51
Moduli, a 0.1 1 keV Cosmic Axion Background and the Galaxy Cluster Soft Excess Joseph Conlon, Oxford University Imperial College, London, 11th November 2014 Joseph Conlon, Oxford University Moduli, a 0.1 - 1 keV Cosmic Axion Background and the Gala

Moduli,a0 1 1keVCosmicAxionBackground

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Moduli,a0 1 1keVCosmicAxionBackground

Moduli, a 0.1− 1 keV Cosmic Axion Backgroundand the Galaxy Cluster Soft Excess

Joseph Conlon, Oxford University

Imperial College, London, 11th November 2014

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 2: Moduli,a0 1 1keVCosmicAxionBackground

Talk Structure

1. Moduli

2. The Cosmological Moduli Problem

3. Dark Radiation

4. A 0.1 - 1 keV Cosmic Axion Background

5. Observing a Cosmic Axion Background and the Cluster SoftExcess

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 3: Moduli,a0 1 1keVCosmicAxionBackground

Thanks to my collaborators

1208.3562 Michele Cicoli, JC, Fernando Quevedo‘Dark Radiation in LARGE Volume Models’

1304.1804 JC, David Marsh‘The Cosmophenomenology of Axionic Dark Radiation’

1305.3603 JC, David Marsh‘Searching for a 0.1-1 keV Cosmic Axion Background’

1312.3947 Stephen Angus, JC, David Marsh, Andrew Powell, Lukas Witkowski‘Soft X-Ray Excess in the Coma Cluster from a Cosmic Axion Background’

1406.5188 David Kraljic, Markus Rummel, JC‘ALP Conversion and the Soft X-Ray Excess in the Outskirts of the Coma Cluster’

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 4: Moduli,a0 1 1keVCosmicAxionBackground

I

MODULI

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 5: Moduli,a0 1 1keVCosmicAxionBackground

Moduli

How to turn string compactifications into observationalpredictions?

It is difficult to single out any preferred extension of the StandardModel as there are so many different approaches to realising theStandard Model.

Weakly coupled heterotic string

Free fermionic models

Rational CFT models (Gepner models)

IIA intersecting D6 branes

Branes at singularities

M-theory on singular G2 manifolds

IIB magnetised branes with fluxes

F-theory

. . .

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 6: Moduli,a0 1 1keVCosmicAxionBackground

Moduli

Instead more useful to focus on the most generic features ofcompactifications: the moduli sector.

Closed string sector always present and involves modes (dilaton /volume modulus) always present in compactified string theory.

Such extra-dimensional modes are necessarily present in thespectrum on compactification of 10d theory to four dimensions.

Much of the physics of moduli is universal across compactifications.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 7: Moduli,a0 1 1keVCosmicAxionBackground

II

THE COSMOLOGICAL

MODULI PROBLEM

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 8: Moduli,a0 1 1keVCosmicAxionBackground

The Standard Cosmology

The Standard Cosmology:

INFLATION

inflationaryexpansion

OSCILLATIONS

AND REHEATI|NG

matter dominationby inflaton quanta

gg, qq, e+ e-, ......

VISIBLE SECTORREHEATING

Decay of inflaton

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 9: Moduli,a0 1 1keVCosmicAxionBackground

The Cosmological Moduli Problem

Polonyi 81, Coughlan Ross 83, Banks Kaplan Nelson 93, de Carlos Casas Quevedo

Roulet 93

Hot Big Bang starts when universe becomes radiation dominated.

This occurs ‘when inflaton decays’. However:

Non-relativistic matter redshifts as ρΦ ∼ a(t)−3

Radiation energy density redshifts as ργ ∼ a(t)−4

Therefore as a(t) → ∞,ργρΦ

→ 0

Long-lived matter comes to dominate almost independent of theinitial conditions.

Reheating is dominated by the LAST scalar to decay NOT the first.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 10: Moduli,a0 1 1keVCosmicAxionBackground

The Cosmological Moduli Problem

Moduli are generically misaligned from their final minimum duringinflation, and after inflation oscillate as non-relativistic matter(ρ ∼ a−3) before decaying.

Misalignment occurs as inflationary potential contributes to themoduli potential:

Vinf = Vinf (S ,T , . . . )

The closed string origin of moduli imply their interactions are‘gravitational’ and suppressed by powers of MP .

Moduli live a long time and come to dominate the energy densityof the universe

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 11: Moduli,a0 1 1keVCosmicAxionBackground

The Cosmological Moduli Problem

Lifetime of moduli is determined by MP-suppressed decay rate:

Γ ∼1

m3Φ

M2P

τ = Γ−1∼ 8π

M2P

m3Φ

=

(

100TeV

)3

0.1s

Tdecay ∼

( mΦ

100TeV

)3/23 MeV

Hot Big Bang does not start until moduli decay.

The cosmological moduli problem is the statement that formΦ . 100TeV moduli decays spoil predictions of big bangnucleosynthesis.

Side consequence: generic expectation of string compactificationsis that the universe passes through a modulus-dominated epoch,and reheating comes from the decays of these moduli.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 12: Moduli,a0 1 1keVCosmicAxionBackground

The Cosmological Moduli Opportunity

We expect reheating to be driven by the late-time decays ofmassive Planck-coupled particles.

gg, qq, e+ e-, ...... aa

VISIBLESECTOR REHEATING

DARK RADIATION

Last decaying scalar

Hidden sector decays of moduli give rise to dark radiation.

Ideal subject for string phenomenology!

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 13: Moduli,a0 1 1keVCosmicAxionBackground

The Cosmological Moduli Opportunity

INFLATION

inflationaryexpansion

OSCILLATIONS

AND REHEATI|NG

matter dominationby inflaton quanta

gg, qq, e+ e-, ...... aa

VISIBLE SECTORREHEATING

DARK RADIATION

Decay of inflaton

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 14: Moduli,a0 1 1keVCosmicAxionBackground

The Cosmological Moduli Opportunity

As gravitationally coupled particles, moduli generally couple toeverything with M−1

P couplings and there is no reason to expectvanishing couplings to hidden sectors.

Visible sector :Φ

4MP

F colorµν F color ,µν ,

∂µ∂µΦ

MP

HuHd , . . .

Hidden sector :Φ

2MP

∂µa∂µa,

Φ

4MP

F hiddenµν F hidden,µν . . .

This is supported by explicit studies of string effective field theories

In particular, axionic decay modes naturally arise withBR(Φ → aa) ∼ 0.01 → 1.

1208.3562 Cicoli JC Quevedo, 1208.3563 Higaki Takahashi, 1304.7987 Higaki

Nakayama Takahashi

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 15: Moduli,a0 1 1keVCosmicAxionBackground

The Cosmological Moduli Opportunity

Independent of susy breaking scale in string modelsreheating is driven by decays of the lightest moduli, and darkradiation arises from hidden sector decays of these moduli.

Example: volume modulus in LVS, τb is lightest moduli and has amassless volume axion partner ab

K = −3 ln(

Tb + Tb

)

L =3∂µτb∂

µτb4τ2b

+3∂µab∂

µab

4τ2b

Volume modulus τb has hidden sector decay τb → abab to volumeaxion. 1208.3562 Cicoli JC Quevedo 1208.3563 Higaki Takahashi

What happens to ab? It becomes Dark Radiation

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 16: Moduli,a0 1 1keVCosmicAxionBackground

III

DARK RADIATION

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 17: Moduli,a0 1 1keVCosmicAxionBackground

Dark Radiation: Physics

Both the CMB and primordial BBN abundances are sensitive toadditional dark radiation in the early universe (which changes theexpansion rate).

In the CMB, ∆Neff modifies the damping tail of the CMB and isprobed by the ratio between the damping scale and the soundhorizon.

At BBN times, extra radiation modifies the expansion rate at agiven temperature.

This affects the primordial Helium and Deuterium abundances:(D/H)p (where Neff is degenerate with Ωbh

2) and Yp.

Recent observations have tended to hint at the 1÷ 3σ level for∆Neff > 0.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 18: Moduli,a0 1 1keVCosmicAxionBackground

Dark Radiation: Observations

Various (non-independent) recent measurements, 1 σ error bars:

CMB + BAO 3.55± 0.60 (WMAP9 + eCMB + BAO, 1212.5226) 3.50± 0.47 (SPT + CMB + BAO, 1212.6267) 2.87± 0.60 (WMAP7 + ACT + BAO, 1301.0824) 3.30± 0.27 (Planck + eCMB + BAO, 1303.5076) 3.43± 0.26 (Planck + eCMB + BOSS BAO + SN, 1411.1074)

CMB + BAO + H0

3.84± 0.40 (WMAP9 + eCMB + BAO + H0, 1212.5226) 3.71± 0.35 (SPT + CMB + BAO + H0, 1212.6267) 3.52± 0.39 (WMAP7 + ACT + BAO+ H0, 1301.0824) 3.52± 0.24 (Planck + eCMB + BAO + H0, 1303.5076)

Expect significant improvement over next few years.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 19: Moduli,a0 1 1keVCosmicAxionBackground

Dark Radiation: Observations

An independent probe of Neff is via BBN primordial abundances -new determinations of Yp and (D/H)P appeared recently.

YP = 0.254 ± 0.003 (1308.2100, Izotov et al)

(D/H)P = (2.53 ± 0.04) × 10−5(1308.3240, Cooke et al)

Updated bounds: (D/H)P+ CMB

Neff = 3.28 ± 0.28 (updates 3.02 ± 0.27 from Planck XVI)

BBN alone (D/H)P + YP :

Neff = 3.50 ± 0.20 (1308.3240, Cooke et al)

Neff = 3.58 ± 0.25 (1408.6953, Izotov et al)

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 20: Moduli,a0 1 1keVCosmicAxionBackground

IV

A COSMIC AXION

BACKGROUND

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 21: Moduli,a0 1 1keVCosmicAxionBackground

A Cosmic Axion Background

String theory says we expect reheating to be driven by thelate-time decays of massive Planck-coupled particles.

gg, qq, e+ e-, ...... aa

VISIBLESECTOR REHEATING

DARK RADIATION

Last decaying scalar

Dark radiation arises from hidden sector decays of moduli

Ideal subject for string phenomenology!

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 22: Moduli,a0 1 1keVCosmicAxionBackground

A Cosmic Axion Background

Typical moduli couplings Φ4MP

FµνFµν or Φ

MP∂µa∂

µa give

Hdecay ∼ Γ ∼1

m3Φ

M2P

Treheat ∼

(

3H2decayM

2P

)1/4∼

m3/2φ

M1/2P

∼ 0.6GeV( mφ

106GeV

)3/2

Eaxion =(

mΦ2

)

= 5× 105GeV( mΦ

106GeV

)

Visible sector thermalises: however axions propagate freely asuniverse is transparent to them.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 23: Moduli,a0 1 1keVCosmicAxionBackground

A Cosmic Axion Background

gg, qq, e+ e-, ...... aa

VISIBLE SECTOR DARK RADIATION

Decay of inflaton

THERMALISEDFREE STREAMING

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 24: Moduli,a0 1 1keVCosmicAxionBackground

A Cosmic Axion Background

Φ → gg , . . . : Decays thermalise Tγ ∼ Treheat ∼m

3/2Φ

M12P

Φ → aa : Axions never thermalise Ea =mΦ

2

Thermal bath cools into the CMB while axions never thermaliseand freestream to the present day:

Ratio of axion energy to photon temperature is

Ea

Tγ∼

(

MP

)12

∼ 106(

106GeV

)

12

Retained through cosmic history!

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 25: Moduli,a0 1 1keVCosmicAxionBackground

A Cosmic Axion Background

Ratio of axion energy to photon temperature is

Ea

Tγ∼

(

MP

)12

∼ 106(

106GeV

)

12

No absolute prediction, but a lightest modulus mass m ∼ 106GeVarises in many string models - often correlated with SUSYapproaches to the weak hierarchy problem.

KKLT hep-th/0503216 Choi et al

Sequestered LVS 0906.3297 Blumenhagen et al

‘G2 MSSM’ 0804.0863 Acharya et al

NB Moduli problem requires mΦ & 105TeV.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 26: Moduli,a0 1 1keVCosmicAxionBackground

A Cosmic Axion Background

Axions originate at z ∼ 1012(t ∼ 10−6 s) and freestream to today.

PREDICTION: Cosmic Axion Background

Energy: E ∼ 0.1 ÷ 1keV Flux: ∼(

∆Neff

0.57

)

106cm−2s−1.

200 400 600 800

1

2

2

4

6

8

EeV

dF

dE@1

03cm-

2s-

1eV-

1 D

#ax

ions@1

057kp

c-3

eV-

1 D

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 27: Moduli,a0 1 1keVCosmicAxionBackground

A Cosmic Axion Background

The current energy of such axionic dark radiation is

Ea ∼ 200eV

(

106 GeV

)

12

The expectation that there is a dark analogue of the CMB atE ≫ TCMB comes from very simple and general properties ofmoduli.

It is not tied to any precise model for moduli stabilisation, orapproach to realising the Standard Model.

It just requires the existence of massive particles only interactinggravitationally.

For 105GeV . mΦ . 108GeV CAB lies today in extreme ultraviolet/soft X-ray wavebands.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 28: Moduli,a0 1 1keVCosmicAxionBackground

V

OBSERVING A COSMIC

AXION BACKGROUND

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 29: Moduli,a0 1 1keVCosmicAxionBackground

Seeing Axions

How to see a CAB with Ea ∼ 0.1 − 1keV?

Axion-photon conversions come from axion coupling toelectromagnetism:

La−γ = −1

4FµνF

µν−

1

4MaFµν F

µν +1

2∂µa∂

µa −1

2m2

aa2.

For general axion-like particles M ≡ g−1aγγ and ma are unspecified.

We take ma = 0 (in practice . 10−12eV) and keep M free.

Direct bounds (axion production in supernovae) are M & 1011GeV.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 30: Moduli,a0 1 1keVCosmicAxionBackground

Seeing Axions

Axion-to-photon conversion probability for axion energy Ea intransverse magnetic field B⊥ of domain size L is:

P(a → γ) = sin2(2θ) sin2(

cos 2θ

)

where

θ ≈ 2.8·10−5×

(

10−3cm−3

ne

)(

B⊥

1 µG

)(

Ea

200 eV

)(

1014 GeV

M

)

,

∆ = 0.27×( ne

10−3cm−3

)

(

200 eV

Ea

)(

L

1 kpc

)

.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 31: Moduli,a0 1 1keVCosmicAxionBackground

Seeing Axions

Axions convert to photons in coherent magnetic field domain:want large magnetic fields supported over large volumes.

Best locations are galaxy clusters:

The largest virialised structures in the universe

Typical size 1 Mpc, typical mass 1014 ÷ 1015Msun.

Large magnetic fields B ∼ 1÷ 10µG coherent overL ∼ 1÷ 10 kpc.

Hot intracluster gas, Tgas ∼ 2÷ 10keV.

By mass 1 per cent galaxies, 10 per cent gas, 90 per cent darkmatter.

Sit at the ‘large magnetic fields over large volumes’ frontier ofparticle physics.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 32: Moduli,a0 1 1keVCosmicAxionBackground

The Coma Cluster in IR/Visible

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 33: Moduli,a0 1 1keVCosmicAxionBackground

The Coma Cluster in X-rays

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 34: Moduli,a0 1 1keVCosmicAxionBackground

The Cluster Soft Excess

In fact there exists a long-standing (since 1996) EUV/soft x-rayexcess from galaxy clusters (Lieu 1996, review Durret 2008). E.g Comahas

Lexcess ∼ 1043erg s−1

Observed by different satellites - principally EUVE and soft bandsof ROSAT.

Has been studied for a large number (∼ 40) of clusters, present in∼ 15.

Difficulties with astrophysical explanations - see backup slides.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 35: Moduli,a0 1 1keVCosmicAxionBackground

The Cluster Soft Excess

from Bonamente et al 2002, fractional soft excess in ROSAT 0.14 - 0.28 keV R2 band

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 36: Moduli,a0 1 1keVCosmicAxionBackground

The Cluster Soft Excess

from Bonamente et al 2002, fractional soft excess with radius

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 37: Moduli,a0 1 1keVCosmicAxionBackground

The Cluster Soft Excess: Coma

Soft excess extends well beyond hot gas and cluster virial radius:

from 0903.3067 Bonamente et al, ROSAT R2 band (0.14-0.28keV) observations of

Coma

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 38: Moduli,a0 1 1keVCosmicAxionBackground

The Cluster Soft Excess and a CAB

Proposal: cluster soft excess generated by a → γ conversion incluster magnetic field.

Basic predictions:

Magnitude and morphology of soft excess fully determined bycluster magnetic field and electron density

Spatial extent of excess conterminous with magnetic field

No thermal emission lines (e.g. OVII ) associated to excess

Energy of excess is constant across clusters, varying withredshift as Ea ∼ (1 + z).

Test by propagating axions through simulated cluster magneticfields

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 39: Moduli,a0 1 1keVCosmicAxionBackground

Axion Propagation through Center of Coma Cluster

Magnetic field model is best fit to Faraday rotation (Bonafede et al

1002.0594):

Magnetic field has Kolmogorov spectrum, |B(k)| ∼ k−11/3, generated betweenkmax = 2π

2kpcand kmin = 2π

34kpc.

Spatial magnetic field has Gaussian statistics.

Central magnetic field 〈B〉r<291kpc = 4.7µG

Equipartition radial scaling of B, B(r) ∼ ne(r)1/2

Electron density taken from β-model with β = 0.75,

ne (r) = 3.44× 10−3

(

1 +

(

r

291kpc

)2)

3β2

cm−3

Numerical 20003 magnetic field with 0.5kpc resolution.

Numerical propagation of axions with E = 25eV ÷ 25000eV anddetermination of P(a → γ).

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 40: Moduli,a0 1 1keVCosmicAxionBackground

Axion Propagation through Centre of Coma

100 200 300 400 500 600

0.1

1

10

Impact parameter @ Dkpc

XPa

ý\

@10

-4D

1 keV

600 eV

400 eV

200 eV

150 eV

100 eV

50 eV

25 eV

a → γ conversion probabilities for different axion energies as afunction of radius from the centre of Coma

Note the high suppression for Ea < 100eV

Angus JC Marsh Powell Witkowski 1312.3947

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 41: Moduli,a0 1 1keVCosmicAxionBackground

Axion Propagation through Centre of Coma

0 100 200 300 400 500

Energy @ DeV

Axions

Photons

Comparison of original axion spectrum and spectrum of convertedphotons

Photon spectrum falls off rapidly at both low and high energies

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 42: Moduli,a0 1 1keVCosmicAxionBackground

Axion Propagation through Centre of Coma

0

0.5

1

1.5

2

0 3 6 9 12 15 18

Rat

io [L

sim

/Lob

s]

1

5

25

Lum

inos

ity [1

041er

gs-1

Model 1Model 2Model 3

Radial distance [arcminutes]

Data

Morphology fits reasonably well for M ∼ 7× 1012GeV

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 43: Moduli,a0 1 1keVCosmicAxionBackground

Axion Propagation through Outskirts of Coma

0.10 0.15 0.20 0.25 0.30 0.35

0

5.0 1012

1.0 1013

1.5 1013

2.0 1013

2.5 1013

3.0 1013

Ge

V ModelB

centre

ModelA

centre

ModelB

ModelA

<E_CAB> /keV

M

Fit to the outskirts gives a compatible value of M ∼ 1013GeV.

Kraljic, Rummel, JC 1406.5188

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 44: Moduli,a0 1 1keVCosmicAxionBackground

Axion Propagation through Other Clusters

(Plots assume the Coma best fit value of M ∼ 7× 1012GeV)

Powell, to appear

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 45: Moduli,a0 1 1keVCosmicAxionBackground

Conclusions

Physics of moduli suggests the existence of a Cosmic AxionBackground with energies Ea ≫ TCMB

CAB arises from hidden sectors decays of moduli to axions atthe time of reheating

CAB contributes to dark radiation and ∆Neff

CAB energy today is naturally in 0.1− 1 keV range

Axions can convert into photons in astrophysical magneticfields, and CAB may be responsible for long-standing softX-ray excess from galaxy clusters

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 46: Moduli,a0 1 1keVCosmicAxionBackground

BACKUP SLIDES

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 47: Moduli,a0 1 1keVCosmicAxionBackground

Cluster Soft Excess: Astrophysical Explanations

Two main proposals for astrophysical explanations:

1. A warm thermal gas with T ∼ 0.2keV.

Interpret soft excess as thermal bremmstrahlung emissionfrom this warm gas.

2. A large non-thermal relativistic electron population withE ∼ 200 − 300 MeV.

Interpret soft excess as inverse Compton scattering ofelectrons on CMB.

Both have problems (in back-up slides).

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 48: Moduli,a0 1 1keVCosmicAxionBackground

Astrophysics: T ∼ 0.2keV warm gas

The original proposal. However:

1. Such a gas is pressure unstable against the hot ICM gas.

It rapidly cools away on a timescale much shorter than clustertimescales.

2. A thermal T ∼ 0.2keV gas would also have thermal emissionlines - particularly OVII at 560 eV.

No such lines have been observed - some early claimeddetections have gone away.

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 49: Moduli,a0 1 1keVCosmicAxionBackground

Astrophysics: non-thermal E ∼ 150 MeV electrons

A more promising propsal: a large population of non-thermalelectrons scattering off the CMB. However:

1. If this population continues to E ∼ 2GeV, its synchrotronradio emission is above level of Coma radio halo.

This necessitates a sharp spectral cutoff between ∼ 200MeVand ∼ 2GeV.

2. This population necessarily produces gamma rays throughnon-thermal bremmstrahlung.

It was predicted that these gamma rays would be easilyobservable by Fermi (Atoyan + Volk 2000)

But - Fermi does not see any clusters:

FComa

>100 MeV < 1.1 × 10−9ph cm−2 s−1

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 50: Moduli,a0 1 1keVCosmicAxionBackground

Astrophysics: non-thermal E ∼ 150 MeV electrons

from Atoyan + Volk, 2000

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy

Page 51: Moduli,a0 1 1keVCosmicAxionBackground

Coma in Gamma Rays

(Ando + Zandanel, 1312.1493)

Joseph Conlon, Oxford University Moduli, a 0.1 − 1 keV Cosmic Axion Background and the Galaxy