27
Novel Membranes for Efficient CO 2 Separation Moises A. Carreon Ui it fL i ill UniversityofLouisville Chemical Engineering Dept. [email protected] 22nd National NSF EPSCoR Conference. Coeur d'Alene Idaho, October 27, 2011

Moises Carreon

Embed Size (px)

Citation preview

Page 1: Moises Carreon

Novel Membranes for Efficient CO2 Separation p

Moises A. CarreonU i it f L i illUniversity of LouisvilleChemical Engineering  Dept.

[email protected] 

22nd National NSF EPSCoR Conference. Coeur d'Alene Idaho, October 27, 2011

Page 2: Moises Carreon

Louisville home of the Kentucky Derby

Page 3: Moises Carreon

Outline

I. Introduction CO2 separationZeolite Membranes for CO2 separationZeolitic Imidazolate Frameworks

II ZIF 8 crystalsII. ZIF-8 crystalsSynthesisHomogeneous and Heterogeneous growth

III. ZIF-8 membranesSynthesisSeparation performance (CO2/CH4)

IV. Conclusions

Page 4: Moises Carreon

CO2 – environmental and energy concern Environmental Energy

4

5

Tons OECD

N OECD

Environmental Energy

1

2

3

Bill

ion

Met

ric T

Non-OECD

CO2 emissions  in US by sector and fuel (in MMT) Report #:DOE/EIA‐0383(2009)

CO2 emissions from natural gas

Report # DOE/EIA 0484 May 2009

01980 1990 2000 2010 2020 2030

• main component of greenhouse gas

• World energy-related CO2 emissions rise

Report # DOE/EIA 0484 May 2009

significant impurity in many natural gas wellsgy 2

from 29.7 billion metric tons in 2007 to42.4 billion metric tons in 2040. reduces the energy content of

the gas, and it is acidic andi i th f t• 390 ppm by volume in atmosphere corrosive in the presence of water

Page 5: Moises Carreon

CO2 separation techniques

low energyno moving

Advantages of membranesAbsorption 

and Adsorption  low energy

consumption

easy to

no moving parts

hybrid processing

p

MembranesLow

temperature distillation

no phase changes

no chemical additives

scale upg

Mineralization And

biomineralization

additives simple design and operation

Amine adsorption :

Membrane separation is promising environmentally and economically

• pollution prone • high energy consumption     • chemical‐involved • phase changesphase changes  • complex equipments

Page 6: Moises Carreon

CO2 separation by zeolite membranes

b

5 µm

SAPO ‐34 membrane5 µm

SAPO ‐34 membrane

Cross sectional view

Al 2O3 Support

4.5 SAPO 34 membrane

Al 2O3 Support

4.5 SAPO 34 membrane

0.38 nm0.38 nm

Top viewZeolites are crystalline materials with unimodal pore sizes highly attractive for the separationpore sizes, highly attractive for the separation of CO2 from light gases due to :- Molecular sieving mechanism- Competitive CO2 adsorption

CO22

CH4

M.A. Carreon, et al. JACS 2008, 130, 5412

Page 7: Moises Carreon

SAPO-34 membranes effectively separate CO /CH and CO /N mixturesCO2/CH4 and CO2/N2 mixtures

Low PLow P

SAPO‐34

Upperbound

SAPO-34

UpperboundUpperbound

Zeolite membranes(SAPO-34)

High PUpperboundUpperbound

SAPO-34

UpperboundUpperbound

Zeolite membranes(SAPO-34)

High P

CO2 permeability x1010 cm2(STP)/(s.cmHg)CO2 permeability x1010 cm2(STP)/(s.cmHg)CO2 permeability x1010 cm2(STP)/(s.cmHg)CO2 permeability x1010 cm2(STP)/(s.cmHg)CO2 permeability x1010 cm2(STP)/(s.cmHg)CO2 permeability x1010 cm2(STP)/(s.cmHg)CO2 permeability x1010 cm2(STP)/(s.cmHg)

M.A. Carreon, et al. Adv. Mater. 2008, 20, 729 S.R. Venna and M.A. Carreon, Langmuir 2011, 27, 2888

S O ff CO /C CO /SAPO-34 membranes separate more effectively CO2/CH4 and CO2/N2 gas mixtures than polymeric membranes

Page 8: Moises Carreon

The need for novel membranes……The development of superior performance membranes for gas mixture separationsp p p g prequires novel materials with fundamentally different structural, compositional,adsorption and transport properties than those of polymers and zeolites.

Zeolitic imidazolate frameworks (ZIFs) are novel type of crystalline porous materialsZeolitic imidazolate frameworks (ZIFs) are novel type of crystalline porous materialswith highly desirable properties, such as uniform micropores, high surface areas,and exceptional thermal and chemical stability.

ZIFZeolite

ZIFs are appealing materials for CO separation applications due to:ZIFs are appealing materials for CO2 separation applications due to:1. Chemical stability in the presence of water and some hydrocarbons2. Exceptional uptake capacities for CO23. Open porous framework structure with large accessible pore volumes4. Pore sizes in the range of the kinetic diameter of several relevant gas molecules

Page 9: Moises Carreon

Zeolite imidazolate framework - 8

Relevant ZIF-8 properties: • It has small apertures of 0.34 nm

Zn6N24C48H60

It has small apertures of 0.34 nm• Highly porous open framework structure• High CO2 adsorption capacity • Large accessible pore volume with fully

exposed edges

S ll t ( l l i i )

CO2 separation due to:

• Small pore apertures (molecular sieving)• High CO2 adsorption (competitive adsorption)

Some representative publications on ZIF 8 (Yaghi’s group, UCLA) : a) Park et al. Proc. Natl. Acad. Sci.p p ( g g p, ) )2006, 103, 10186; b) Banerjee et al. Science 2008, 319, 939; c) Anh et al. Acc. Chem. Res.2010, 43, 58

Page 10: Moises Carreon

Room temperature synthesis of ZIF-8 crystals

Zinc sources: Nitrate, acetate, carbonate, chloride, phosphateSolvents: Methanol, DMF, hexanol, ethanol, , ,

Page 11: Moises Carreon

Control over crystal size

TEM images and diffraction patterns demonstrate that ZIF-8 crystallinity and particle size increase with time

Page 12: Moises Carreon

ZIF-8 Kinetics of transformation

Avrami’s model:

t = synthesis time, y (t) = ZIF‐8 relative crystallinity as a function of time k = scale constant, n = Avrami’s constant

S.R. Venna, Jacek B. Jasinski, M.A.Carreon, JACS 2010, 132, 18030–18033

,

Page 13: Moises Carreon

ZIF-8 Growth from solid surfaces

(a) (b)Im

Alkaline

Im‐+ Zn2+

Grain boundaries Time, Temp.

(c)(d)Heterogeneous nucleationZIF‐8 Crystals ∆pH

Crystallization

(c)(d)

ZIF-8 crystals grown directly from the solid liquid interface

M.A.Carreon et al. under review (October 2011)

Page 14: Moises Carreon

ZIF-8 membrane synthesis

bbiRubbing with seeds

Outside wrapped with teflon

Hydrothermal synthesis 150oC (6‐24 hr)

ZIF‐8 membrane 

6 l

AluminaStainless 

6 cm‐long porous supports

steel

ZIF-8 membranes were prepared via in-situ crystallization on porous alumina or stainless steel supports

Page 15: Moises Carreon

2 3 5b

ZIF-8 seeds for membrane preparation

0 1 11 1 20 1 32 3 3

2 3 51 3 4 b

Inte

nsity

(a.u

.)

(0 1

1)

(00

2)

2 2)

(11

2)

3)4)1

3)(2

2 2

)

5)4)4)3 4)

a

a XRD pattern0 0 20 2 22 2 2

2 4 4

c d

5 10 15 20 25 30 352θ (degree)

(

(02

(2 3

(1 1

(01 (

(2 3

(2

4 (0

4

(1 3 a. XRD pattern (SOD structure, BCC)b. Diffraction pattern (in agreement with XRD)c. TEM image (~55 nm crystals)d. HRTEM image (lattice fringes (222) plane)

2 nm

2

2.5

mol

/g)

f360

380

g ST

P) e CO2/CH4 ratio = ~14

(lattice fringes (222) plane)e. N2 ads‐des isotherms (1072 m2/g;  0.53 cc/g; Type I)f. CO2/CH4 ads isotherms

/

0

0.5

1

1.5

2

Ads

orpt

ion

capa

city

(mm

280

300

320

340

360

Qua

ntity

ads

orbe

d (c

m3 /g (CO2/CH4 adsorption capacity~ 14)

00 30 60 90 120

A

Pressure (KPa)

2800 0.2 0.4 0.6 0.8 1

Q

Relative Pressure (P/Po)

Page 16: Moises Carreon

a

ZIF-8 membranes 2 layered membrane XRD pattern of the membranes corresponds to ZIF 8a

~ 5 μm

(1 1

2)

2 layered membrane XRD pattern of the membranes corresponds to ZIF-8

5 μm

b

nsity

(a.u

.)

(0 1

1)

2)

(2 2

2)

* = alumina support

8 layered membrane

~ 9 μm In

ten

(0 0

2

(0 2

2)

(0 1

3)

(1 1

4)

(2 3

3)

(1 3

4)

(2 3

5)

(2 4

4)

(0 4

4)

**

5 μm

c

5 10 15 20 25 30 352θ (degree)

Top view

1 µm

Continuous ZIF-8 membranes prepared on aluminatubular porous supports via in-situ crystallizationemploying secondary seeded approach .

1 µm

Page 17: Moises Carreon

Separation performance for CO2/CH4 mixtures

CO2/ CH4 separation properties at a permeate pressure of 99.5 KPa and pressure drop of 40 KPa  

‐Unprecedented high CO2 permeances‐Low CO2/CH4 selectivities‐High separation indexesHigh separation indexes ‐Uncoordinated nitrogen atoms in the ZIF‐8 may favor its binding with CO2, resulting in preferential CO2 adsorption   

S.R. Venna, M.A.Carreon, JACS 2010, 132, 76-78

Page 18: Moises Carreon

Separation mechanism CO2 (0.33 nm)

CH4(0.38 nm)Pore size (0.34 nm)( )

ption

diffusion

adsorp diffusion

Page 19: Moises Carreon

Existing ZIF membranes for gas mixture separations Membrane Support Permeance b Selectivity Reference

ZIF-8 Asymmetric titania disks

5 x10-8 (H2) H2/CH4=11.2 JACS 2009, 131,16000

ZIF-7 Asymmetric alumina disks

8 x10-8 (H2) H2/N2=7.7; H2/CH4=5.9 Angew. Chem. Int. Ed. 2010, 49, 548

ZIF-8 Porous alumina tubes

17 x10-6 (CO2) CO2/CH4=7 JACS 2010, 132, 76

ZIF-69 Porous alumina disks

3.6 x10-8 (CO2) CO2/CO=3.5 J. Membrane Sci. 2010, 353, 36

ZIF-7 Asymmetric 4.5 x10-8 (H2) H2/N2=18; H2/CH4=14 J. Membrane Sci. 2010, 354, 48 yalumina disks

( )H2/CO2=13.6

ZIF-22 Titania and alumina disks

1.9 x10-7 (H2) H2/N2=6.4; H2/CH4=5.2H2/CO2=7.2; H2/O2=6.4

Angew. Chem. Int. Ed. 2010, 49, 4958

ZIF-90 Alumina disks 2.5 x10-7 (H2) H2/N2=11.7;H2/CH4=15.3H2/CO2=7.3;H2/C2H4=62.8

JACS 2010, 132, 15562

9ZIF-7 Asymmetric alumina disks

9 x10-9 (H2) H2/CO2=8.4 Adv. Mater. 2010, 22, 3322

ZIF-8 Alumina disks 1.75 x10-7 (H2) H2/CH4=13; H2/N2=11.6 c

Langmuir 2010, 26, 14636

ZIF-90 Alumina disks 2.1 x10-7 (H2) H2/N2=15.8;H2/CH4=18.9 Angew.Chem. Int. Ed. 2011, 50, 4979 H2/CO2=15.3;

ZIF-8 Asymmetric alumina disks

1 x10-7 (H2) H2/CO2 =6; H2/CH4=15H2/C2H6=15; H2/C3H8> 300

Chem. Mater, 2011, 23, 2262

ZIF-69 Porous alumina disks

1.9 x10-7 (CO2) CO2/N2=6.3; CO2/CO=5;CO2/CH4=4.6

J. Membrane Sci. 2011, 379, 46

a Li d b h l i l bli i d b ( l/ 2 P ) ca Listed by chronological publication dates; b (mol/m2 •s•Pa); c pure gas measurements

Page 20: Moises Carreon

Conclusions

1. We have demonstrated the synthesis of ZIF-8 crystals with controlledparticle size. These crystals serve as “seeds” for membrane growth.

2. ZIF-8 crystals have been prepared via homogeneous andheterogeneous nucleation.

3. We have presented one of the first examples of the preparation ofcontinuous and reproducible ZIF-8 membranes for a functional gasseparation application.

4. The membranes displayed unprecedented high CO2 permeances andrelatively high separation indexes for CO2/CH4 mixtures.

5 ZIF b l d i i f CO ti f li ht5. ZIF membranes are novel and promising for CO2 separation from lightgases.

Page 21: Moises Carreon

Acknowledgements

Dr. Surendar R. VennaMs. Minqi ZhuDr. Jacek JasinskiNSF-EPSCoRNSF-CAREER (CBET 1054 150)( )ACS-PRF (49202-DNI5)

Page 22: Moises Carreon
Page 23: Moises Carreon

Separation performance parameters For an economic separation: CO /N >70 PCO = > 3 X 10‐7 mol/m2sPaFor an economic separation: CO2/N2>70, PCO2 = > 3 X 10 mol/m sPaFor  CO2/CH4>60, PCO2 = > 3 X 10‐7 mol/m2sPa (at 1000 psia)

The pressure is log mean pressure is calculated using 

Page 24: Moises Carreon

Scale-up of SAPO-34 membranes

Membrane module SAPO‐34 membranes successfully prepared in 25 cm stainless steel supports

SAPO-34 membranes for the separation of CO2 from natural gas have been developed close to commercial demonstration stage.

S Li M A Carreon et al Journal of Membrane Science 2010 352 7S. Li, M.A. Carreon, et al. Journal of Membrane Science 2010, 352, 7

Page 25: Moises Carreon

Conversion of CO2 to chemicals Carbon dioxide as a feedstock for conversion to fuels and chemicals

CO2 OO

O

O

+ZIF orBio‐MOF Bio‐MOF

R R

CO2+

Epoxide Cyclic CarbonateEpoxide Cyclic carbonate

R= CH2Cl, CH3, C6H5, C4H9

Cyclic Carbonates and Polycarbonates as well as Carbamates and polycarbamates are important raw materials for :h f f i f l ( l h ) d i f i dh i l i d fibthe manufacture of a variety of polymers (e.g., polyurethanes) used in foams, coatings, adhesives, plastics and fibers.

They are also used as herbicides, fungicides and pesticides in agrochemical industry.

Page 26: Moises Carreon

Designing CO2 selective MOF membranes

Optimize the main factors affecting the overall separation performance of the membranes:

1. Synthesis routes to prepare crystals with different sizes and morphologies2. Surface chemistry control : functionalization of MOF crystals with basic pendant 

functionalities or use of BioMOFs (which have already as part of their structures these basic functionalities: adenine, aspartame, and other basic biomolecules).

3. Effect of seeding techniques to improve membrane intergrowth: physical vschemical approach.

4 Interaction between membrane and support (nature of the support: composition4. Interaction between membrane and support (nature of the support: composition and textural properties).

5. Effective control over membrane thickness  

Page 27: Moises Carreon

Bio-MOF-1

• 3‐D permanently porous3 D permanently porous framework

• Zn(II)‐Adeninate columns composed of octahedral cages

• Cage consists of 8 Zn2+ cationswith 4 adeninate linkers

• Columns interconnect with bi h ldi b l tbiphenyldicarboxylate

• Surface area: 1700 m2/g

J. An, S.J. Geib, N.L. Rosi. J. Am. Chem. Soc. 2009, 8376, 8377