89

0,89

0,94

0,94

11

0,94

10,

760,

940,

940,

940,

941

0,89

1

R38

0,63

0,7

0,79

0,74

0,65

0,72

0,65

0,74

0,68

0,7

0,74

0,75

0,68

0,7

0,74

0,8

0,74

0,7

0,67

0,75

0,74

0,84

0,75

0,84

0,75

0,89

0,89

0,95

0,95

11

0,94

10,

780,

940,

940,

940,

941

0,89

11

R57

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

10,

890,

940,

940,

940,

941

R63

0,63

0,7

0,79

0,74

0,65

0,72

0,65

0,74

0,68

0,7

0,74

0,75

0,68

0,7

0,74

0,8

0,74

0,7

0,67

0,75

0,74

0,84

0,75

0,84

0,75

0,89

0,89

0,95

0,95

11

0,94

10,

780,

940,

940,

940,

941

0,89

11

0,94

1

R41

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

10,

890,

940,

940,

940,

941

0,94

1

R67

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

10,

890,

940,

940,

940,

941

0,94

11

R53

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

10,

890,

940,

940,

940,

941

0,94

11

1

R52

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

10,

890,

940,

940,

940,

941

0,94

11

11

R75

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

10,

890,

940,

940,

940,

941

0,94

11

11

1

R72

0,67

0,65

0,83

0,68

0,68

0,67

0,6

0,78

0,72

0,74

0,78

0,79

0,63

0,65

0,68

0,75

0,68

0,74

0,61

0,7

0,78

0,79

0,79

0,79

0,7

0,94

0,94

0,89

0,89

0,94

0,94

10,

940,

821

0,89

10,

890,

940,

940,

940,

941

0,94

11

11

11

Page 12: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

106 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

3. The hierarchical classification of the two markers:

The classification of the two markers RAPD and ISSR of the 50 genotypes studied allowed distinguishing

five main groups (Table 8, FIG. 6). The first cluster presents the late genotype R67, which differs from the other

genotypes of the two leucomelan and reichenbachi varieties with a similarity ranging from 33% to 50% and

which is characterized by a length of ear, water content and a rate of chlorophylls. The second major cluster is

distinguished by two early genotypes L57 and L119 with a similarity of 82.8%. The third major cluster is

divided into four subgroups: the first cluster consists of the three genotypes L14, L20 and L113 with 82.8%,

82.8% and 74.2% similarities correlated successively. The second subgroup consists of the eight L93, L26,

L132, L137, L45, L28, L88 and L92 genotypes with a similarity between 74.2% and 83.9%. The third subgroup

consisted of eleven L139, L111, L72, L15, L95, L74 and L120 genotypes, which ranged between 78% and 85%.

The fourth subgroup encompasses the two L61 and L138 genotypes with a very high similarity of 81.3%. The

fourth major cluster is divided into four subgroups. The first group is distinguished by three genotypes R76, R14

and R19, with a similarity of 90.6%, 82.3% and 79.4% respectively. The second subgroup contains three

genotypes R68, R36 and R26, the first two genotypes show a similar similarity of 91.6%, linked to R26

genotypes with a similarity of 88.8% and 86.7% respectively. The third subgroup groups the seventeen

genotypes R31, R4, R11, R32, R8, R53, R59, R53, R52, R59, R15, R72 and R75 with very high similarity

between R57, R8 and R32 (97.4%, 97.4 and 97.06% successively and96.9% between R41 and R53).

Finally, the genotype R18 in a single subgroup differs from the other genotypes of the reichenbachi variety

with a similarity that varies from 64.8% to 82.3% with the R72 genotype. The fifth major cluster presents the

three genotypes L17, L136 and L99 with a similarity between 75% and 76.5%. The results obtained show that

most of the genotypes belonging to the same botanical variety were grouped in the same main group, but an

ISSR - RAPD intra-variety polymorphism was also observed. This is in agreement with the work of [8,9]. [14],

studied the discriminating capacity of RAPD and ISSR markers and their effectiveness in establishing the

genetic relationship and diversity between eleven wheat cultivars and local breeds collected in Egypt and Saudi

Arabia. The dendrogram classified the genotypes evaluated in three main clusters corresponding to crop regions.

[23],reported that the genetic relationships of wheat accessions estimated by the ISSR marker polymorphism

were identical to those determined by the RFLP and RAPD markers, indicating the reliability of the ISSR

markers for the estimation of genotypes.

Fig. 6: Dendrogram of the RAPD-ISSR markers based on the Euclidean distance of the fifty genotypes of

durum wheat.

Page 13: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

107 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

Table 8: Matrix of the genetic similarity of five genotypes of the two varieties rechenbachi and leucomelan based on variation PCR-RAPD /

ISSR

L95

L28

L61

L13

8L

93L

139

L17

L99

L74

L11

1L

136

L13

7L

20L

88L

14L

45L

72L

132

L11

3L

92L

120

L15

L26

L57

L11

9R

76R

68R

26R

36R

31R

4R

15R

19R

18R

14R

11R

32R

59R

8R

35R

34R

38R

57R

63R

41R

67R

53R

52R

75R

72

L95

1

L28

0,67

1

L61

0,78

0,81

1

L13

80,

720,

810,

811

L93

0,83

0,74

0,81

0,69

1

L13

90,

810,

730,

740,

780,

721

L17

0,68

0,81

0,67

0,71

0,6

0,74

1

L99

0,66

0,59

0,6

0,64

0,58

0,62

0,75

1

L74

0,81

0,74

0,79

0,74

0,68

0,82

0,79

0,73

1

L11

10,

840,

710,

770,

710,

810,

850,

720,

660,

851

L13

60,

730,

610,

710,

660,

60,

690,

760,

750,

790,

771

L13

70,

750,

730,

790,

680,

830,

710,

640,

670,

760,

850,

641

L20

0,71

0,69

0,7

0,64

0,73

0,72

0,65

0,68

0,78

0,71

0,65

0,77

1

L88

0,69

0,83

0,78

0,72

0,83

0,7

0,68

0,61

0,71

0,69

0,54

0,81

0,83

1

L14

0,69

0,62

0,68

0,62

0,71

0,7

0,63

0,66

0,71

0,74

0,68

0,75

0,83

0,69

1

L45

0,68

0,76

0,71

0,71

0,75

0,74

0,71

0,7

0,74

0,82

0,62

0,84

0,75

0,78

0,78

1

L72

0,87

0,68

0,74

0,73

0,77

0,81

0,69

0,67

0,82

0,85

0,74

0,71

0,77

0,7

0,81

0,79

1

L13

20,

760,

690,

740,

590,

840,

710,

690,

680,

770,

850,

740,

820,

780,

760,

760,

740,

761

L11

30,

740,

670,

680,

620,

710,

810,

730,

660,

760,

690,

680,

650,

830,

740,

740,

630,

750,

811

L92

0,64

0,83

0,73

0,72

0,77

0,7

0,68

0,61

0,71

0,74

0,54

0,75

0,71

0,8

0,74

0,84

0,75

0,71

0,64

1

L12

00,

720,

70,

710,

650,

80,

780,

660,

590,

690,

820,

610,

730,

640,

670,

670,

810,

730,

740,

670,

721

L15

0,79

0,67

0,72

0,71

0,76

0,85

0,68

0,66

0,8

0,88

0,72

0,74

0,76

0,69

0,79

0,82

0,91

0,8

0,74

0,74

0,82

1

L26

0,72

0,75

0,76

0,7

0,86

0,68

0,61

0,64

0,74

0,76

0,57

0,84

0,74

0,83

0,67

0,76

0,73

0,79

0,67

0,83

0,75

0,76

1

L57

0,66

0,64

0,65

0,64

0,73

0,67

0,6

0,63

0,63

0,71

0,7

0,72

0,73

0,66

0,71

0,7

0,72

0,73

0,66

0,66

0,69

0,81

0,74

1

L11

90,

690,

720,

680,

720,

770,

70,

680,

560,

610,

740,

680,

650,

610,

690,

640,

730,

750,

660,

590,

690,

770,

790,

720,

831

R76

0,68

0,66

0,82

0,66

0,75

0,59

0,54

0,6

0,69

0,68

0,62

0,74

0,7

0,73

0,63

0,67

0,69

0,74

0,63

0,68

0,66

0,72

0,81

0,7

0,63

1

R68

0,63

0,66

0,76

0,62

0,65

0,68

0,67

0,61

0,74

0,76

0,71

0,73

0,61

0,63

0,63

0,67

0,64

0,78

0,68

0,63

0,7

0,72

0,7

0,61

0,59

0,81

1

R26

0,54

0,65

0,66

0,56

0,59

0,63

0,66

0,59

0,64

0,67

0,62

0,63

0,59

0,62

0,67

0,7

0,63

0,73

0,67

0,71

0,69

0,71

0,65

0,59

0,58

0,75

0,89

1

R36

0,61

0,72

0,78

0,68

0,67

0,7

0,64

0,54

0,71

0,74

0,64

0,75

0,67

0,69

0,65

0,73

0,66

0,71

0,65

0,69

0,72

0,74

0,72

0,67

0,65

0,83

0,92

0,86

1

R31

0,66

0,64

0,74

0,68

0,59

0,76

0,69

0,63

0,76

0,74

0,74

0,67

0,63

0,62

0,66

0,69

0,71

0,72

0,7

0,62

0,68

0,79

0,64

0,63

0,62

0,78

0,92

0,86

0,89

1

R4

0,7

0,64

0,74

0,68

0,63

0,76

0,69

0,68

0,76

0,74

0,74

0,71

0,68

0,66

0,66

0,69

0,71

0,76

0,75

0,62

0,68

0,79

0,68

0,68

0,62

0,78

0,87

0,82

0,84

0,95

1

R15

0,62

0,61

0,7

0,61

0,55

0,68

0,66

0,64

0,73

0,71

0,7

0,63

0,55

0,54

0,62

0,66

0,63

0,68

0,62

0,62

0,69

0,71

0,61

0,55

0,54

0,75

0,89

0,89

0,81

0,92

0,86

1

R19

0,61

0,59

0,69

0,59

0,63

0,62

0,53

0,58

0,63

0,62

0,56

0,67

0,68

0,71

0,61

0,65

0,67

0,68

0,66

0,61

0,59

0,7

0,69

0,63

0,57

0,79

0,74

0,73

0,76

0,76

0,81

0,68

1

R18

0,58

0,57

0,58

0,53

0,56

0,69

0,62

0,6

0,69

0,68

0,62

0,55

0,6

0,54

0,63

0,62

0,64

0,69

0,68

0,63

0,71

0,72

0,61

0,56

0,54

0,67

0,76

0,8

0,68

0,78

0,74

0,85

0,65

1

R14

0,71

0,59

0,74

0,64

0,68

0,67

0,56

0,63

0,72

0,7

0,65

0,67

0,63

0,66

0,57

0,65

0,71

0,72

0,66

0,61

0,69

0,75

0,74

0,63

0,61

0,91

0,83

0,78

0,81

0,86

0,86

0,83

0,82

0,74

1

R11

0,66

0,68

0,74

0,73

0,59

0,81

0,74

0,68

0,81

0,74

0,74

0,67

0,68

0,66

0,66

0,69

0,71

0,72

0,75

0,66

0,68

0,79

0,68

0,63

0,62

0,74

0,87

0,82

0,84

0,95

0,95

0,86

0,76

0,78

0,81

1

R32

0,76

0,61

0,75

0,69

0,69

0,77

0,66

0,74

0,78

0,81

0,75

0,77

0,64

0,62

0,67

0,7

0,72

0,78

0,71

0,62

0,74

0,81

0,74

0,69

0,62

0,75

0,84

0,74

0,76

0,86

0,92

0,83

0,73

0,7

0,83

0,86

1

R59

0,66

0,59

0,65

0,69

0,63

0,76

0,65

0,78

0,72

0,7

0,65

0,71

0,73

0,71

0,71

0,74

0,71

0,72

0,76

0,66

0,69

0,8

0,74

0,68

0,61

0,69

0,74

0,73

0,71

0,81

0,86

0,73

0,77

0,69

0,77

0,86

0,88

1

R8

0,72

0,66

0,76

0,75

0,65

0,83

0,71

0,69

0,78

0,81

0,76

0,73

0,65

0,63

0,72

0,76

0,78

0,74

0,72

0,68

0,75

0,86

0,7

0,69

0,68

0,71

0,84

0,79

0,82

0,92

0,92

0,84

0,74

0,71

0,78

0,92

0,94

0,89

1

R35

0,74

0,68

0,83

0,72

0,71

0,75

0,68

0,71

0,81

0,83

0,78

0,8

0,67

0,65

0,74

0,73

0,75

0,81

0,69

0,69

0,72

0,83

0,77

0,71

0,65

0,78

0,86

0,76

0,79

0,84

0,84

0,81

0,71

0,68

0,76

0,84

0,91

0,81

0,92

1

R34

0,76

0,69

0,8

0,79

0,69

0,82

0,7

0,66

0,75

0,78

0,72

0,69

0,61

0,67

0,69

0,72

0,79

0,7

0,71

0,69

0,74

0,83

0,71

0,66

0,71

0,72

0,81

0,76

0,78

0,89

0,89

0,81

0,75

0,68

0,8

0,89

0,91

0,85

0,97

0,89

1

R38

0,69

0,71

0,82

0,76

0,71

0,79

0,63

0,61

0,75

0,78

0,68

0,79

0,71

0,69

0,74

0,77

0,74

0,7

0,69

0,74

0,76

0,83

0,76

0,76

0,69

0,77

0,81

0,76

0,89

0,84

0,84

0,76

0,75

0,63

0,75

0,84

0,86

0,8

0,91

0,89

0,88

1

R57

0,74

0,63

0,78

0,72

0,67

0,8

0,68

0,71

0,81

0,83

0,78

0,75

0,62

0,61

0,69

0,73

0,75

0,76

0,69

0,65

0,77

0,83

0,72

0,67

0,65

0,73

0,86

0,76

0,79

0,89

0,89

0,86

0,71

0,73

0,81

0,89

0,97

0,86

0,97

0,94

0,94

0,89

1

R63

0,69

0,63

0,73

0,72

0,67

0,8

0,64

0,67

0,76

0,78

0,68

0,7

0,67

0,65

0,69

0,78

0,8

0,71

0,69

0,69

0,77

0,89

0,72

0,71

0,69

0,73

0,77

0,76

0,79

0,84

0,84

0,76

0,81

0,73

0,81

0,84

0,86

0,86

0,92

0,84

0,89

0,89

0,89

1

R41

0,71

0,61

0,75

0,69

0,69

0,77

0,62

0,69

0,78

0,81

0,7

0,72

0,64

0,62

0,67

0,75

0,77

0,73

0,67

0,67

0,79

0,86

0,74

0,69

0,67

0,75

0,79

0,74

0,76

0,82

0,82

0,78

0,78

0,75

0,83

0,82

0,89

0,83

0,89

0,86

0,86

0,86

0,91

0,97

1

R67

0,38

0,41

0,47

0,41

0,43

0,35

0,34

0,48

0,37

0,4

0,42

0,48

0,39

0,42

0,42

0,47

0,39

0,41

0,33

0,47

0,45

0,44

0,5

0,54

0,47

0,57

0,49

0,52

0,5

0,47

0,47

0,52

0,55

0,42

0,55

0,43

0,52

0,5

0,49

0,5

0,48

0,53

0,5

0,5

0,52

1

R53

0,74

0,62

0,77

0,71

0,71

0,74

0,59

0,66

0,75

0,78

0,68

0,69

0,61

0,64

0,64

0,72

0,79

0,7

0,64

0,69

0,76

0,83

0,76

0,66

0,69

0,77

0,76

0,71

0,74

0,79

0,79

0,76

0,8

0,72

0,85

0,79

0,86

0,8

0,86

0,83

0,88

0,83

0,89

0,94

0,97

0,53

1

R52

0,68

0,62

0,76

0,66

0,65

0,73

0,67

0,69

0,78

0,76

0,76

0,68

0,65

0,63

0,68

0,71

0,73

0,78

0,72

0,63

0,75

0,81

0,7

0,65

0,63

0,76

0,84

0,79

0,77

0,87

0,87

0,84

0,78

0,81

0,83

0,87

0,89

0,83

0,89

0,86

0,86

0,81

0,92

0,92

0,94

0,49

0,91

1

R75

0,58

0,57

0,62

0,61

0,56

0,64

0,67

0,75

0,65

0,68

0,71

0,59

0,51

0,5

0,63

0,67

0,64

0,65

0,58

0,63

0,71

0,72

0,61

0,65

0,63

0,62

0,71

0,75

0,64

0,74

0,74

0,8

0,65

0,76

0,69

0,74

0,8

0,74

0,81

0,78

0,77

0,72

0,83

0,83

0,85

0,57

0,82

0,86

1

R72

0,64

0,62

0,72

0,62

0,61

0,69

0,68

0,71

0,75

0,73

0,72

0,65

0,61

0,59

0,69

0,72

0,69

0,75

0,69

0,69

0,76

0,78

0,67

0,61

0,59

0,72

0,81

0,86

0,74

0,84

0,84

0,91

0,7

0,82

0,8

0,84

0,86

0,8

0,86

0,83

0,83

0,78

0,89

0,83

0,86

0,53

0,83

0,91

0,88

1

Page 14: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

108 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

Conclusion:

This study demonstrates the utility of RAPD and ISSR markers for the estimation of genetic relationships

between 50 genotypes belonging to two varieties of durum wheat (Leucomelan and Rechenbachi). The results

showed that the choice of random marker techniques is always appropriate and attractive due to low cost

analysis and fast acquisition of data. RAPD markers reported 92.10% for mean polymorphism compared with

ISSR markers (68.7%). The classification of the two RAPD and ISSR markers of the 50 genotypes studied

revealed interesting results. We found that the genotypes were grouped according to their botanical varieties

and, in some cases, their namesake (s); First group (R67), Second group (L57 and L119), Third group (L14,

L193, L113, L93, L123, L123, L137, L45, L28, L88, L92, L139, L111, L72, L15, L95, L74, L120, L61 and

L138), Fourth group (R14, R15, R8, R7, R7, R8, R7, R7, R7, R9, and R18) and Fifth group (L17, L136 and

L99). The polymorphism detected among the durum accessions studied can be used in breeding programs to

maximize the use of genetic resources. The results obtained in the study enrich the previous data obtained by the

morphological analyzes.

Appendix:

CTAB: Cetyl trimethylammonium bromide

DNA: Acide désoxyribonucléique

TBE: Tris, Borate, EDTA

RAPD: Random Amplification of Polymorphic DNA

ISSR: inter simple sequence repeat

dNTPs: Deoxynucleotide

PCR: polymerase chain reaction

KCl: Chlorure de potassium

PAST program: PAleontological STatistics

ACKNOWLEDGEMENTS

I thank Mr. Bouteldjoune Imed Eddine chemical engineer, Quality control service chief in Hamma

Bouziane’s cement factory, Constantine, Algeria, for his contribution in the English translation.

REFERENCES

[1] Al-Fares, H., H. Abu-Qaoud, 2012. Molecular characterization of genetic diversity in some durum wheat

(Triticum durum Desf.) in Palestine. African Journal of Biotechnology, 11: 12958-12963.

[2] Abou-Deif, M.H., M.A. Rashed, M.A.A. Sallam, E.A.H. Mostafa and W.A. Ramadan, 2013.

Characterization of twenty wheat varieties by ISSR markers. Middle-East J. of Scientific Res., 15: 168-175.

[3] Akar, T. and M. Ozgen, 2007. genetic diversity in Turkish durum Wheat landraces. Wheat Production in

Stressed Environments Developments in Plant Breeding, 12: 753-760.

[4] Anderson, J.A., G.A. Churchill, J.E. Autrique, S.D. Tanksley and M.E. Sorrells, 1993. Optimizing parental

selection for genetic linkage maps. Genome, February, 36(1): 181-186.

[5] Bibi, S., M.U. Dahot, I.A. Khan, A. Khatri, M.H. Naqvi, 2009. Study of Genetic Diversity in Wheat

(Triticum aestivum L.) Using Random Amplified Polymorphic DNA (Rapd) Markers. Pakistan J Bot., 41:

1022-1027.

[6] Baghizadeh, A and S. Khosravi, 2011. Genetic diversity assessment of aegilops germplasm by RAPD

molecular markers. Agric. Biol. J. N. Am., 2(2): 197-202.

[7] Boudour, L., 2006. Étude des ressources phyto-génétiques du blé dur (Triticum durum

Desf.) algérien : analyse de la diversité génétique et des critères d’adaptation au milieu.

Thèse Doctorat d’Etat. Université Mentouri Constantine, p: 142.

[8] Carvalho, A., J. Lima-Brito, B. Maçãs, H. Guedes-Pinto, 2009. Genetic diversity and variation among

botanical varieties of old Portuguese wheat cultivars revealed by ISSR assays. Biochemical Genetics, 47:

276-294.

[9] Carvalho, A., J.L. Brito, B. Macas and H.G. Pinto, 2008. Genetic variability analysis of a collection of old

Portuguese bread wheat using ISSRs. Options Mediterraneennes. Ser. A. Sem. Medit., 81: 35-38.

[10] Chowdhury, R.M.V.K., S.J.S. Kundu and R.K. Jain, 2008. Applicability of ISSR markers for genetic

diversity evaluation in Indian bread wheat genotypes of known origin. Environ. Ecol., 26: 126-131.

[11] Cifci, E.A., K. Yagdi, 2012. Study of Genetic Diversity in Wheat (Triticum aestivum) Varities Using

Random Amplified Polymorphic DNA (Rapd) Analysis. Turk J Field Crops, 17: 91-95.

[12] Dixon, J., H. Braun, P. Kosina, J. Crouch, 2009. Wheat facts and futures.CIMMYT, Mexico DF, Mexico,

pp: 95.

Page 15: Molecular characterization of genetic variation in algeria … · algeria durum wheat accessions (Triticum durum desf.) Using rapd and issr markers 1 ... To estimate genetic the relationships

109 Belattar. R et al, 2017

Advances in Environmental Biology, 11(5) May 2017, Pages: 95-109

[13] Doyle, J.J., J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15Du JK, Yao YY, Ni

ZF,

[14] El-Assal, S.E.D. and A. Gaber, 2012. Discrimination capacity of RAPD, ISSR and SSR markers and their

effectiveness in establishing genetic relationship and diversity among Egyptian and Saudi wheat cultivars.

Am. J. Appl. Sci., 9: 724-735.

[15] Hammer, Oyvind; DAVID, A.T. Harper and PAUL, D. Ryan. PAST, 2001. Paleontological Statistical

Software Package for Education and Data Analysis. Palaeontological Association. USA.

[16] Karaca, M. and A. Izbirak, 2008. Comparative analysis of genetic diversity in Turkish durum wheat

cultivars using RAPD and ISSR markers. J. Food Agric. Environ., 6: 219-225.

[17] Khan, M.K., A. Pandey, S. Choudhary, E.E. Hakki, M.S. Akkaya, G. Thomas, 2014. From RFLP to DArT:

molecular tools for wheat (Triticum spp.) diversity analysis. Genet Resour Crop Ev 61: 1001-1032.

[18] Maniatis, T., E.F. Fritsch and J. Sambrook, 1982. Molecular Cloning: a Laboratory Manual. Cold Spring

Harbor, NY: Cold Spring Harbor Laboratory.

[19] Ma, J.X., R.H. Zhou, Y.S. Dong and J.Z. Jia, 2000. Control and inheritance of resistance to yellow rust in

Triticum aestivumLophopyrum elongatum chromosome substitution lines. Euphytica, 111: 57-60.

[20] Malik, R., S. Kundu, S. Sareen, R. Kumar, J. Shoran, B. Mishra, 2008. KSSR and ISSR markers for

assessing DNA polymorphism and genetic diversity among Indian bread wheat varieties. The 11th

International Wheat Genetics Symposium proceedings Edited by Rudi Appels Russell Eastwood Evans

Lagudah Peter Langridge Michael Mackay Lynne.

[21] Najaphy, A., R.A. Parchin, E. Farshadfar, 2012. Comparison of phenotypic and molecular characterizations

of some important wheat cultivars and advanced breeding lines. Australian Journal of Crop Science, 6(2):

326-332.

[22] NEI, Masatoshi and LI, Wen-Hsiung, 1979. Mathematical model for studying genetic variation in terms of

restriction endonucleases. Proceedings of National Academy of Sciences of the United States of America,

76(10): 5269-5273.

[23] Nagaoka, T and Y. Ogihara, 1997 Applicability of inter-simple sequence repeat polymorphisms in wheat

for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics, 94:

597-602.

[24] Ojaghi, J., E. Akhundova, 2010. Genetic analysis for yield and its components in doubled haploid wheat.

African Journal of Agriculture Research, 5: 306-315.

[25] Pandey, A., M.K. Khan, S. Choudhary, E.E. Hakki, M.S. Akkaya, G. Thomas, 2012. “RAPD and wheat

diversity analysis”—still a centre of interest. Flora and Fauna, 18: 67-75.

[26] Peng, J.H., D. Sun, E. Nevo, 2011. Domestication evolution, genetics and genomics in wheat.Molecular

Breeding, 28: 281-301.

[27] Ren, J., D. Sun, L. Chen, F.M. You, J. Wang, Y. Peng, E. Nevo, D. Sun, M.C. Luo, J. Peng, 2013. Genetic

diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of

durum wheat. International Journal of Molecular Sciences, 14: 7061-7088.

[28] Sun, X., Zhang Xu, Mao Y, Sui Zh, S. Qin, 2004. Identification of phase and sex-related ISSR markers of

red algaGracilaria lemaneiformis. Journal of Ocean University of China, 5(1): 82-84.

[29] Sadigova, S., H. Sadigov, R. ESHgHi, S. SalayEva, J. oJagHi1, 2014. Application of rapd and issr markers

to analyses molecular relationships in azerbaijan wheat accessions (TRITICUM AESTIVUM L.). Bulgarian

Journal of Agricultural Science, 20(1): 87-95.

[30] Shikhseyidova, G., E. Akhundova, R. Quliyev, R. Eshghi, S. Salayeva, J. Ojaghi, 2015. Molecular Diversity

and Genetic Structure of Durum Wheat Landraces. Albanian j. agric. sci., 14(2): 112-120.

[31] Williams, J.G.K., A.R. Kublelik, K.J. Livak, J.A. Rafalski, S.V. Tinger, 1990. DNA polymorphisms

amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Research, 18: 6531-6535.

[32] Zietkiewicz, E., A. Raflaski, D. Labuda, 1994. Genome fingerprinting by simple sequence repeats (SSR)-

anchored polymerase chain reaction amplification. Genomics, 20(2): 176-183.