115
7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 1/115 I \\l MODELLING OF OI L FURNACE BLACK MANUFACTURING PROCESS USING ASPEN A Thesis Presented to The Faculty of the College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirements for the Degree Master of Science by Sharat B. Dhulipalli,,<· -"..- ./ June, 1990

Modelling of Oil Furnace Black Manufacturing Process Using Aspen

  • Upload
    alroman

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 1/115

I

\\l

MODELLING OF OIL FURNACE BLACK MANUFACTURING

PROCESS USING ASPEN

A Thes is Presented to

The Facul ty o f the Col l ege o f Engineering and Technology

Ohio Univer s i ty

In Pa rt ia l F u lf i l lm e n t

o f th e Requirements for th e Degree

Master o f Sc ience

by

Sharat B. Dhulipalli , ,<·- " . . - ./

June, 1990

Page 2: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 2/115

ACKNOWLEDGEMENTS

I ta.ke t h i s oppor tuni ty to express my s in c er e g r a ti tu d e

and apprecia t ion to Dr. Wen-Jia Chen fo r h is valuable

guidance and ass i s t ance during the course o f t h i s the s i s and

my s t ay a t ohio Univers i ty . I would a lso l ike to express my

s incere thanks to Dr. Nicholas Dinos of the Department of

Ch·emical Engineering, a t Ohio Univers i ty , and Dr. Jay

Gunasekara of the Department of Mechanical Engineer ing a t

Ohio Univers i ty fo r t h e i r guidance and help in completing

t h i s the s i s work.

Shara t B. Dhul ipa l l i

June 1990

Page 3: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 3/115

CONTENTS

CHAPTER 1 INTRODUCTION 1

1 .1

1 .2

1 .3

Aspen Plus . . . . . . • . . . . . . . .

Carbon Black

Aim of th e Study .

1. 2

4

CHAPTER 2 LITERATURE REVIEW 5

Fur na ce B la ck.1

2.1 .1

2 .1 .1

Gas Furnace Process

Gas Furnace Process

• 5

• 8

• 8

2 .2 Feedstocks fo r o i l Furnace P roce s s . . . 12

2.3 Effec t s o f Opera ti ng Pa rame te rs

.....12

2 .3 .1 E ffec t of Combustion a i r to

Gas r a t i o . . . . • . . . .12

2.3.2 Effec t of Tota l a i r to o i l r a t i o . 15

2 .4 Effec t of Pot tass ium addi t ives 16

2 .5 Carbon black Format ion ....2.5.2 Theory Based on C2 Rad i c a l .

2.5.2 Theory of Polymer iza t ion . .2.5.3 Nuclea t ion and Growth ...

· . . . 20

• • • • 20• .20

· . . .21

Page 4: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 4/115

2.5.4 Qual i ty Control . . • . . . • . .21

CHAPTER 3 DEVELOPMENT OF MODEL . . . . . . . . . . .22

3 .1 Need fo r a M ode l .. . 22

3.2 Capabi l i t ies of ASPEN. . 23

3 .3 Limi ta t ions of ASPEN . . . . . 25

3 .4 Modelling of th e process 27

3.5 Development of Simulat ion Model . . 47

CHAPTER 4 RESULTS AND DISCUSSION

CHAPTER 5 CONCLUSIONS . .

59

66

REFERENCES . . . . . . . . • . . • . . . . . . . . 68

APPENDIX A . . . . . . . . . . . . . . . . . . . . i

APPENDIX B . . • . . . . . . . . . . . . . . . . xv

Page 5: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 5/115

1 .

2A.

2B.

3A.

3B.

4 .

5 .

LIST OF TABLES

Data from USP 2,464,700

Data from USP 3,240,565

Data from USP 3,240,565

Data used in th e reg ress ion ana lys i s fo r y ie ld

Data used in the regress ion ana lys i s fo r Yield

Summary of th e reg ress ion a na ly sis fo r y i e ld

Comparision of ac tua l and ca lcu la t ed y i e l d s

.29

.30

.31

.32

.33

.35

.37

6. Data used in reg ress ion ana lys i s o f su r face area .40

7. Summary o f re gre sio n an aly sis fo r su r face area .41

8 . Comparision of Actua l and c a lc u la te d s ur fa ce area .43

9 • Data used fo r cor r e l a t i on o f o i l absorp t ion .44

.60

10. Summary of reg ress ion a na ly sis fo r o i l absorp t ion .45

11. Comparision o f ac tua l and ca lcu la t ed o i l absopt ion46

12. Comparision of y ie ld from s imula t ion to Yie ld

r epor ted in Paten t

13. Comparision of su rfa ce area from s imula t ion to

su rfac e a rea re po rted in p aten t .61

14. Comparision of o i l absorpt ion from s imula t ion to

o i l absorpt ionrepor ted

in pa ten t .61

15. Composition o f th e O utle t gases from s imula t ion .63

16. Summary of th e r e su l t s o f s imula t ion fo r run H3 .64

Page 6: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 6/115

1 .

2 •

3 •

LIST OF FIGURES

Flow diagram, Gas furnace process

Flow diagram, o i l furnace process

B lo ck d ia gram o f s im u la tio n model

6

7

48

Page 7: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 7/115

1C h a p t e r I

INTRODUCTION

C h e m i c a l p r o c e s s indus t r i es n e e d to b e c o m p e t i t i v e in

today ' s economic e n v i r o n m e n t . To b e c o m p e t i t i v e , c h e m i c a l

p ro c e ss e ng in e e rs are u s i n g c o m p u t e r s to d e s i g n the c h e m i c a l

processes . V a r i o u s k i n d s o f p r o c e s s s i m u l a t i o n p a c k a g e s w i t h

v a r y i n g capab i l i t i e s , s u c h a s FLOWTRAN, ASPEN PLUS, e t c . , are

b e i n g u s e d fo r t h i s p u r p o s e . T h e se s o f t w a r e p a c k a g e s e n a b l e

p ro ce ss e ng in ee rs to d e s i g n a n d s i m u l a t e th e p r o c e s s j u s t

w i t h th e knowledge of the c o n ce p tu al f lo ws h e e t of the

process .

1 .1 Aspen P l u s

ASPEN PLUS i s a s i m u l a t i o n too l u s e d to model p r o c e s s e s

w h e r e there i s a flow of mass an d e n e r g y from o n e un i t

p r o c e s s to the o the r . ASPEN PLUS c a n b e u s e d to model m o st

of th e c h e m i c a l p r o c e s s indus t r i es s u c h as c h e m i c a l ,

p e t r o c h e m i c a l , pUlp an d p a p e r .

The input to ASPEN PLUS cons i s t s of i n f o r m a t i o n

genera l ly spec i f i ed w i t h the p r o c e s s f l o w s h e e t , an d the

o u t p u t from the ASPEN s i m u l a t i o n represents the p e r f o r m a n c e

of the p l an t , a l l the p ro du ct s tr e am s, t h e i r c o m p o s i t i o n s ,

prope r t i e s , a n d mass an d e n e r g y f l o w s .

Page 8: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 8/115

2

s i m u l a t i o n s t u d i e s on t h e c o n c e p t u a l f lo w s h e e ts u s i ng

ASPEN PLUS can h e l p i n o p t i m i z i n g t h e p r o c e s s and avoid major

m i s t a k e s such a s committ ing t o t h e wrong t y p e o f equipment.

The ASPEN PLUS model can be improved a s new i n f o r m a t i o n about

t h e p r o c e s s becomes a v a i l a b l e .

ASPEN PLUS can s e r v e a s a powerful t o o l i n s i m u l a t i n g

e x i s t i n g p l a n t s t o improve y i e l d s and reduce energy

consumpt ion. It a l s o can h e l p p r o c e s s e n g i n e e r s i n

d e t e r m i n i n g t h e e f f e c t s o f v a r y i n g composi t ion o f t h e

f e e d s t o c k s and changes i n t h e o p e r a t i n g c o n d i t i o n s o f t h e

p r o c e s s on t h e q u a li t y , y i e ld and o t h e r p a r a m e t e r s .

1 . 2 Carbon Black

Carbon b l a c k i s formed by incomplete combust ion o f

o r g a n ic s u b s t a n c e s . The te rm "carbon b l a c k " ' r e f e r s t o a

group o f i n d u s t r i a l p r o d u c t s c o n s i s t i n g o f f u r n a c e b l a c k s ,

channe l b l a c k s , the rmal b l a c k s and lamp b l a c k s . Carbon

b l a c k s a r e 99% carbon. They a r e composed o f e l e m e n t a l carbon

i n t h e form o f n e a r s p h e r i c a l p a r t i c l e s o f c o l l o i d a l s i z e s

c o a l e s c e d i n t o p a r t i c l e a g gr e g at e s o b t a i n ed by p a r t i a l

combust ion o r the rmal decomposi t ion o f hydrocarbons .

Page 9: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 9/115

3

Furnace black i s commercially th e most impor tan t black ,

account ing fo r 90% of the t o t a l black produced in the world .

Furnace black i s formed by pa r t i a l combustion o f na tura l gas

o r aromatic hydrocarbons. At presen t most o f th e furnace

black i s produced us ing aromat ic o i l , which i s th e bottom

product o f th e pet roleum r e f in ing . Channel b lack i s formed

when na tu r a l gas flame i s impinged on channel i rons . Thermal

b lack i s made by the rmal cracking of na tura l gas .

The rubbe r / t i r e indus t ry i s th e major consumer o f carbon

b lack . Some o f th e carbon black a lso i s consumed in the

manufacture o f inks and l acquer s . The qua l i t y o f th e carbon

b lack i s based on i t s re inforcement of rubber . The impor tan t

qua l i t i e s o f carbon black in rubber app l i ca t ions a re pa r t i c l e

s i ze and s t ruc tu re .

In g en era l, th e smal le r th e pa r t i c l e s i ze o f th e black ,

th e h igher th e su r face area and th e h igher i t s pr i ce . For

t h i s reason, the r e l a t i on between th e opera t ing cond i t ions

and th e type o f b lack formed i s c ruc i a l fo r the economic

o pe ra tio n o f th e p lan t .

Page 10: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 10/115

4

1 .3 Aim Of The study

In th is thes i s work, data from various paten t s were

co' l lected and empir ica l equat ions re la t ing the main

characteri 's t t ics o f carbon black to the opera t ing condi t ions

of the process were developed. These cha rac te r i s t i c s a re

surf racearea , s t ruc ture and yie ld . These empir ica l equat ions

wereu .s,e'd to

developFORTRAN

blocksto

s imula tea pa r t

ofthe

r eac to r sec t ion of the carbon black process . An ASPEN PLUS

model fo r the s LmuLa tLon of th e whole process was developed

using th e :uoit opera t ion blocks a va ila ble in ASPEN PLUS and

th e d'evelq.:ed FORTRAN blocks . From th e re su l t s of the

simUlat ion 4 comparison was made between the ac tua l and the

s imula tedr :e su l t s .

Page 11: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 11/115

5

Chapter I I

LITERATURE REVIEW

There are a var ie ty of i ndus t r i a l blacks today, but

those with a s ign i f i can t amount of product ion a re furnace

black, thermal black, and channel black. un t i l l the ear ly

1970s carbon black was mostly produced by channel black

process . But th e economics reSUlt ing from th e higher pr ices

of na tu ra l gas and be t t e r qual i ty of the carbon black

produced from the furnace process made furnace black a major

source of carbon black.

2.1 Furnace Black

There a re two types of furnace black manUfacturing

processes . They are gas furnace process and o i l furnace

process , depending upon whether gas or o i l i s used as a

source of carbon. The gas furnace process was f i r s t

es tab l ished in 1922 [1] and the o i l furnace process was

developed in 1942 by J .C. Krejci [2] .

2 .1 .1 Gas Furnace Process.

In the gas furnace process[3] , na tu ra l gas i s used as

the source of carbon. Air and a pa r t of na tu ra l gas are

Page 12: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 12/115

colector

60Vde

sand

hp

ca

/

.Bk        

         bak

E

uge

Bow""

\

, • I t •I ,

,

111 I I

Cb

         Y-U:_1

Bak         cony'

••I

,.

,

peletzingeqpmen

Eerc

peCiPiaos f

GaWaespray"

Sacoe <

,

Bn-

 J&

_

Ar

/

      

FG1Gfunpo

fowdagam

RpodfomCbbakbyJBD

C]

0

\

Page 13: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 13/115

A"

Ot,y

l

re"-oUPD',

I

Bui,1

'O

t

;--!

(ewOIOl

Clo

1

8Q,11.

[Itwao '(

'1 r I I I I I I I I 1 .

M,copwt

Z

F

G

aOi

               ba

         

Rp

o

d

fom

C

b

b

a

k

byJB.Do

[]

'-J

Page 14: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 14/115

8

burn t crea t ing a flame. The r e s t of the na tu ra l gas i s

decomposed in th e f lame, forming th e d es ired carbon black.

The y i e ld and qual i ty of the carbon black i s dependent on the

temperature and res idence t ime which a re cont ro l led by a i r

to gas r a t i o and by the conditions of turbu lence in the

r eac to r . Figure 1 shows the schematic representa t ion of the

gas furnace process .

2 .1 .2 o i l Furnace Process.

Even though the f i r s t o i l furnace process was mentioned

in th e Ayers paten t [4] , Phi l l i p s Petroleum was th e pioneer

in th e o i l furnace process . They improved th e process of

manufacturing carbon black from furnace process . This

improved technique fo r the manufacture of carbon black

involved introducing t angent i a l ly a mixture o f na tu ra l gas

and a i r to provide the necessary hea t fo r cracking the

atomized o i l feed s tock and producing a swi r l ing motion in

the reac tor .

The opera t ing un i t s o f the process cons i s t of a heat ing

sec t ion , a burning sec t ion , a furnace sec t ion , a quench

sec t ion , and a col l ec t ion system. A schematic representa t ion

of the o i l f ur na ce p ro c es s i s given in Figure 2. The burning

sec t ion and the furnace s ec tio n a re g en era lly i nt eg ra te d i nto

Page 15: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 15/115

9

a s in g le r ea cto r. The reac tor sec t ion cons is t s of a number

of hor izonta l o r ve r t i c a l c y li nd ri ca l r ea c to rs . Although

ve r t i c a l r eac to r s a r e oc ca si ona ll y used, most of th e r ea cto rs

in opera t ion use hor izonta l type . The reac tors are lined

with f i r e br ick made of a s pe cia l mu ll i te containing 90-99%

alumina and backed with a high temperature cas t ib le

re f rac tory .

According to K.C.Krejci[5] carbon black a l so i s being

produced by a reac tor having a reac tor system of two

cyl indr ica l sec t ions , one s ho rt s ec tio n of l a rge diameter,

re fe r red to as the combustion sec t ion , and an elongated

coaxia l sec t ion of considerably smal ler diameter , re fe r red

to as th e re ac tio n chamber.

An inflammable mixture of a i r and fue l gas i s

in troduced in to the combustion sec t ion , in a di rec t ion

tangen t i a l to i t s cy l ind r i ca l s ide wal l . The mixture i s

burn t to combustion gases before it comes in contac t with the

carbon black producing feedstock a t th e ax is of the

chamber. This combust ible mixture i s in tended to burn as

soon as it leaves the inner end of the i n l e t . The fue l gas

and a i r mixture i s in jec ted in to the combustion chamber a t

a veloc i ty g rea t e r than the flame propagat ion . By t h i s rapid

r a t e th e danger of explosion in fue l l ine s i s aver ted.

Page 16: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 16/115

10

Burning gas , a i r , and hot products of combustion then

flow c ircumfrencia l ly around the wall of the combustion

chamber. Combustion gases genera l ly cons i s t of carbon

dioxide , carbon monoxide, and water vapor . General ly , in the

opera tion of the furnace, the fue l gas i s essen t i a l ly

completely burned by the t ime th e gases en te r th e reac t io n

zone or by the t ime they contac t the reac tan t hydrocarbon.

The temperature of the flame in the combustion chamber rangesfrom 2200-3100

oF .

The feed o i l i s heated to about 500-700oF in a heater .

The feed o i l i s atomized by pass ing through spec ia l ly

designed nozzles , and th e atomized feed i s in troduced into

the f lame produced by burning fue l gas and a i r . The

combustion gases and the r eac t an t (atomized) hydrocarbon then

pass in to the reac tion sec t ion in a s t a t e of su f f i c i en t

annular separa t ion to prevent the d epos itio n o f carbon black

on the wal ls of the reac tion chamber. The r eac t an t

hydrocarbon i s converted or decomposed to carbon black by the

hea t t r an sf er re d to it by mixing a t the in te r face between th e

hydrocarbon and the combustion gases and/or by rad ia t ion .

Page 17: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 17/115

11

The carbon black i s formed in the f lame zone but the

growth takes place in the furnace sec t ion . To ob ta in the

des i red pa r t i c l e s i ze , the res idence t ime in th e reac t ion

chamber i s cont ro l l ed . This i s accomplished by passing

combustion gases through the furnace sec t ion a t a high,

preca lcu la ted veloc i ty , such t ha t the res idence t ime i s in

mil l i seconds[ l ] . Upon i ssuing from th e reac tor , the

combustion gases carrying the ent ra ined carbon black are

quenched w ith w ater or by spraying carbon black and water

s lu r ry from var ious poin t s . The temperature of the carbon

black-gas mixture i s reduced to about 1200oF.

Quench s lur ry

ente rs by the sprays around the circumference of the quench

sec t ion . I f water i s used most of th e water used fo r

quenching i s evaporated.

The stream of gases with ent ra ined carbon black i s

passed through a dry e l ec t r o s t a t i c prec ip i t a to r and cyclones

or se r i es of bag f i l t e r s made from s il ic on e tr ea te d glass

f ibe r fabr ic . More than 90% of the carbon black remaining

in the gases a f t e r the quench sec t ion can be removed from the

gases . The f lu f fy carbon black from the prec ip i t a to r s or

bag f i l t e r s i s pUlver ized to remove any g r i t present . The

f lu f fy carbon black i s converted in to pe l l e t s fo r easy

t ranspor ta t ion using pe l l e t i za t ion equipment.

Page 18: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 18/115

12

2 .2 Feedstocks For o i l Furnace Process

To achieve prac t i ca l yie lds and p l an t outputs , as well

as assu re product qual i ty , it i s necessary to use a raw

mate r ia l pure, and heavy in petroleum aromat ic . General

requirements of th e feedstock a re mentioned by J .B .

Donnet[ l ] .

Devney and O 'G rady , [6] reviewed the c on ce rn s a bo ut the

feedstocks fo r carbon black manufacture, and concluded t h a t

th e azomat.Lc content i s th e most important c r i t e r ium. It

l a rge ly cont ro ls the yie ld . The b oi l in g p oin t shows how fa s t

a given o i l can be vaporized, s ince a good feeds tock should

be vaporized in a f rac t ion of the second a t th e p re va il in g

cond i t ions in th e furnace. The at om ic hyd rogen to carbon

r a t i o fo r a good feed f a l l s in the range o f 0 .9 to 1 .7 .

2.3 Effec t s Of Opera ti ng Parame te rs On The Process

2.3 .1 E ffec t o f combustion a i r to gas r a t i o .

Combustion a i r to gas r a t io i s one of th e important

va ri ab le s c on tr o ll in g the yie ld of the carbon black . This

r a t io determines th e temperature in the combustion sec t ion

Page 19: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 19/115

13

of th e r eac to r which in f luences the y i e ld . It a ls o in d ic ate s

i f t he re i s any excess oxygen present in th e combustion a i r .

Combustion a i r and gaseous fu el , n atu ra l gas are burned

in th e combustion chamber to generate the necessary hea t fo r

th e decomposit ion of the aromatic o i l . The temperature in the

combustion ch amber, where th e n atu ra l gas i s burn t depends

on th e combustion a i r to gas r a t i o [ l ] . The temperature i s

maximum when the a i r and gas a re in exac t s to ich iomet r ic

quan t i t i e s . I f the a i r present i s more than

s to ich iomet r i ca l ly requi red by the reac t ion , then the

temperature in the chamber decreases . This i s due to th e

hea t consumed to heat th e excess a i r . When the a i r i s l ess

than s to ich iomet r i ca l ly requi red by the reac t ion , some of the

EjaB nD:btul1i1bdlg[:g<D:o_a:mt a1l.1a l l . The r e su l t an t

temperature o f flame i s l e s s than the temperature when a i r

and gas a re in s toichiometr ic proport ions .

Carbon black i s formed when th e hydrocarbons a re

decomposed a t th e temperatures between 2200° to above 3000oF .

Due to t h i s reason the t empera ture of the combustion gases

should be a t l e a s t in t h a t range. Air to gas r a t io which

gives t h i s temperature range i s between 8 to 16. According

to J .C . K re jc i , [5] if there i s more carbon than the

s to ich iomet r ic proport ion it i s burned to carbon monoxide,

Page 20: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 20/115

14

carbon dioxide and water . The c on dit io ns o f r e l a t i ve ly low

pressure and r e l a t ive ly h ig h tempe ra tu re in the furnace a re

such t h a t th e carbon in these combustion products i s probably

unava i l ab l e fo r convers ion in to carbon black . Passage of

these combustion g ase s th ro ug h the r eac to r zone i s caused by

cont inuous add it ion of more fue l gas and a i r through the

burners and th e only ex i t fo r the gases i s the opening a t th e

downs tr eam end of th e furnace.

J .C . Kre jc i , [5 ] assumed t h a t a l l th e carbon black was

formed from o i l used, with no al lowance fo r the gas in jec ted

in to the combustion sec t ion of th e furnace. As mentioned

before the gas i s in tended to be completely o r near ly

completely burned p r io r to the contac t with r eac tan t

hydrocarbon vapor . K.C. Kre jc i made runs with a i r to gas

r a t i o from 8 .9 t o -16 . When th e a i r to gas r a t i o was 9, the

yie ld was high bu t th e qua l i ty of black as measured by the

rubber r e in forc ing value was not good. As th e a i r to gas

r a t i o was increased from 10 to 16, the qua l i ty of carbon

black remained the same but the y ie ld decreased s l i gh t l y .

This can be expected s ince the excess oxygen in the

combustion gases i s used up fo r burning some of th e o i l feed

to carbon dioxide and/or carbon monoxide.

Page 21: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 21/115

15

The data from the experimental runs by K.C. Krejci[7]

shows that when the amount of gas used i s decreased, the

yield of carbon black also i s decreased. The heat-producing

combustion reactions take place in the combustion section

while the carbon black-producing react ions take place in the

react ion chamber of the carbon black furnace. The separat ion

of heat-furnishing combustion react ions and the carbon

forming react ions prevented combustion problems. In many

furnaces a i r to gas ra t io of 15 i s optimum. Decreasing the

ra t io from 15 to 10 resul t s in a tendency towards higher

heating than desirable, while more than 16.5 a i r to gas rat io

tends to cause severe destruct ive v ib ra tio ns in the furnace.

2.3 .2 Effect of to ta l a i r to o i l ra t io

According to Paul J . Cheng[9] many factors affec t the

qual i ty and quantity of the carbon black produced in a given

reactor . One factor i s to ta l a i r to o i l ra t io . Total a i r

to o il ra t io affec ts the par t ic le s ize of the carbon black.

As the a i r to o i l ra t io i s increased, smaller par t ic le s ize

carbon black i s produced. Conversely, a decrease in the a ir

to o i l ra t io resul t s in the production of large par t ic le s ize

carbon black. The o i l feed ra te i s selected to give an a i r

to o i l ra t io which produces a desired par t ic le s ize carbon

black. These values can readily be determined by routine

Page 22: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 22/115

16

t e s t s t o determine t h e o i l r a t e which y i e l d s t h e d e s i r e d

p a r t i c l e s i z e . The p a r t i c l e s i z e i s r e l a t e d t o t h e s u r f a c e

a r e a .

2.4 E f f e c t Of Potass ium'Addi t ives

One o f t h e most important p r o p e r t i e s o f a carbon

b l a c k when used i n t h e compounding o f rubber f o r use i n t i r e

manufactur ing i s s t r u c t u r e , which must be withi·n narrow

l i m i t s [ l O ] . According t o t h e r e s e a r c h e r s , t h e s t r u c t u r e o f

t h e carbon b l a c k can be c o n t r o l l e d by adding minute amounts

o f a l k a l i meta ls t o t h e o i l feed.

The s t r u c t u r e o f carbon black i s s a i d t o be high when

t h e p a r t i c l e s form long cha ins o f p a r t i c l e s . Conversely t h e

s t r u c t u r e i s s a i d t o be low when they form s h o r t c h a i n s .

I n carbon black manufacture t h e r e a r e c e r t a i n f a c t o r s

which a r e no t s t r i c t l y c o n t r o l l a b l e . These f a c t o r s make

maintenance o f t h e q u a l i t y and/or s t a n d a r d i z a t i o n of

p r o p e r t i e s i n v a r i o u s grades o f carbon b l a c k a major problem.

One o f t h e s e u n c o n t r o l l a b l e f a c t o r s i s t h e complex

hydrocarbon f a c t i o n s o f many d i f f e r e n t types o f molecular

s t r u c t u r e s , which vary i n p r o p o r t i o n s from one source t o

another o r even w i t h i n t h e batches o f a s i n g l e source .

Page 23: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 23/115

17

Blacks made by a furnace process t h a t modif is the

feedstock by adding a lka l i meta ls compounds have a lower than

usua l s t ruc ture , compared to furnace blacks having

approximately the same par t i c l e s ize . According to J . C

Krejci[10] , carbon blacks produced from hydrocarbon

fee ds to ck s, c on ta in in g a t l e a s t 1. 5 pa r t s by weight of

potassium per m ill ion pa r t s by weight of hydrocarbon

feedstock, have a re la t ive ly low s t ruc ture as compared to

carbon blacks normally produced from most other feedstocks

by th e furnace process . Even though any a lka l i metal having

atomic number of a t l e a s t 19 can be used, potassium i s

genera l ly used [ l l ] .

According to J . C. Krejc i [10] and Fra ianf and Thorley

[11 ] I th e amount of potassium present in the hydrocarbon

feedstocks can vary within a wide range, and can a f f e c t the

s t ruc tu re even a t lower concent ra t ions . S i gn if ic a nt e f fe c ts

can be achieved by introducing the a lka l i metals in to the

carbon forming react ion zone a t a ra te of 106 t imes the ra te

by weight a t which the carbon black i s being formed. The

bes t re su l t s a re usua lly achieved when these elements a re

int roduced in amounts ranging between about 10-1000 pa r t s by

weight per mi l l ion pa r t s of black produced.

Page 24: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 24/115

18

I t i s believed t h a t the carbon black forming react ion

i s modified in the presence of the a l k a l i metal affect ing the

s t r u c t u r e . Introduct ion of potassium-containing materials a t

the down stream end of the carbon black forming react ion

zones r e s u l t in l i t t l e , i f any, e f f e c t upon the s t r u c t u r e of

the carbon black product.

According t o A. Voet e t . ale [13], the v a r i a b i l i t y of

product q u a l i t i e s i s a t t r i b u t a b l e t o the lack of completely

uniform d i s t r i b u t i o n of the a l k a l i metal in the reactor zone

of the furnace and to the existence of a d e l i c a t e

relat ionship between the concentrat ion of a l k a l i metal in the

reactor zone and the structure of the r e s u l t i n g carbon black.

J . C . Krejci charged d i f f e r e n t types of crude o i l s into

the carbon black manufac turing furnace [10] . The furnace

charge r a t e s and the operat ing cond it ion s are given in uSP

3 , 2 4 0 , 5 6 5 . J . C . Krejci[lO] compared the data and found t h a t

carbon black of low structure i s formed when a l k a l i metals

were mixed in the feed, whereas high s t r u c t u r e carbon black

i s produced when no a l k a l i metal was added.

According t o Frianf and Thorley[ l l ] , without any change

in the equipment or o ther condit ions of operation, the

introduct ion into the reaction zone of the furnace of a

d i l u t e aqueous solution of potassium chloride, in an amount

Page 25: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 25/115

19

suff ic ient to provide potassium to the carbon black producing

reaction a t a rate of 22. 5 par ts per mi lli on par t s by weight

of carbon black formed, reduced the propert ies of the

resul tant black to a level well within the speci f icat ions ,

without causing other propert ies of the black to deviate from

sa t i s fac tory levels . The data from USP 3,010,794[12] clear ly

show tha t the black made in the presence of potassium is

qui te di f ferent in character from tha t made under the same

conditions except in the absence of the potassium addi t ive.

Similarly according to [13]when

using an aqueous solutionof sodium chloride, giving about 400 par t s of sodium per

million par ts of by weight of black formed, the resul tant

black showed a low s t ructure , compared to the black formed

from same feedstock but without sodium chloride solut ion.

2.5 Mechanism Of Carbon Black Formation And Growth

Diffe re nt th eo rie s can be found in the l i t e ra tu re to

explain the formation of carbon black from hydrocarbon

l iquids . The exact mechanism by which the hydrocarbons are

converted in a f ract ion of a second i nt o sphe ri ca l par t ic les ,

each containing 0 .1 mill ion to 1000 mill ion carbon atoms, i s

not well understood.

Page 26: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 26/115

2.5 .1 Theories based on C2 radical .

20

According to S.R . Sm ith(14] and Gaydon & Fairbain[15]

sol id carbon i s assumed to be formed by the polymerization

of the C2 radical[16,17]. They suggest tha t C2 plays a part

in carbon par t ic le nucleation in the flame by means of

react ions:

c + C H -----------> C + H2242

C+C H - - - - - - - - - - - - ->C

+H42262

2 .5 .2 Theory of polymerization of hydrocarbons.

In th i s theory it i s assumed tha t regardless of the

intermediates between i n i t i a l hydrocarbons and f ina l product,

the carbon formation occurs by way of polymerizat ion process.

2.5 .3 Nucleation And Growth Process.

J.B. Donnet[l] , ci tes the invest igat ion of Lahaye and

Prado[16, 17] on nucleation and growth of carbon black

par t i c le s . They showed tha t the rate of growth of a par t ic le

i s proport ional to i t s s ize. From fur ther experiments,

Lahaye and Prado deduced tha t the par t ic le s ize i s

exponentia lly propor t iona l to the residence t ime.

Page 27: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 27/115

21

2.5 .4 QUALITY CONTROL.

From the rubber indus t ry poin t of view th e most

important proper t ies of carbon black are (1 ) s t ruc tu re and

(2) sur face area . s t ruc tu re and o i l ab so rp tio n o f carbon

black are c lo se ly r e l a t ed , so it i s a genera l prac t i ce to

measure the o i l absorpt ion to determine the s t ruc tu re of the

carbon black.

It i s customary to contro l the surface a rea of the

carbon black by photelometer t e s t [18 ] . The feed r a t e s ,

which c on tro l th e residence t ime and the tempera ture , can be

cont ro l l ed in response to the reading of t h i s t e s t to obta in

a des i red product . The exac t procedure of on- l ine cont ro l

of photelometer i s e labora te ly described in USP 2,892,684.

Page 28: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 28/115

22

Chapter I I I

DEVELOPMENT OF A MODEL

3 .1 Need For A Model

Carbon Black, al though manufactured from a r e l a t ive ly

simple process of decomposi t ion of aromatic hydro carbons

obta ined as bottoms from petroleum re f in ing , has many

d i f f e ren t proper t i es which must be prec i se ly cont ro l led fo r

i t s ul t ima te use in the rubber indust ry . This i s d i f f i cu l t

because th e formation of carbon black i s not very well

understood and the raw mater ia ls used a re no t uniform in

t h e i r composi t ion.

The proper t i es of carbon black should be in a narrow

range, depending on the type of appl ica t ion it i s being used

for . At p resent th e opera t ing parameters needed to make a

pa r t i cu la r kind o f black are being determined by prac t i ca l

t e s t s and t r i a l and e r ro r by p i l o t plants and/or commercial

p l an t s . These prac t i ca l runs a re needed every t ime the

source of the raw mate r ia l , aromatic o i l , i s changed because

the composit ion of aromatic o i l var ies from source to source

and varying composit ion has a very s tro ng in flu en ce on the

proper t i es of carbon black made from it.

Page 29: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 29/115

23

In today ' s compet i t ive world, prac t i ca l t e s t s to s e t

opera t ing parameters to make a pa r t i cu l a r kind of product are

t ime consuming and can be expensive. In t h i s t he s i s an ASPEN

model fo r carbon b la ck pro ce ss has been developed. This

model can pred ic t th e yie ld of the carbon b lack from the

process and a lso i t s important proper t ie s o f su rfa ce area and

s t ruc tu re from the fe ed c ompos iti on s and i npu t parameters .

These predic t ions may be used in th e in du str y to narrow down

th e range o f o pe ra tin g co nd it io ns to be prac t i ca l ly t es t ed

to make a pa r t i cu l a r product . This model l ing can help

el iminate some unnecessary exper imenta t ion in manufactur ing

a ce r t a in type of carbon black . From t h i s model a smal l

range o f ope ra ti ng cond it io n s in which a pa r t i cu l a r type of

black i s formed can be f igured out . This model can give a

good s ta r t ing po in t to make a desi red carbon black ,

el iminat ing much o f the experimentat ion now requi red . The

manufactur ing process can be f ine tuned from t h i s po in t to

make a desi red kind o f carbon black .

3 .2 Capabi l i t i e s Of ASPEN

Process engineers employ process s imulators l i ke ASPEN

to solve problems and to obta in in format ion about operat ing

Page 30: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 30/115

24

processes . ASPEN i s u s e d to s imulate a var i e t y o f c h e m i c a l ,

petrochemical , a n d p e t r o l e u m r e f in ing processes . An ASPEN

m o d e l fo r s imulat ing a p r o c e s s c a n b e d e v e l o p e d a s s o o n a s

t he r e i s a c o n c ep tu a l f lo w sh ee t fo r the process . T h i s mode l

c a n b e i m p r o v e d a s more i n f o r m a t i o n b e c o m e s ava i l ab l e .

ASPEN m o d e l s a re ava i lab le to c alc ula te t h e r m o d y n a m i c

an d t r anspor t prope r t i e s . T h e r e a re 32 opt ion s e t s w h i c h c a n

b e spec i f i ed a s m o d e l s to c alc ula te t hese prope r t i e s . T h e se

op t ion se t s give ASPEN f l ex ib i l i t y to h a n d l e a w i d e r a n g e of

condi t ions a n d m i x t u r e s . G e n e r a l l y g i v e n th e condi t ions of

temperature , pressu re , a n d c o m p o s i t i o n , th e c h e m i c a l a nd

phys ica l prope r t i e s a re ca lcu la ted b y ASPEN. The p a c k a g e

a lso provides th e u se r w i t h a c a pa b il ity t o o ve rr id e th e da ta

b a n k va lues of the proper t ie s a nd sUbs t i tu te h is own values .

ASPEN h a s th e c ap ab il i ty to s imulate var ious k i n d s of

hea t e x ch a ng e rs , m i xe rs , a n d sepa ra tors . More than o n e m o d e l

block i s av ai la ble to s imulate e a c h of th e a b o v e m e n t i o n e d

un i t opera t ion e q u i p m e n t s . It of fe r s v e r y good capabi l i ty

to s imula te s i m p l e a nd m U l t i p h a s e d i s t i l l a t i on s . It a lso h a s

th e cap ab i l i ty to s imulate absorpt ion a n d ext rac t ion

processes . In add i t ion , ASPEN h a s so l i d handl ing capab i l i t y

an d c a n b e u s e d to s imulate l i qu id - so l i d separa t ions a n d gas

so l id separa t ions .

Page 31: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 31/115

25

ASPEN has s ix d if fe ren t reac tor models to simulate

chemical reac tors , inc luding plug flow, CSTR e tc . These

models have the c ap ab il i ty to simulate a wide range of

chemical reac t ions under d iv erse c on dit io ns . Pump and

compressor models a lso are ava i lab le to s imula te a range of

pumps and compressors.

ASPEN a lso provides the use r with th e opt ion to wri te

h is own FORTRAN models to modify avai l ab le un i t operat ions

models or to wri te separa te blocks fo r which ASPEN has no

sa t i s fac to ry model. More de ta i l s about ASPEN models and

capab i l i t i e s are discussed in ASPEN re fe rence manuals[19].

3 .3 Limi ta t ions Of Aspen

ASPEN can simulate a var i e t y of chemical processes with

wel l understood reac t ion mechanisms. In ce r t a in chemical

processes where the reac t ion mechanism of th e format ion of

th e products i s not w ell understood, ASPEN cannot simulate

th e process . In these cases the use r has to supply h is own

Fort ran models to simulate t h a t pa r t of the process . The

r eac to r of the carbon black manUfacturing process cannot be

handled by any of the s in gle re ac to r blocks of ASPEN.

Page 32: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 32/115

26

N ot a s ing le ASPEN reac tor b l o c k c a n , b y i t s e l f , b e u s e d

to s i m u l a t e the c a r b o n ' b l a c k reac tor since nei ther the

kine t ics n o r the s t o i c h i o m e t r y of the reac t ion s are known.

RYIELD reac tor b l o c k c a n n o t b e u s e d s in ce the yie ld

d is t r ibu t ion i s n o t f i x e d . None of the r eac to r b l o c k s

a va ila ble in ASPEN h a s the capabi l i ty to pred ic t th e p h y s i c a l

prope r t i e s , s u c h a s su rface area or o i l absorpt ion o f the

c a r b o n b l a c k formed in the p r o c e s s . T h e s e physica l

proper t ies d e p e n d on r e s i d e n c e t i m e , th e f e e d r a t i o s , a n d the

qual i ty of th e f e e d . They c a n b e predic ted o n l y i f a

separa te FORTRAN b l o c k i s d e v e l o p e d fo r the c a r b o n b l a c k

reac tor .

Thus there i s a ne e d to d e v e l o p a r eac to r b l o c k wh i c h

c a n b e u s e d to s i m u l a t e the c a r b o n b l a c k r eac to r . The

d e v e l o p e d b l o c k s h o u l d b e able to p red ic t the y ie ld and

phys ica l proper t ies of th e p ro pe rtie s of the c a r b o n b l a c k .

I n t h i s s t u d y , s u c h a b l o c k wi l l b e u s e d , a l o n g w it h other

un i t opera t ion b l o c k s avai l ab le in ASPEN, to s i m u l a t e the

wh o l e c a r b o n b l a c k m a n U f a c t u r i n g p r o c e s s .

Page 33: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 33/115

27

3.4 Modell ing Of The Process

There are a number of theor ies which at tempt to expla in

the carbon black formation. But a l l o f them f a i l to expla in

a l l th e aspects o f formation cor rec t ly based on the

s to ichiometry , k ine t i c s , and operat ing parameters. As a

r e su l t , development of a theo re t i ca l model fo r the s imulat ion

of the carbon black reac tor i s not poss ib le . An empir ica l

model based on the informat ion avai l ab le in var ious u.s.

paten t s i s developed in t h i s study.

The data on the e f fec t s o f o pera tin g condi t ions, such

a s tempe ra tu re , combustion a i r to gas r a t i o , res idence t ime

on proper t ies and yie ld of carbon black a re obta ined from

prac t i ca l t e s t s on p i l o t plan ts and commercial p lan t s , as

repor ted in var ious u.s. paten ts . In t h i s t he s i s , th e data

from these prac t i ca l t e s t s a re used to obta in some empir ica l

co r re l a t ions re la t ing var ious proper t i es of carbon black to

var iou s input parameters involved in carbon black

manufactur ing process . These co r re l a t ions al though

empi r ica l , give an ind ica t ion how d i f f e r en t process var iab les

a f f ec t the proper t ies of carbon black. From these empir ica l

equat ions an empir ica l model i s developed to pred ic t the

carbon black proper t i es of such as sur face area and

s t ruc tu re , as well as the yie ld of carbon black as a

percentage of the o i l feed.

Page 34: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 34/115

28

3 . 4 . ID:eve::Vapment of c o r r e l a t i o n f o r p r e d i c t i n g y i e l d

Aocord111g t o t h e l i t e r a t u r e , t h e y i e l d o f carbon black

i s :primarilr dependent on t h e temperature i n t h e furnace,

which can 'be c o n t r o l l e d by a i r t o gas r a t i o and t o t a l a i r t o

o'i l rati1o. Based on t h i s informat ion, c e r t a i n r a t i o s which

a r e bel·i·,evei: t o a f f e c t t h e p r o p e r t i e s o f carbon black were

used f o r ' t h e c o r r e l a t i o n . An empir ica l equat ion was

deveLoped using r e g r e s s i o n a n a l y s i s on t h e d a t a derived from

U S P 2 ; , 5 6 4 , ' 7 ~ and USP 3 , 2 4 0 , 5 6 5 t o p r e d ic t t h e y i e l d . The

d a t a a r e s·h'QVll i n Table 1 and Table 2.A and 2. B r e s p e c t i v e l y .

Combu,s·tion a i r t o gas r a t i o , a u x i l i a r y a i r t o o i l r a t i o ,

to :ta l ,a ir tm· hydrocarbon r a t i o , gas t o o i l r a t i o , residence

t ime i n t h e r e a c t o r s e c t i o n and s t o i c h i o m e t r i c r a t i o were

cal·cul:a'bed from t h e data i n Tables 1 , 2A & 2B. Yield was

converted f ~ t o m pounds p e r g a l l o n t o percentage o f o i l feed.

The .data ' ,fna t h e c a l c u l a t i o n s which i s a c t u a l l y used i n t h e

regr ,ession · lJlalysis f o r y i e l d a r e shown i n t a b l e 3A and 3B.

A g e n e r ' a l l i n e a r model, GLM, procedure o f SAS was used f o r

t h e regression a n a l y s i s .

Page 35: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 35/115

29

Table : 1

Data from USP 2,464,700

Run rio o il feed 1com a ir2 gas 3 aux.a i r

4 yieldga l /h r cf t /hr c f t /h r c f t /h r lbs /g l

P2 50 40000 4520 4000 4.30P1 60 40000 3560 4000 4.02P3 75 60000 6730 4000 4.68P4 100 80000 7270 4000 3.78P5 125 80000 5700 4000 3.96P6 170 120000 10900 4000 4.48P7 150 150000 13600 4000 3.10PIO 100 100000 9100 4000 3.16P l l 115 100000 9100 4000 3.47P13 122 10000 9100 4000 3.'95P14 75 75000 6800 4000 2.63P15 85 75000 6800 4000 3.50P16 110 75000 6800 4000 4.13P17 120 100000 10000 4000 4.56PIg 130 100000 8350 4000 3.87P21 130 100000 7700 4000 3.50P23 130 100000 7150 4000 3.54

P25 130 100000 6660 4000 3.22P27 130 100000 6250 4000 2.87P20 140 100000 8350 4000 4.20P22 140 100000 7700 4000 3.92P24 150 100000 7150 4000 3.86P26 155 100000 6660 4000 3.72P28 165 100000 6250 4000 3.75

1 o i l feed: The feed ra te of aromatic o i l in gal lons/hour

2 Coma i r

3 Gas

Air ra te into the combustion sect ion cuft /hourNatural gas feed ra te in cuf t / hour

4 Auxiliary air : Air rate in the r ea ct or se ction cuft/hour

Page 36: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 36/115

30

Table 2A

Data from USP 3,240,565

Run no o il feed1 com a ir2 gas3 aux.air4 yield

gal /hr c f t /h r c f t /h r c f t /h r lbs/gl

A 4 •. 97 6000 400 200 1.48B 6.00 6000 400 200 2.13C 5.00 6000 400 200 1.01

E 169.7 140000 9330 4000 2.54F 5.75 6000 400 200 2.88G 5.60 6000 400 200 2.22H 5.98 6000 400 200 2.61H2 6.20 6000 400 200 2.80H3 218 140000 9330 4000 3.87M 6.38 6000 400 200 3.30N 6.07 6000 400 200 2.80P

5.84 6000 400 200 3.27Q 6.76 6000 400 200 3.62

1 o i l feed: The feed ra te of aromatic o i l in gallons/hour

2 Com a ir

3 Gas

Air ra te into the combustion sect ion cuft /hour

Natural gas feed ra te in cuf t / hour

4 Auxiliary a i r : Air ra te in the r ea cto r s ec tion cuft /hour

Page 37: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 37/115

Table 2B

Data from USP 3,240,565

Run no Gravi ty p.p.m surface o i larea absorpt ion

A 12.8 9 .6 168.8 1.02B 16.6 1.7 150 1.00C 22.0 0.0 154.8 1.37E 16.6 0.0 86.0 1.30F 2.8 60.0 146.1 0.83G

8.5 0.0 161.9 1.41H 10.8 0.0 153.9 1.55H2 11.0 135.3 1.45H3 13.4 82.0 1.41M 4.8 63.0 131.4 0.82N 9.8 16 146.5 1.10P 6.9 1.2 149.1 1.45Q 5 .8 0.0 123.5 1.58

Gravity: Gravi ty of o i l feed in 0 API

P.P.M: Par t s per mil l ion of Potassium in o i l feed

Surface area : N2

Surface area of carbon black , sq.m /g

o i l absorpt ion: o i l absorp t ion of carbon black, cc/g

31

Page 38: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 38/115

32

Table 3A

Data used in the regress ion ana lys i s for y i e ld

Run y ' ie ld Com.a i r to Aux. a i r to To t .a ir toGas rat io o i l ra t i o Tot.He rat io

A 17 .6;6 15.00 0.353 7.87

B 26.09 15.00 0.300 6.98

C '12.:83 15.00 0.374 8.18

E 31·.,11 15.05 0.208 5.89

.F 3J.. '99 15.00 0.284 6.69

G ,2'5.71 15.00 0.304 7.04

H 30 .37 15 .00 0.286 6.73H2 33.00 15.00 0.280 6.61

H3 4,6 • 3'8 15.05 0.162 4 .81

M 37 . '2:·0 15 .00 0.260 6.25N 32 • 4:3 15 .00 0.283 6.67

P 37.',20 15.00 0.288 6.67

Q 41.11 15.00 0.247 6.01

P2 5.3 • 77 8. '90 0.736 5.54

PI 50.27 11.20 0.613 5.17

P3 58.53 8.90 0.491 5.38

P4 4'7 .,27 11.00 0.368 5.63

P5 49 ..52 14.00 0.294 5 .01

P6 5'6 .. ~ O ' 2 11.00 0.217 5.05

P7 38·,;. 77 11.00 0.245 6.45

,P'l'O 39.·5.2 11.00 0.368 6.53

'P11 43 .39 11.00 0.320 5.92

P1,3 49.40 11.00 0.302 5.68

P14 3'2 • 89 11.00 0 .491 6.62

P15 ·4,'3. 71 11.00 0.433 6.07

P16 51 . '6i5 11.00 0.335 5.02

Pl.7 57,. (),3 10.00 0.307 5.59

P.19 48 .40 12.00 0.283 5.-54

P21 43 . 7<1 13.00 0.283 5.65

Pi23 44 • 2"1 14 .00 0.283 5.74

P25 40 .27 15.00 0.238 5.84

'P27 35 .89 16 .00 0.283 5 .91

P20 5.2.•:52 12 .00 0.263 5.24

P22 49 .02 13 .00 0.245 5.05

P24 ·4·8.21 14 .00 0.245 5.13P26 46.,52 15.00 0.237 5.06

P2'8 '46.8'9 1 6 ~ 0 0 0.223 4.86

.Com.airt 'o qas rat io : Volume bas i s

A u x i l i a ~ y ~ a i r to gas ra t io : mass bas i s

T ~ o t a l a ir to t o t a l hydrocarbon rat io:mass bas i s

'Yi 'eld% : ' lased on the weight o f aromatic o i l

Page 39: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 39/115

Table 3B

Data used in the regression an aly sis fo r yield

33

Run Yield s toic ra t io Gas to o i l ra t io

A 17.66 0.515 0.392B 26.09 0.471 0.333C 12.83 0.537 0.414E 31.11 0.434 0.274F 31.99 0.446 0.315G 25.71 0.469 0.337H 30.37 0.458 0.321H2 33.00 0.448 0.310H3 46.38 0.359 0.209M 37.20 0.425 0.288

N 32.43 0.450 0.314P 37.20 0.462 0 .320

Q 41.11 0.413 0.270P2 53.77 0.362 0.461PI 50.27 0.343 0.307P3 58.53 0.352 0.457P4 47.27 0.371 0.494P5 49 .52 0.335 0.290P6 56.02 0.334 0.370P7 38.77 0.421 0.462P10 39.52 0.427 0.464P11 43.39 0.389 0.403P13 49.40 0.374 0.380

P14 32.89 0.433 0.462P15 43.77 0.375 0.408P16 51.65 0.333 0.315P17 57.03 0.367 0.425P19 48.40 0.367 0.327P21 43.77 0.375 0.302P23 44.27 0.382 0.280P25 40.27 0.389 0.261P27 35.89 0.394 0.242P20 52.52 0.347 0.304

P22 49.02 0.355 0.280P24 48.27 0.354 0.243

P26 46.52 0.351 0.219P28 46.89 0.338 0.190

s to ic ra tio : Ratio of Oxygen avai lable to Oxygen needed forcomplete combustion.

Gas to o i l ra t io : Ratio of natural gas to feed oi l .(Mass basis)

Page 40: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 40/115

34

F i r s t , each of th e s ix independent var iab les s ta ted

above was ind iv idual ly regressed with yie ld as a dependent

va r i ab l e . The summary of th e r e su l t s of r e gr e ss ion anal ys is

fo r the corre la t ion o f yie ld i s presen ted in Table 4. Two

independent var iab les , s to ichiometr ic ra t io and t o t a l a i r to

t o t a l hydrocarbon r a t i o , have a s i gn i f i can t e f f e c t on y ie ld .

To a ce r t a i n ex ten t , combustion a i r to gas r a t i o a lso has an

in f luence on the y ie ld . Regression ana lys is a lso was

performed by using var ious combinat ions o f independent

var iab les t h a t s i gn i f i can t l y inf luence the yie ld . It was

observed from r eg re ss io n a n al ys is t h a t a cor re l a t i on with

s to ich iomet r i c ra t io and combustion a i r to gas r a t i o i s th e

bes t corre la t ion fo r predic t ing the y ie ld .

The r e su l t s of th e re gre ss io n a na ly sis c or ro bo ra te t h a t

th e combustion a i r to gas ra t io , which cont ro l s th e

combustion chamber temperature a t which the decomposi t ion of

th e aromatic o i l takes place , a f fec t s the yie ld .

Page 41: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 41/115

Table 4

Summary of the regression analysis for yie ld

35

Model

No

1

Independent

Variables

CAG Ratio

TypeI SS R-square

F-value

21 .45 0 .380

2

3

4

5

6

7

8

9

10

11

AAO Ratio

TATHC Ratio

s to ic Ratio

Gas to o i l ra t io

Residence time

s to ic ra t ioTATHC

TATHC RatioCAG Ratio

s to ic RatioCAG Ratio

TATHC Ratio

AAO Ratio

CAG RatioAAO RatioTATHC Ratio

0.57

145.24

274.50

0.01

1.98

289.592.92

411.7365.22

458.5524.47

180.96

9.61

191.5242.68236.85

0.016

0.805

0.886

0.001

0.152

0.890

0.933

0.934

0.848

0.934

Independent Variable: YIELD

Dependent variables:

CAG (combustion a i r to gas ra t io ) : Volume bas is

AAO (auxi l iary a i r to o i l ra t io ) : Mass bas is

TATHC(total a i r to hydrocarbon ra t io ) : Mass basis

Page 42: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 42/115

36

The re su l t s also show t h a t increase in s to ich iomet r ic

r a t i o , increases th e oxygen a va ila ble f or combustion of o i l

feed. This l eads to a reduct ion in the y ie ld of the carbon

black formed. Since s to ich iomet r ic r a t i o i s c lose ly re la ted

to the t o t a l a i r to hydrocarbon r a t i o , and be t t e r pred ic t s

th e yie ld it i s used as the most impor tant var iab le in

co r re l a t ion .

A co r re l a t ion with two independent var i ab l e s ,

s to ich iomet r i c r a t io and combustion a i r to na tu ra l gas , i s

used fo r t h i s purpose. The cor re la t ion i s shown below:

Yield = 125 - 169 * s to ich iomet r ic r a t i o

- 1.22 com. a i r to gas ra t io

where y ie ld i s percent o f carbon black formed per pound of

o i l feed . The cor re la t ion may be va l id only fo r the ranges

spec i f ied below.

The range o f s to ic hiome tric r a t io i s 0.33 to 0.52.

The range of gas to o i l r a t io i s 0.19 to 0.49

Calcula ted yie ld from the co r re l a t ion and the ac tua l

y ie ld are compared in Table 5.

Page 43: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 43/115

37

Table 5

Comparison o f Actual and ca lcu la ted yie lds from th e model.

Run Yield Predic ted Yield

A 17.66 19.59B 26.09 27.05C 12.83 15.84E 31.11 33.22F 31.99 31.30G 25.71 27.34H

30.37 29.23H2 33.00 30.56H3 46.38 45.80M 37.20 34.78N 32.43 30.56P 37.20 28.53Q 41.11 36.82P2 53.77 52.86PI 50.27 53.20P3 58.53 54.57P4 47.27 48.73P5 49.52 51.19P6 56.02 55.01

P7 38.77 40.33P10 39.52 39.38P11 43.39 45.73P13 49.40 48.31P14 32.89 38.35P15 43.77 44.77PI6 51.65 55.25'P17 57.03 50.75PIg 48.40 48.31P21 43.77 45.71P23 44.27 43.38P25 40.27 40.93

P27 35.89 38.75P20 52.52 51.55P22 -49. 02 49.10P24 48.27 47.95P26 46.52 47.31P28 46.89 48.25

Page 44: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 44/115

38

3.4 .2 Development of corre la t ion fo r su r face area .

According to l i t e r a t u r e , th e su rface a rea i s grea t ly

a f fec ted by the res idence t ime and, to a l e s s e r degree, by

t o t a l a i r to o i l ra t io . Based on t h i s information,

r eg re ss io n a n al ys is i s performed to obta in a c or re la tio n to

p red i c t the su rface area . There i s only a l imi ted data

a va ila ble fo r t h i s purpose in USP 3,240,565.

Residence t ime , th e impor tant independent var iab le

a f fec t i ng th e su rface area , i s determined from the t o t a l

volume of gases formed in th e carbon black r eac to r and th e

dimensions of the reac tor sec t ion . s ince the t o t a l volume

o f th e gases formed· in the carbon black r eac to r i s not

repor t ed , it i s predic ted from th e ASPEN s imula t ion under th e

assumption t h a t gases a re equi li br ium p roduc ts of feed l ess

the carbon black formed. The combustion reac t ion of na tura l

gas and combustion a i r in the combustion sec t ion of the

r eac to r i s s imula ted by model RSTOIC and the pa r t of o i l feed

undergoing noncarbon b lack format ion reac t ions by RGIBBS.

The amount of o i l undergoing noncarbon black format ion

reac t ions i s t o t a l o i l l e s s th e yie ld of carbon b lack . ASPEN

ca l cu l a t e s the t o t a l moles of products . In t h i s case , s ince

a l l th e products are gases , t he i r volume i s ca lcu la ted a t th e

temperature in the carbon black reac tor .

Page 45: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 45/115

39

o the r parameters such as s to ich iomet r ic r a t io

aux i l i a ry a i r to o i l r a t io and t o t a l a i r to o i l r a t io were

obta ined from t ab le 3 A and 3B.

The data used fo r the reg ress ion an aly s is i s shown in

t ab l e 6. A genera l l i n e a r model procedure of SAS was used

fo r th e regress ion ana lys i s . Regression ana lys i s was

performed with su rface a rea as dependent var i ab l e . The

r e su l t s of the regress ion are presented in t ab l e 7.

From the F values in th e re gre ss io n summary t ab l e ,

it i s concluded t h a t th e res idence t ime and auxi l ia ry a i r to

o i l r a t io have s ign i f i can t e f fec t on th e su rface a rea . Even

though auxi l ia ry a i r to o i l r a t io i s shown to have good

inf luence on s ur fa ce a re a there i s no t heo re t i ca l explana t ion

to back t h i s r e l a t ion .

The res idence time has a s ign i f i can t in f luence on

th e s ur fa ce a re a, and t h i s can be explained on th e bas i s t h a t

th e h igher the res idence t ime the grea t e r th e pa r t i c l e s i ze .

Genera l ly , surface area i s i nv e rs el y p ropo rt io n al to the

pa r t i c l e s i ze .

Page 46: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 46/115

40

Table 6

Data fo r cor re la t ion of su rfa ce a re a:

Run SFA Rtime AAO TATHC SR

A 168 .8 8 .09 0.353 7.87 0.51

B. 150 .0 8 .03 0.300 6.98 0.47C 154 .0 8 .02 0.373 8.18 0.53E 86 .00 28.09 0.207 5.89 0.43F 146.1 8 .21 0.284 6.69 0.44

G169.9 8 .13 0.304 7.04 0.46

H 153.9 8.10 0.286 6.73 0 .45

H2 135.3 8.16 0.279 6.61 0.44

H3 82.00 28.53 0.161 4.81 0 .35

M 131 .4 8 .19 0.260 6.25 0.42N 146 .5 8 .18 0.283 6.67 0.45

P 149.1 8.35 0.288 6.67 0.46

Q 123.5 8.22 0.247 6 .01 0.41

SFA:

AAO:

TATH'C:

RTlME:

SR:

N2

Surface area o f carbon black , sq.m /gAuxi l ia ry a i r to o i l r a t i oTota l a i r to hydrocarbon r a t i oResidence t ime in mi l l i secondsOxygen ava i lab le to Oxygen needed fo r

combustion

Page 47: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 47/115

Table 7Summary of the regression ana ly sis for su rface area

41

ModelNo

12

3

4

5

6

7

IndependentVariables

RTIME

TATHC

AAO

SR

GO

RTIMEAAO

TATHC

RTIME

TypeISSF-value

38.36

28.74

42.36

15.82

22.21

68.869.74

62.3115.02

R-square

0.78

0.71

0.79

0.58

0.66

0.89

0.88

Independent Variable: SURFACE AREA

Dependent variables:

GO:AAO:

TATHC:RTlME:

SR:

Gas to o i l ra t io

Auxiliary a i r to o i l ra t io

Total a i r to hydrocarbon ra t io

Residence time in mil l ! secondsOxygen available to Oxygen needed

for combustion

Page 48: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 48/115

42

It i s concluded t ha t res idence t ime can pred ic t the

s ur fa ce a re a o f the carbon black . This i s val ida ted from the

f ac t t ha t surface a rea i s cont ro l l ed by manipula t ing the

res idence t ime in th e carbon black indus t ry . Comparison of

ca lcu la ted to ac tua l surface areas i s shown in t ab le 8 .

Model: Surface area = 174 - 3.19 * Residence t ime

Where res idence t ime i s in mi l l i seconds and sur face area i s

in sq.m/gram o f black . Model may be va l id only fo r the

res idence tim e range of 8-29 mi l l i seconds.

3.4 .3 Development o f cor re la t ion fo r s t ruc tu re .

Concentra t ion o f a lka l i metals i s th e s in g le most

impor tant va r ia b le a f fe c ti n g th e o i l absorpt ion o f th e carbon

b lack . A genera l l inea r model procedure was used to see i f

t he re were any var i ab l e s which a f fec t th e s t ruc tu re and to

obta in a co r re l a t ion fo r p re d ic tin g th e o i l absorp t ion .

The summary o f reg ress io n an aly sis a re presen ted in t ab le 11.

The r e su l t s show t ha t c on ce ntr atio n o f a lka l i meta l i s the

o nly p aramete r s ign i f i can t ly a f fec t i ng the o i l absorp t ion .

Model: o i l absorpt ion = 1.35 - 0.009 * ppm of a lka l i meta l

ppm = pa r t s a lka l i metal by weight per mil l ion pa r t s of feed

and o i l absorpt ion i s cc of o i l absorbed per gram of carbon

b lack .

The model may be val id fo r ppm range of 0-63.

Page 49: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 49/115

Table 8

Comparison o f c a l c u l a t e d and a c t u a l s ur f a ce a re as .

43

Run

A

B

C

E

F

G

H

H2

H3

M

N

P

Q

A ct u als u r f a c e a r e a

1 6 8 . 81 5 0 . 01 5 4 . 08 6 . 0 01 4 6 . 11 6 9 . 9

1 5 3 . 91 3 5 . 38 2 . 0 01 3 1 . 41 4 6 . 51 4 9 . 11 2 3 . 5

c a l c u l a t e ds u rf a ce a re a

1 4 8 . 21 4 8 . 51 4 8 . 58 4 . 5 51 4 7 . 91 4 8 . 2

1 4 8 . 21 4 8 . 08 3 . 1 71 4 8 . 01 4 8 . 01 4 7 . 41 4 7 . 9

Page 50: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 50/115

Table 9

Data used fo r cor re la t ion of o i l absorpt ion

Run o i l abs p.p.m Tot . a i r Tot . a i r

o i l r a t io Tot.HC r a t io

A 1.02 9 .6 0.353 7.87B 1.00 1 .7 0.300 6.98C 1 .37 0 .0 0.374 8.18E 1.30 0 .0 0.208 5.89F 0.83 60.0 0.284 6.69G 1.41 0.0 0.304 7.04H 1 .55 0.0 0.286 6.73M 0.82 63.0 0.260 6.25N 1.10 16.0 0.283 6.67P 1.45 1 .2 0.288 6.67Q 1 .58 0 .0 0.247 6.01

44

Page 51: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 51/115

45

Table 10Summary of regression analysis for o i l absorption

ModelNo

12

3

4

5

IndependentVariables

PPM

TATHC Ratio

RES TIME

SRGO

TypeISSF-value

14.47

0.04

0.08

0 .0

0.02

R-square

0.62

0.004

0.009

0.002

0.002

6 PPM 33.76 0.93SR 3.71

AAO 1.33GO 0.23RESTIME 0.12TATHC 11.61

Independent Variable: OIL ABSORPTION

Dependent variables ppm (p.p.m of potassium in oi l )

AAO (auxi l iary a i r "to o i l rat io)

:TATHC(total a ir to hydrocarbon rat io)

:SR ( O ~ g e n avai lable to Oxygen needed

for combustion)

:RESTIME(Residence time)

Page 52: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 52/115

Table 11

Comparison of Calcula ted and ac tua l o i l absorp t ion .

Run Calcula ted Actualo i l absorpt ion o i l absorpt ion

A 1.25 1.02B 1.33 1.00C 1.34 1.37E 1.34 1.30F 0.80 0.83G 1.34 1.41H 1.34 1.55

M 0.77 0.82N 1.20 1.10p 1.33 1.45Q 1.34 1.58

46

Page 53: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 53/115

47

3 . 5 Development Of s imulat ion Model Of Furnace B lack Process

The block diagram shown in Fig 3 r ep re se nts th e ASPEN

model of th e carbon black manufactur ing process . The f i r s t

s tep in th e c rea t ion of an ASPEN model o f th e process i s to

define th e carbon black manufacture flow shee t t h a t i s being

modeled and to s t a t e th e purpose of th e model. This i s

accomplished by using th e TITLE and DESCRIPTION s ta tements

of ASPEN PLUS inpu t language.

In th e second s tep o f th e model l ing process , th e un i t s

o f measurement fo r inpu t and output a re spec i f ied using IN-

UNITS and OUT-UNITS s ta tements . Engl i sh engineer ing uni t s

o f measurement a re se lec ted fo r both th e inpu t and output

repor t s fo r t h i s model.

In s te p th re e, th e chemical components involved in th e

process a re spec i f ied using th e COMPONENTS s ta tement . The

component s ta tement not only inc ludes a l l input mate r ia l s bu t

a lso a l l th e components t h a t a re formed during th e process .

The components s ta tement a l so i s a l ink to r e t r i eve th e

physica l p ro pe rty c on sta nts o f th e components involved , from

th e ASPEN data bank.

Page 54: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 54/115

Block Diagram of Simulation Model48

250 0 C

Gases

matic oilBlock Heat Block M1

...... ...

...... Model Heater ... Model Mult77 F

Block React1....

Block Mix-...-

Model Rgibbs Model Mixer

Natural gas ...Fortran Block Block React Fortran Block

... Conver Model Rstoic ea:tC

...

....

......

Ai r

Carbon Black............

Block Filter Block QuenchBlock Quen2 ........ ..............

............

Model Heater...

..... Model Fabfl Model HeaterFlue

. Aro

1000" C

Figure 3

Page 55: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 55/115

49

In s tep four , th e methods and models to ca lcu la te the

physica l proper t ie s a re spec i f ied using th e PROPERTIES

s ta tement . Any of the 18 bu i l t - i n opt ion se t s can be used.

The option s e t SYSOPI was used in the s imula t ion as it i s th e

s e t appl icable to systems conta ining hydrocarbons.

In th e f i f t h s tep , th e f lowsheet of th e carbon black

manufacture process i s represented in terms of un i t opera t ion

blocks and an appropria te un i t opera t ions model i s se lec ted

fo r each block . The block diagram shows how various un i t

opera t ions in the manufacturing process a re modeled using

ASPEN. The FLOWSHEET sta tement i s used to spec ify th e

connec t iv i ty between a l l the un i t opera t ion blocks used.

In the s ix th s tep , th e feed streams to th e process a re

def ined using STREAM s ta temen ts . In th e STREAM sta tements

in format ion regarding th e feed streams such as tempera ture ,

pressure , mole o r mass-frac t ion of th e components i s

spec i f i ed .

In the seventh s tep , th e performance o f each block i s

spec i f i ed . Each un i t opera t ion block i s associa ted with a

pa r t i cu la r model and r eq uir ed d ata i s provided. The data to

be provided depends on the type of the model used.

Page 56: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 56/115

50

As mentioned before , the carbon black manufactur ing

process can be divided in to heat ing sec t ion , r eac to r sec t ion ,

quench sec t ion , and col lec t ion sec t ion .

Block Heat

In th e heat ing s ec tio n th e feedstock, aromatic o i l , i s

heated from room temperature of about 77°F to 550°F. This

un i t opera t ion can be simulated by one of the HEATER models

ava ilab le in ASPEN. The hea ting of aromatic o i l i s

represented by block HEAT in the block diagram and i s

s imula ted by model HEATER of ASPEN. Out le t t empera ture and

pressu re are the only parameters to be suppl ied fo r t h i s

model.

The composi t ion of the o i l feed in to the block HEAT i s

spec i f ied using the STREAM s ta tement OILFED o f ASPEN data

f i l e . The composi t ion spec i f ica t ion of the feed in t h i s

par t i cu la r case i s done as mass-f rac tions . In th e same

s tream s ta tement , the phase of the feed, number of phases of

feed, and the mass flow of the feed are spec i f ied .

Page 57: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 57/115

51

Based on the information provided in th e stream

s ta tement and the output temperature and p ressu re , th e heat

duty of th e block HEAT i s computed by ASPEN. The required

values f or th es e c alc ula tio ns i s obtained from th e s pe cif ie d

proper ty se t of th e ASPEN data base.

The reac tor sec t ion of the carbon black manufacturing

process cannot be simulated by anyone pa r t i cu l a r reac tor

model av aila ble in ASPEN. The carbon black r eac to r can be

s imula ted when the reac tor i s considered as having two

di f fe ren t sec t ions with d i f f e r en t types of reac t ions

occurr ing in each sec t ion . The whole r eac to r can be divided

in to two sec t ions . The f i r s t sec t ion of th e r eac to r i s the

combustion sec t ion and the o ther the reac t ion sec t ion .

Block React

In th e combustion sec t ion n atu ra l gas i s burnt in

combustion a i r . This sec t ion can be simulated by one of the

r eac to r models of ASPEN. The block REACT i s used to

r ep re se nt th e combustion sec t ion of the carbon black reac tor

in the block diagram. The block REACT i s simulated using

model RSTOIC, one of the reac tor models ava i lab le in ASPEN.

Page 58: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 58/115

52

The r eac to r model RSTOIC can be used when th e k ine t i c s or

the s to ichiometry and th e ex ten t of the reac t ions i s known.

The r eac to r model RSTOIC i s used because th e s to ichiometry

of th e combustion reac t ions between the na tu ra l gas and a i r

in th e burners i s known. The input parameters fo r t h i s model

a re pressu re in the reac tor , number of phases , and amount of

hea t suppl ied .

s ince most of the na tu r a l gas i s methane, with some

ethane and o the r gases , only reac t ion between methane and a i r

are cons idered. In the combustion process , two reac t ions are

pos s ib l e . One i s combustion of methane in to carbon dioxide

and wate r vapor and the othe r i s combustion o f methane in to

carbon monoxide and water vapor . The ex ten t o f each o f these

r e ac t ions depends upon th e amount of oxygen present , which

in tu rn depends on the amount of a i r fed to the reac tor .

Even though the ex ten t of th e re ac tio ns i s spec i f i ed a t 90%

and 10%, re sp ec tiv ely , th ese numbers can be modified by

supplying a user -wr i t t en Fort ran block which can ca l cu l a t e

th e cor rec t values from th e amounts of a i r and na tu ra l gas

fed in to th e r eac to r .

Two s t reams of gases , one a s t ream o f na tu ra l gas and

th e o the r a s t ream of a i r , a re the inputs in to th e r eac to r

block REACT. The composit ion o f the g ase s s tre am s, t h e i r

Page 59: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 59/115

53

t e m p e r a t u r e , pressure , a n d t o t a l amount of g a s e s in e a c h

s t r e a m , a re spec i f i ed u s i n g th e s t r e a m s t a t e m e n t of ASPEN.

The reac t ion condi t ions in th e b l o c k REACT a re spec i f i ed

u s i n g th e PARAM s t a t e m e n t of ASPEN. S i n c e th e rea ct io n i s

e x o t h e r m i c , no heat i s s u p p l i e d externa l ly . The o u t p u t f r om

th e b l o c k i s th e g a s e o u s m i x t u r e , th e r e su l t of c o m b u s t i o n

in th e b u r n e r .

Fort ran B l o c k CONVER:

A Fort ran b l o c k CONVER i s s u p p l i e d to m o d i f y th e ex ten t

to w h i c h the tw o spec i f i ed re ac tio ns tak e p la ce . T h i s b l o c k

a c c e s s e s th e c o m p o s i t i o n an d the f lo w ra te s of a i r an d

na tu ra l g a s f r om the ASPEN da ta f i l e an d d e t e r m i n e s if the

a m o u n t of o x y g e n present i s su f f i c ien t fo r c o m p l e t e

c o m b u s t i o n of natura l g a s . I f oxygen i s in su f f i c ien t fo r

c o m p l e t e c o m b u s t i o n , the ex ten t o f the a b o v e spec i f i ed

reac t ions a re d e t e r m i n e d . T h e s e v a l u e s a re th en s up plie d to

ASPEN to over r ide th e v a l u e s spec i f i ed in the input f i l e .

The Fort ran b l o c k CONVER i s made to b e e x e c u t e d before

the b l o c k REACT s o t h a t the c o n v e r s i o n values ca lcu la ted b y

t he u se r- su pp lie d Fort ran b l o c k CONVER c a n b e u s e d . U s i n g

these c o n v e r s i o n va lues , th e b u r n e r sec t ion of the c a r b o n

Page 60: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 60/115

54

black r eac to r i s s imula ted using th e r eac to r block of RSTOIC.

The composi t ion o f the output gases and th e temperature of

th e gases a re automat ica l ly ca lcu la ted by ASPEN using the

spec i f i ed proper ty s e t .

Block HEATl i s used j u s t to show t ha t th e auxi l ia ry a i r

can a l so be hea ted to requi red temperature . This block HEATl

i s simulated by ass igning t h i s to th e model HEATER o f ASPEN.

The compos it ion, t empe r atur e , and pressure a re spec i f i ed in

the stream s ta tement .

Carbon black i s ac tua l ly formed in the reac t ion sec t ion

of the reac to r . In t h i s sec t ion , pa r t o f th e feeds tock i s

decomposed in to carbon black and th e r e s t r eac t s with th e hot

combustion gases from th e combustion sec t ion o f th e reac to r .

A use r supp li ed Fo rt ra n block CBREC i s used to s imula te and

pred ic t the yie ld of th e carbon black and th e amount of

feeds tock undergoing othe r reac t ions . Reactor model RGIBBS

i s used to s imula te th e reac t ions between th e pa r t of the

feed s tocknot decomposing in to carbon black and th e

combust ion gases .

Page 61: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 61/115

55

Fort ran Block CBREC

This For t ran block i s developed to s imula te a pa r t of

th e reac t io n sec t ion o f th e carbon b lack furnace. It

pred i c t s th e yie ld of carbon black formed. This block also

pred i c t s th e amount of feedstock undergoing noncarbon black

forming reac t ions . The corre la t ion developed to p red i c t th e

yie ld from combustion a i r to gas ra t io and t o t a l a i r to t o t a l

hydrocarbon r a t i o i s used in t h i s block . These equat ions a re

incorporated in to th e block to give r e a l i s t i c v alu es o f yie ld

and o the r impor tan t prope r t i e s .

The in format ion about th e gases coming ou t o f th e

block REACT, such as th e composi t ion and th e cond i t ions

ca lcu la ted by ASPEN, a re accessed by th e For t ran block CBREC.

The procedure on how to access t hese va r i ab l e s i s descr ibed

in th e ASPEN manual . Based on th e composi t ion o f th e o i l

feed , accessed by th e for t ran block CBREC from th e s t ream

spec i f i ca t i on o f block HEAT, th e empi r ica l formula i s

ca lcu la ted . The excess oxygen p re sen t in the combustion

gases from block REACT. and th e auxi l i a ry a i r a l so are

accessed to compute th e q ua nti ty o f oxygen pre sen t . Due to

th e presence o f t h i s oxygen some o f th e o i l feed also

undergoes combustion. various r a t i o s , such as combustion a i r

to gas , and t o t a l a i r to t o t a l hydrocarbon a re c alc ula te d.

From t hese ra t io s th e yie ld i s pred ic t ed .

Page 62: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 62/115

56

Block REACTl

Reactor model RGIBBS i s used to model th e reac tio ns

o the r than decomposit ion of th e feedstock in to carbon black .

This i s used because th e reac tion s to ichiometry i s not

required, and i s capable of simulat ing reac t ions j u s t from

th e informat ion of the reac tan t s and expected products . Only

temperature of the reac tio n and phase a re needed to be

spec i f i ed . The combustion gases from combustion sec t ion

s imulated by RSTOIC and the pa r t of th e feed no t undergoing

decomposi t ion to carbon black and aux i l i a ry a i r , are the

inputs in to t h i s sec t ion .

Fort ran Block CBPROP

This Fort ran block i s developed to ca l cu l a t e the

res idence t ime of the gases in th e re ac to r se ct io n and to

pred ic t th e p ro p er tie s of carbon black such as surface area

and s t ruc tu re . The information about th e gases coming ou t

of th e block REACTl, such as the composi t ion, mole f lows, and

condi t ions ca lcu la ted by ASPEN, are accessed by t h i s block.

Block MIX

The un i t opera t ion model MIXER i s used to mix th e gases

coming out of the r eac to r RGIBBS and th e carbon black stream

FeB predic ted by use r Fort ran block CBREC.

Page 63: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 63/115

57

Blocks QUENCH & QUEN2

The ho t gasses w ith entra ined carbon black from the

r eac to r s ec tio n a re cooled in th e quench sec t ion . The quench

sec t ion i s represented block QUENCH. un i t opera t ion model

HEATER i s used to simulate QUENCH. This model s imulates the

cool ing of hot gases from the block RGIBBS to 10000

C. A

des ign -s pe c s ta temen t fo r t h i s block ca lcu la tes the amount

of water needed fo r t h i s quenching purpose. Another un i t

opera t ion model HEATER represented by QUEN2 i s used to

fur ther cool th e hot gases a t 10000 to 2700

C. The amount

of water requi red fo r t h i s purpose also i s ca lcu la ted by

ASPEN model.

Block FILTER

The bag f i l t e r s are used to separa te the entra ined

carbon black from th e combustion gases coming out of the

quench sec t ion . This i s simulated by FABFL model of ASPEN.

'Given the r a te of f i l t r a t i on t h i s block can ca lcu la te the

pressure drop o r, given th e pressure drop it can ca lcu la te

th e r a te of f i l t r a t i on .

Page 64: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 64/115

58

The only inputs in to t h i s model a re th e composi t ion and

mass o f the feeds tock and th e amount o f na tu ra l gas and a i r

fed in to the process . The s imula t ion model developed fo r th e

whole process i s capable o f dete rmining the amount o f hea t

needed to heat the feed and the temperature in the combustion

sec t i on . It a lso can pred ic t th e yie ld of the carbon

blackand i t s phys ica l prope r t i e s , such as sur face a rea and

s t ruc tu re . It a lso ca l cu l a t e s th e amount o f quench water

needed. The mate r ia l and energy balances a re performed by

ASPEN fo reach

un i t opera t ionb lock, as

wel las

th e o ve ra l l

f lowsheet .

Page 65: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 65/115

59

Chapter IV

RESULTS AND DISCUSSION

Af te r a success fu l s imula t ion run , two output f i l e s a re

c r ea t ed by ASPEN. One f i l e i s a h i s to ry f i l e c on ta in in g th e

h i s to ry o f s im ula tion , and th e o the r i s a r epo r t f i l e

conta in ing th e r e su l t s o f th e s imula t ion . De ta il ed ma t er ia l

and energy balances fo r each block and fo r th e ov e ra l l

f l owshee t a re c alc ula te d and pr in ted in th e r epo r t f i l e .

The r e su l t s o f th e use r -wr i t t en For t ran b lock , such as y ie ld ,

sur face a rea , s t ruc tu r e , and res idence t ime, a re pr in ted in

th e ASPEN h i s t o ry f i l e a long with th e h i s to ry o f s imu la tio n.

The carbon black manufacture process i s s imu la ted fo r a

range o f a i r , na tu r a l gas , and o i l feed r a t e s . The

compos i t ion o f th e o i l feed and o the r opera t ing parameter data

fo r th e se runs i s obta ined from U.S. pa t en t s 2,564,700 and

3,240,565.

The s im u la t io n o f th e carbon b lack p ro ce ss us ing ASPEN

and user - suppl ied blocks pred ic t s th e va lues o f impor tan t

prope r t i e s o f carbon b lack such as va lues o f pe rcen t y ie ld

based on th e weight of th e hydrocarbon feed , sur face a rea of

th e black formed, as wel l as th e o i l absorp t ion capab i l i t y of

Page 66: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 66/115

60

of th e b lack t h a t wi l l form when th e p l an t i s opera ted with

a given gas , a i r , and aromat ic hydrocarbon feed r a t e s . In

a dd it io n o th er impor tan t var iab les , such as t empera ture in

th e combustion chamber and th e res idence t ime in th e r ea cto r,

a re c alc ula te d by th e model.

The fol lowing t ab l e s show some of th e cases s imula ted

by t h i s model . A comparison i s made between th e values o f

c a lc u l at e d p rope rt ie s such as s ur fa ce a re a and o i l absorpt ion

with th e v alu es re po rte d in th e u.s. pa ten t s .

Table 12

Comparison o f yie ld from s imulat ion and yie ld r epor ted in

pa ten t as percentage of carbon black per pound o f o i l feed.

Run No Calcula ted Actua l Lb Carbon BlackYield Yield pe r Lb o f Tota l Carbon

A 16.56 17.66 13.18E 37.24 31.11 34.84F 27.43 31.99 28.83H3 48.59 46.38 46.26N 27.29 32.43 29.07

The maximum quant i ty of caron black t h a t can be produced i s

a lso shown as % o f lb s o f carbon black formed per lb of t o t a l

carbon in th e system.

Page 67: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 67/115

61

Table 13

Comparison of s urf ac e a re as

Run No Surface area sqm/gm

A

E

F

H3

N

Calcula ted

148.586.8149.188.3148.8

Actual

168.886.0169.982.0146.5

Table 14

Comparison of o i l absorpt ion

Run No o i l Absorption cc/gm

Calculated Actual

A

E

F

H3

N

1.26

1.340.801.341.20

1.021.30

0.831.41

1.10

comparis ion of the r esu l t s repor ted in th e p aten ts and

those ca lcu la ted by the model show t ha t th e p re dic tio n i s

pre t ty good cons ider ing the empir ical nature of the

pred ic t ion and the small number of parameters . This model

may be used in p lace of some prac t i ca l runs to f ix the

operat ing condi t ions and var iab les to make a cer ta in kind of

b lack .

Page 68: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 68/115

62

In addi t ion to predic t ing yie lds and o the r important

prope r t i e s , the model can a lso determine th e approximate

composi t ion o f th e ou t le t gases from the process . The

composi t ion i s shown in Table 15.

As s ta ted in the modeling chap te r , th e stream

man ipu la ti ng b locks a re used in th e ASPEN model to manipulate

the o i l feed stream . Due to these manipula t ions only pa r t

of th e feed i s involved in the ac tua l s imula t ion . As a

r e su l t , there i s no t exact mater ia l and energy balance fo r

t ha t stream and fo r th e whole f lowsheet . To ob ta in the

co r rec t mass balance th e d if fe re nc e between the o i l feed fed

in to th e process and the o i l feed t h a t .is ac tua l ly involved

in th e reac t ions i s to be subtrac ted.

A summary of the s imula t ion fo r run H3 i s shown in Table

16.

The data used in the simulat ion run H3 i s obtained from

USP 3,240,565. The aromatic o i l used as th e feed i s obta ined

from th e bottoms of petroleum cracking opera t ion. The o i l

has an API gravi ty of 13.4 degrees . The composi t ion and the

quant i ty of o i l used in the run i s shown in Table 16.

Page 69: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 69/115

63

Table 15

Conventional Components (LB Mole/Hr)

IN OUT ( % GASES·)

H2 83.9 84.0 (18.0)

02 77.1 0.0 (0.0)

N2 290.2 290.2 (62.0)

CO 0.0 80.5 (17.2)

CO2 0.0 12.7 (2.7)

CH4 23.8 0 .0 (0 .0)

502 0.0 0.4 (0.1)

H2O 419.9 467.4

C 143.8 73.6

S 0.79 0.0

* In th e percentage calcula t ions water vapor was not

cons idered.

Page 70: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 70/115

64

Table 16

Summary of the resul t s of simulat ion for run H3

INPUTS

o i l Feed ra te (lb/hr)Composition of o il

Carbon WT%

Hydrogen WT%

Sulfur WT%

Natural gas Rate(lbjhr)Composition of Natural gasMethane WT%(assumed)

Air Rate(lb/hr)

Quench Water(lbjhr)

OUTPUTS

Carbon black(lbjhr)

Flue gasesComposition of Flue gases in Ibs /hr

H2N2CO

C02H20

802

Quality of Carbon Black

Surface Area (sqmjgm)o i l absorption (ccjgm)

Temperature of Combustion Chamber of

1818.7

89.39 .3

1 .4

380.8

100

10594.3

7558

883.7

168

8125.62255.4560.68411.026 .00

88 .371.345

2655

Page 71: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 71/115

65

Natura l gas and a i r a re used to genera te the required

hea t fo r th e decomposit ion of the o i l feed . Natura l gas i s

assumed to be methane. The weights o f na tu r a l gas and the

a i r used in th e process a re shown in Table 16. These a re the

only independent opera t ing parameters in the process .

Also shown in Table 16 a re the values predic ted by the

s imula t ion model, such as th e q ua nt ity and th e p rope r t i e s of

carbon black formed, th e composi t ion of f lue gases , and the

quan t i ty o f quench water needed fo r the process . The

temperature in th e combustion chamber i s a lso predic ted .

Page 72: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 72/115

66

Chapter V

CONCLUSIONS AND RECOMMENDATIONS

The cor re l a t i on developed in t h i s s tudy shows t h a t some

of the opera t ing parameters such as res idence t ime, a i r to

gas ra t io s and c on ce ntr atio n o f a lka l i meta ls have grea t e r

impact on prope r t i e s of carbon b lack than o the r parameters .

The model developed can be used to narrow down th e range

o f opera ting cond itions to manufacture a black with

pa r t i c u l a r proper t i es . This model gives a good i n i t i a l poin t

fo r th e p r ac t i c a l runs to determine th e e xac t o pera ting

condi t ions to manufacture a pa r t i cu l a r black .

The empi r ica l equat ions used in th e s im ula tion are

developed from th e lim ite d data ava i lab le , may hold good only

fo r a narrow range of values . Ext rapola t ing these values may

no t be poss ib le . There a re many othe r var i ab l e s such as

tu rbulence in the reac tor , burner design and th e sp i ra l l ing

motion of gas in th e reac tor which a lso a f f e c t th e yie ld and

prope r t i e s of the carbon b lack formed.

Page 73: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 73/115

67

Unfor tunate ly t he re i s no data ava i l ab le to develop

equat ions which can take in to cons idera t ion th e e f f e c t of

these var i ab les on carbon black formation. This reason may

lead to discrepancy between the ac tua l yie lds and proper t i e s

of th e black and the calcula ted values from t p i s s imUlat ion .

Further improvement in th e model can be done if

su f f i c i en t da ta about th e a f fec t s of a l l the opera t ing

parameters on th e proper t i e s of the r e su l t i ng black i s known.

The model can also be enhanced if th e mechanism of formation

of carbon black i s understood.

Page 74: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 74/115

68

REFERENCES

1. Donnet, J . B., and Voit, A., Carbon black, Marcel

Dekker, I nc . , New York, NY 1976.

2. Krejci , J . C., USP 2,375 ,965 , May 1945.

3. s t rasse r , D. M., Petr ol. R efin er , vol 33. p177, 1954.

4 . Shearon J r W. H ., e t a l . , A Staf f - Industry collaborative

Report, Ind. Eng. Chemistry, Vol 44. p685 1970.

5. Krejci , J . C., USP 2 ,564 ,700 , August 21, 1951

6. Deviney and O'Grady.," Petroleum Derived Carbons' ' ' ,

ACS symposium ser ies , 1976.

7 . Krejci , J . C ., USP 2,419 ,565 , Apri l 29, 1947.

8. USP 4,198 ,469 , August, 1980.

9. Cheng, P. J . , USP 4 ,225 ,570 , September 30, 1980.

10 . Krejci , J . e., e t a l . , USP 3 ,240 ,565 , March 15, 1966.

11 . Frianf , G. F ., and Thorley, B ., USP 3 ,010 ,794 ,

November 28, 1961.

12. Frianf , G. F ., and Thorley, B ., USP 3,010 ,795 ,

November 28, 1961.

Page 75: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 75/115

69

13. voet , A., and Iannicel l i , J . , e t a l . , USP 3,201,200,

August 17, 1965.

14. Smith, S. R., Proceedings o f Royal Soc ie ty , London,

A174, 1940.

15 Gaydon, A. G., a t a l . , Symposium on combust ion . , 4th;

Cambridge, Mass, p248, 1952.

16. Prado, G., Ph.D. Thes is , Strasbourg, 1972.

17. Lahaye, J . , and Prado, G., Prac. 11th Conf. Carbon,

p41, 1973.

18. King, W. R. , USP 2,892,684, June 30, 1959.

19. ASPEN Plus In t roduc tory Manual, 1s t Edit ion, Aspen

Technology INC, 1985.

Page 76: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 76/115

APPRNDIX A

HISTORY FILE OF THE SIMULATION

12

3 ;

4 TITLE

TO CARBON BLACK'5 ;6 DESCRIPTION

FOR THE MANUFACTURE

7

AROMATIC HYDROCARBONS.

8

PROCESS. '9

10ENGINEERING11

12 IN-UNITS13 OUT-UNITS1415 ;

METHODS AND MODELS

1617 PROPERTIES18

19

20 ;

21 COMPONENTSH20jCH4 CH4/S02 02S/

222324

PROPERTIES2526 DATABANKS

27 PROP-SOURCES28

29

CONNECTIVITY30

31FLOWSHEET

32 BLOCK

OUT=OILOUT

DEFINITION OF THE PROBLEM

'CONVERSION OF AROMATIC HYDROCARBONS

'THIS IS A MODEL OF FURNACE PROCESS

OF CARBON BLACK BY DECOMPOSITION OF

PURPOSE IS TO SIMULATE CARBON BLACK

UNITS OF MEASUREMENT BRITISH

ENG

ENG

SPECIFICATION OF PHYSICAL PROPERTY

SYSOP1

SPECIFICATION OF COMPONENTS

H2 H2/02 02/N2 N2/CO CO/C02 C02/H20

C CIS 51

DATA BANK SPECIFICATION FOR

SOLIDS / COMBUST

COMBUST COMPS=ALL

SPECIFICATION OF FLOWSHEET

HEAT IN=OILFED

i

Page 77: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 77/115

IN=COMBC1 WATER

IN=GASBLK FCB

IN=OILOUT

IN=H2IN

IN=CH4IN AIR

IN=AUXIL

SPECIFICATION OF PARTICLE SIZE

SPECIFICATION OF STREAM CLASSES

SPECIFICATION OF FEED STREAMS

QUEN2

QUENCH IN=COMBH WATIN

MIX

REACT

HEAT1

M1

M2

REACTl IN=COMGAS AUXAIR FEED H20UT

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

.

STREAM FCB

SUBSTREAM CIPSD TEMP=2600 PRES=14.7

MASS-FLOW C 800

SUBS-ATTR PSD FRAC= .2 .6 .2

STREAM H2IN TEMP=7? PRES=14.7 MOLE-FLOW=.01

MOLE-FRAC H2 1

.

STREAM AIR TEMP=77 PRES=14.7 MOLE-FLOW=357.1428

MOLE-FRAC 02 .21/N2 .79

STREAM AUXIL TEMP=77 PRES=l4.7 MOLE-FLOW=10.204

MOLE-FRAC 02 .21/N2 .79

STREAM CH4IN TEMP=77 PRES=14.7 MOLE-FLOW=23.80

MOLE-FRAC CH4 1

33

OUT=COMGAS34

OUT=FEED35

OUT=H20UT

36

OUT=AUXAIR37

OUT=GASBLK38

OUT=COMBH39

OUT=COMBCl40

OUT=COMBC241 BLOCK FILTER IN=COMBC2

OUT=GASES BLACK42

43

44

45 STREAM OILFED TEMP=77 PRES=l4.7 NPHASE=1 PHASE=L

MASS-FLOW=1818.67

46 MASS-FRAC C 0.893/H2 0 .093 /S 0.014

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

62

63

64

65

66

67 DEF-STREAMS MIXCIPSD FeB COMBH COMBCl COMBC2 WATINWATER GASES BLACK

6869 i

DISTRIBUTION

70

i i

Page 78: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 78/115

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

MAXIT=50

105

PHASE=S/

106

107

S

108

/ 0

109

/ 0

110

/ 0

111/ 0

112

/ 0

DEF-SUBS-ATTR PSD PSD

IN-UNITS LENGTH=MUINTERVALS 3

SIZE-LIMITS 1/2/3/4.STREAM WATIN TEMP=77 PRES=14.7 MASS-FLOW=2000

MASS-FRAC H20 1.STREAM WATER TEMP=77 PRES=14.7 MASS-FLOW=100

MASS-FRAC H20 1

SPECIFICATION OF BLOCK DATA;

BLOCK HEAT HEATERPARAM TEMP=675 PRES=14.7

;

BLOCK Ml MULTPARAM 0.5.

BLOCK M2 MULTPARAM 30

BLOCK REACT RSTOIC

PARAM PRES=14.7 DUTY=Q NPHASE=l

STOIC 1 MIXED CH4 -1/02 -2/H20 2/C02 1

STOIC 2 MIXED CH4 -1 /0 2 -1.5/H20 2/CO 1

CONV 1 MIXED CH4 .9

CONV 2 MIXED CH4 .1

;

BLOCK HEAT1 HEATERPARAM TEMP=77 PRES=l4.7.

BLOCK REACTl RGIBBS

PARAMTEMP=2600 PRES=14.7

NATOM=5NPHASE=2

TOL=.OO1

PROD CO / H2O / H2 / CO2 / CH4 / 02 / N2 / S

C PHASE=S/

S02. ATOMS C H 0 N

ATOM CO 1 1 / 0 / 1 / 0

/H20 1 0 / 2 / 1 / 0

/H2 1 0 / 2 / 0 / 0

/

C02 1 1 / 0 / 2 / 0/

CH4 1 1 / 4 / 0 / 0

/

i i i

Page 79: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 79/115

DETERMINE THE CONVERSION FACTORS

FORTRAN BLOCK TO CHECK THE AMOUNT

02 1 0 / 0 / 2 / 0

N2 1 0 / 0 / 0 / 2

C 1 1 / 0 / 0 / 0

8 1 0 / 0 / 0 / 0

802 1 0 / 0 / 2 / 0

/

/

/

/

;.

BLOCK FILTER FABFLPARAM MODE=lOPER DPMX=.5 TFLT=l VMAX=.15

..

•BLOCK QUENCH HEATER

PARAM DUTY=Q PRES=14.7.1BLOCK QUEN2 HEATER

PARAM DUTY=Q PRE8=14.7

;

BLOCK MIX MIXERPARAM PRES=14.7 NPK=2

o

1

o

1

o113

/114

/115

I116

/ 117/118

l19

120

121

122

123

124

125

126

127

128

129

130

131

132 :133 SEQUENCE SEQ1 M1 M2 REACT113,4 ;

135 BLOCK-REPORT NEWPAGE

136 :137 i

OF OXYGEN AND

138 iFOR THE NO REACTIONS

139 ;140 FORTRAN CONVER141 DEFINE OXYGEN MOLE-FLOW STREAM=AIR COMPONENT=02

STREAM=CH4INH4MOL MOLE-FLOWEFINE

OXYREC = CH4MOL*2.0DOIF (OXYGEN .GT. OXYREC) GOTO 10

X = 2.0DO*(2.0DO*CH4MOL-OXYGEN)

ID1=2

;

.FF

F

142

COMPONENT=CH4143 DEFINE CONV1 BLOCK-VAR BLOCK=REACT SENTENCE=CONV

VARIABLE'::(X)NV &

144 ID1=1

145 DEFINE CONV2 BLOCK-VAR BLOCK=REACT SENTENCE=CONVVARIABLE=Q!)NV &

146

147

148149

150

151

iv

Page 80: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 80/115

FORTRAN CBRECDEFINE OILFLO STREAM-VAR STREAM=OILFED

DEFINE H2FLO MOLE-FLOW STREAM=OILFED

DEFINE CARFLO MOLE-FLOW STREAM=OILFED

CONVl = (CH4MOL-X)/CH4MOLCONV2 = 1.0DO-CONVl

GOTO 20CONV1 = 1.0DOCONV2 = ODO

CONTINUEEXECUTE BEFORE REACT

20

10

FFFFFF

152

153

154155156157158159

160161 THIS FORTRAN BLOCK MODELS THE REACTION

SECTION OF THE FURNACE162 AND CALCULATES THE AMOUNT OF BLACK

FORMED, RESIDENCE TIME IN163 THE REACTOR, PERCENT YIELD, SURFACE AREA

AND THE OIL ABSORBTION164 OF THE BLACK FORMED.165166

167

168VARIABLE=MASS-FLOW

169COMPONENT=C

170COMPONENT=H2

171 DEFINE SFLO MOLE-FLOW STREAM=OILFED COMPONENT=S

STREAM=AIR

STREAM=CH4IN

STREAM-VAR

STREAM-VAR

AIR

GAS

DEFINE

DEFINE

DEFINE TEMP STREAM-VAR STREAM=COMGAS

DEFINE AUXNIT MOLE-FLOW STREAM=AUXAIR

DEFINE AUXOXY MOLE-FLOW STREAM=AUXAIR

RECDIA=1.0DO

RECLEN=11.0DOAPI=13.4DO

PPM=O.ODOSPGR=141.5DO/(API+131.5DO)

F

FF

FF

172

COMPONENT=02

173

COMPONENT=N2174

VARIABLE=TEMP

175VARIABLE=MOLE-FLOW176

VARIABLE=MOLE-FLOW177 DEFINE CB SUBSTREAM-VAR STREAM=FCB

SUBSTREAM=CIPSD VARIABLE=MASS-FLOW178 DEFINE FACT BLOCK-VAR BLOCK=M1 SENTENCE=PARAM

VARIABLE=FACTOR179 DEFINE FACTI BLOCK-VAR BLOCK=M2 SENTENCE=PARAM

VARIABLE=FACTOR180

181182

183184

185

186

v

Page 81: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 81/115

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FAN=SPGR*8.543DOAREA=3.14159DO*RECDIA*RECDIA/4.0DOWTCAR=CARFLO*12.0DOWTHYD=H2FLO*2.0DOWTSUL=SFLOW*32.0DOWTOIL=WTCAR+WTSUL+WTHYD

WTMET=CH4MOL*16.0DOTOTHC=WTMET+WTHYD+WTCAR

WTAIR=AIR*28.84DOWTNIT=AUXNIT*28DOWTOXY=AUXOXY*32.0DO

TOTAIR=WTAIR+WTNIT+WTOXY

TATHC=TOTAIR/TOTHCAGRAT=AIR/CH4MOL

OXYAVA=AUXOXY+0.21*AIROXYNED=CARFLO + 0.50DO * H2FLO + 2*CH4MOL

204

205

206

F

F

STOICR = OXYAVA/OXYNED

YIELD=124.799-l68.820*STOICR-1.217*AGRAT

207 F BLKFOR=YIELD*OILFLO/100.0DO208 F CB=BLKFOR

209 F FACT=(lOO.ODO-YIELD)/lOO.ODO210 F FACT1=H2FLO * YIELD/lOO.ODO211

212 ;213 F

WRITE(NHSTRY,*) '*******************************************'

214 F WRITE(NHSTRY,*) FACTI215 F WRITE(NHSTRY,*) 'YIELD=',YIELD

216 F WRITE(NHSTRY,*) 'TEMPERATURE=' ,TEMP217 F

WRITE(NHSTRY,*) '********************************************'

VOLUME=TOTGAS*(TEMP+460.0DO)*0.7203DOVEL=VOLUME/AREA

VELOCI=VEL/3600.0DORESTIM=RECLEN/VELOCI

WRITE(NHSTRY,*)EXECUTE AFTER REACT

F

F

F

F

FORTRAN CBPROP

DEFINE TOTGAS STREAM-VAR STREAM=GASBLK

F18

219

220

221

222

223

VARIABLE=MOLE-FLOW

224

225

226227

228

229

v i

Page 82: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 82/115

230

231

232

233

234

FFF

RESTIM=RESTIM*lOOO.ODOSFAREA=174.04-3.185746*RESTIM

OILABS=1.345-0.009*PPM

WRITE(NHSTRY,*) 'OIL ABSORBTION

WRITE(NHSTRY,*)WRITE(NHSTRY,*) 'RESIDENCE TIME

2 3 5 F

WRITE(NHSTRY,*) '*******************************************

**' 236 F237 F

=',RESTIM, 'MILLI SECONDS'238 F WRITE (NHSTRY, *) 'SURFACE AREA OF CARBON

BLACK=',SFAREA,'SQM/GM'239 F

=',OILABS, ICC/GMt240 F WRITE(NHSTRY,*)

241 FWRITE(NHSTRY,*) '***********************************************'242 EXECUTE AFTER REACTl

243244 i

245 DESIGN-SPEC QTEMP246 DEFINE T STREAM-VAR STREAM=COMBC1 VARIABLE=TEMP

247 SPEC T TO 1250248 TaL-SPEC 10249 VARY STREAM-VAR STREAM=WATIN

VARIABLE=MASS-FLOW250 LIMITS 100 20000251

252 DESIGN-SPEC QTEM253 DEFINE Tl STREAM-VAR STREAM=COMBC2

VARIABLE=TEMP254 SPEC T1 TO 520255 TOL-SPEC 20256 VARY STREAM-VAR STREAM=WATER

VARIABLE=MASS-FLOW257 LIMITS 50 10000

1 *** INPUT TRANSLATOR MESSAGES ***

DESIGN SPEC: QTEMP WILL BE INTERPRETEDDESIGN SPEC: QTEM WILL BE INTERPRETEDFORTRAN BLOCK: CONVER WILL BE COMPILEDFORTRAN BLOCK: CBREC WILL BE COMPILED

FORTRAN BLOCK: CBPRO P WILL BE COMPILED

1*** FLOWSHEET ANALYSIS MESSAGES ***

v i i

Page 83: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 83/115

FLOWSHEET CONNECTIVITY BY STREAMS

STREAM SOURCE DEST STREAMDESTOILFED HEAT AIR

REACTCH4IN REACT H2IN

M2AUXIL HEATl FCB

MIXWATIN QUENCH WATER

QUEN2OILOUT HEAT Ml COMGAS

REACTlFEED Ml REACTl H20UT

REACTlAUXAIR HEATl REACTl GASBLK

MIXCOMBH MIX QUENCH COMBCl

QUEN2

COMBC2 QUEN2 FILTER GASES

BLACK FILTER

FLOWSHEET CONNECTIVITY BY BLOCKS

SOURCE

REACT

M2

REACTl

QUENCH

FILTER

BLOCKHEATREACTMl

M2HEATlREACTl

MIXQUENCHQUEN2FILTER

INLETSOILFEDCH4IN AIR

OILOUTH2INAUXILCOMGAS AUXAIR FEED H20UT

GASBLK FCBCOMBH WATINCOMBCl WATERCOMBC2

OUTLETSOILOUTCOMGAS

FEEDH20UTAUXAIRGASBLK

COMBHCOMBClCOMBC2GASES BLACK

BLOCK $OLVEROI HAS BEEN DEFINED TO CONVERGEDESIGN-SPEC: QTEMP

BLOCK $OLVER02 HAS BEEN DEFINED TO CONVERGEDESIGN-SPEC: QTEM

COMPUTATION ORDER FOR THE FLOWSHEET IS :

HEATl CONVER REACT CBREC HEAT Ml M2 REACTl CBPROP MIX$OLVEROl QUENCH$OLVEROl<--- $OLVER02 QUEN2 $OLVER02<--- FILTER

v i i i

Page 84: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 84/115

NO ERRORS OR WARNINGS GENERATED

SIMULATION PROGRAM MAY BE EXECUTED

************************************************* ASPEN PLUS INPUT TRANSLATOR ENDS EXECUTION *************************************************

o MESSAGE SUMMARY: MESSAGE NUMBER - COUNT

o 151 11

*** CALCULATION TRACE ***

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON BLACK

SIMULATION CALCULATIONS BEGINTIME = 0.07

ENTHALPY CALCULATION FOR INLET STREAM AUXIL

HEATI TIME =0.09

KODE = 2 NTRIAL = 3 T = 298 . 10.1014E+06 V = 1.000 Q = O.OOOOE+OO

UOS BLOCK HEATl MODEL: HEATER

TIME = 0.21

KODE = 2 NTRIAL = 3 T = 298 . 10.1014E+06 V = 1.000 Q = -0.2339E-14

FORTRAN BLOCK CONVER

TIME = 0.26

ENTHALPY CALCULATION FOR INLET STREAM CH4IN

REACT TIME = 0.28KODE = 2 NTRIAL = 2 T = 298 . 1

0.1014E+06 V = 1.000 Q = O.OOOOE+OO

ENTHALPY CALCULATION FOR INLET STREAM AIR

REACT TIME = 0.30

KODE = 2 NTRIAL = 3 T = 298.1

O.1014E+06 V = 1.000 Q = O.OOOOE+OO

OF BLOCK

p =

P =

OF BLOCK

P =

OF BLOCK

P =

UOS BLOCK REACT

KODE = 1KPHASE =

O.10135E+06 Q =

MODEL: RSTOICTIME = 0.33

NO. TEMP ITER = 10

1 KODE = 1 T =O.OOOOOE+OO

TEMP = 1730.5

1730.5 P =

FORTRAN BLOCK CBREC

TIME = 0.39

ix

Page 85: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 85/115

*******************************************YIELD= 48.5958489461470542

TEMPERATURE= 2655.23079330288135

********************************************

---FLASH STREAM AUXAIRKODE = 2 NTRIAL = 3 T = 298 . 1 P =

O.1014E+06 V = 1.000 Q = -0.1169E-14

---FLASH STREAM COMGASKODE = 2 NO. TEMP ITER = 1 TEMP = 1730.5

KPHASE = 1 KODE = 2 T = 1730 . 5 P =0.10135E+06 Q = -0.20116E-09

ENTHALPY CALCULATION FOR INLET STREAM OILFED OF BLOCKHEAT TIME = 0.46

KODE = 2 NO. TEMP ITER = 1 TEMP = 298.15

KPHASE = 2 KODE = 2 T = 298.15 P =

0.10135E+06 Q = O.OOOOOE+OO

UOS BLOCK HEAT MODEL: HEATERTIME = 0.51

KODE = 2 NTRIAL = 3 T = 630 . 4 P =0.1014E+06 V = 1.000 Q = 0.7420E+06

UOS BLOCK Ml MODEL: MULT

TIME = 0.55

ENTHALPY CALCULATION FOR INLET STREAM H2IN

M2 TIME = 0.55

KODE = 2 NTRIAL = 2 T = 298 . 10.1014E+06 V = 1.000 Q = O.OOOOE+OO

OF BLOCK

p =

UOS BLOCK M2 MODEL: MULT

TIME = 0.58

UOS BLOCK REACTl MODEL: RGIBBSTIME = 0.59

o CONVERGENCE ACHIEVED IN ROUTINE GIBBSTOTAL NUMBER OF ITERATIONS = 15

FORTRAN BLOCK CBPROPTIME = 1.34

*********************************************

RESIDENCE TIME = 29.1766378662087504 MILLI SECONDSSURFACE AREA OF CARBON BLACK= 81. 0906302812988962

SQM/GMOIL ABSORBTION = 1.34500026702880859 CC/GM

***********************************************

x

Page 86: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 86/115

ENTHALPY CALCULATION FOR INLET STREAM FCB OF BLOCKMIX TIME = 1.36

SUBSTREAM CIPSDKODE = 2 T = 1699.8 P = O. l0135E+06 Q =

O.OOOOOE+OO HCS = O.28012E+08

UOS BLOCK MIX MODEL: MIXERTIME = 1.40

NO. TEMP ITER = 9 TEMP = 1699.8

KODE = 1 NTRIAL = 3 T = 1700 .O.1014E+06 V = 1.000 Q = O.OOOOE+OO

P =

CONVERGENCE BLOCK $OLVEROITIME =

ITER 0 FOR SPECS:

METHOD: SECANT1.74

QTEMP

ENTHALPY CALCULATION FOR INLET STREAM WATINQUENCH TIME = 1.76

SUBSTREAM MIXED

KODE = 2 NTRIAL = 2 T = 298.10.1014E+06 V = O.OOOOE+OO Q = O.OOOOE+OO

UOS BLOCK QUENCH MODEL: HEATERTIME = 1.79

NO. TEMP ITER = 7 TEMP = 1228.6

KODE = 1 NTRIAL = 3 T = 1229.

0.1014E+06 V = 1.000 Q = O.OOOOE+OO

OF BLOCK

P =

P =

X =

CONVERGENCE BLOCK $OLVEROITIME =

ITER 1 FOR SPECS:SPEC 1 ERROR = 501.75

0.15380E-01

METHOD: SECANT1.94

QTEMPOLD X = 0.13988E-01 NEW

LOOP $OLVER01 ITER 1: 1 VARS NOT CONVERGED, MAX ERR/TOL50.175 TIME = 1.95

VOS BLOCK QUENCH MODEL: HEATERTIME = 1.96

NO. TEMP ITER = 7 TEMP = 1191.1

KODE = 1 NTRIAL = 3 T = 1191.

0.1014E+06 V = 1.000 Q = O.OOOOE+OOP =

X =

CONVERGENCE BLOCK $OLVER01TIME =

ITER 2 FOR SPECS:SPEC 1 ERROR = 434.29

O.24340E-Ol

x i

METHOD: SECANT2.10

QTEMPOLD X = 0.15380E-Ol NEW

Page 87: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 87/115

LOOP $OLVERO 1 ITER 2 : 1 VARS NOT CONVERGED, MAX ERR/TOL43.429 TIME = 2.11

UOS BLOCK QUENCH MODEL: HEATERTIME = 2.11

NO. TEMP ITER = 6 TEMP = 977.18

KODE = 1 NTRIAL = 3 T = 977 . 20.1014E+06

V =1.000

Q = O.OOOOE+OO

p =

X =

CONVERGENCE BLOCK $OLVER01TIME =

ITER 3 FOR SPECS:SPEC 1 ERROR = 49.255

O.25653E-01

METHOD: SECANT2.25

QTEMPOLD X = O.24340E-01 NEW

LOOP $OLVERO 1 ITER 3 : 1 VARS NOT CONVERGED, MAX ERR/TOL4.9255 TIME = 2.26

UOS BLOCK QUENCH MODEL: HEATERTIME = 2.27

NO. TEMP ITER = 6 TEMP = 949.22KODE = 1 NTRIAL = 3 T = 949.2

O.1014E+06 V = 1.000 Q = O.OOOOE+OOp =

X =

CONVERGENCE BLOCK $OLVER01TIME =

ITER 4 FOR SPECS:SPEC 1 ERROR = -1.0772

O.25653E-01

METHOD: SECANT2.40

QTEMPOLD X = O.25653E-Ol NEW

LOOP $OLVERO 1 ITER 4 :0.10772 TIME =

*** CONVERGED *** , MAX ERR/TaL

2.42

UOS BLOCK QUENCH MODEL: HEATERTIME = 2.42

NO. TEMP ITER = 6 TEMP = 949.22

KODE = 1 NTRIAL = 3 T = 949.2

O.1014E+06 V = 1.000 Q = O.OOOOE+OOp =

CONVERGENCE BLOCK $OLVER02TIME =

ITER 0 FOR SPECS:

METHOD: SECANT2.56

QTEM

ENTHALPY CALCULATION FOR INLET STREAM WATERQUEN2 TIME = 2.57

SUBSTREAM MIXED

KODE = 2 NTRIAL = 2 T = 298.10.1014E+06 V = O.OOOOE+OO Q = O.OOOOE+OO

OF BLOCK

p =

UOS BLOCK QUEN2 MODEL: HEATER

x ii

Page 88: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 88/115

TIME =NO. TEMP ITER = 6KODE = 1 NTRIAL =

0.1014E+06 V = 1.000

2.60

TEMP = 934.63

3 T = 934. 6Q = O.OOOOE+OO

P =

x =

CONVERGENCE BLOCK $OLVER02TIME =

ITER 1 FOR SPECS:SPEC 1 ERROR = 702.66

0.13953E-02

METHOD: SECANT2.73

QTEMOLD X = 0.69940E-03 NEW

LOOP $OLVER02 ITER 1: 1 VARS NOT CONVERGED, MAX ERR/TOL35.133 TIME = 2.74

UOS BLOCK QUEN2 MODEL: HEATERTIME = 2.75

NO. TEMP ITER = 6 TEMP = 920.31

KODE = 1 NTRIAL = 3 T = 920 . 30.1014E+06 V = 1.000 Q = O.OOOOE+OO

P =

X =

CONVERGENCE BLOCK $OLVER02TIME =

ITER 2 FOR SPECS:SPEC 1 ERROR = 676.89

0.19674E-01

METHOD: SECANT2.89

QTEMOLD X = 0.13953E-02 NEW

LOOP $OLVER02 ITER 2: 1 VARS NOT 'CONVERGED, MAX ERR/TOL33.844 TIME = 2.90

UOS BLOCK QUEN2 MODEL: HEATERTIME =

NO. TEMP ITER = 4KODE = 1 NTRIAL =

0.1014E+06 V = 1.000

2.91

TEMP = 602.52

3 T = 602.5

Q = O.OOOOE+OO

P =

x =

CONVERGENCE BLOCK $OLVER02TIME =

ITER 3 FOR SPECS:SPEC 1 ERROR = 104.86

0.23959E-01

METHOD: SECANT3.04

QTEMOLD X = 0 . ~ 9 6 7 4 E - 0 1 NEW

LOOP $OLVER02 ITER 3 : 1 VARS NOT CONVERGED, MAX ERR/TOL5.2431 TIME = 3.06

UOS BLOCK QUEN2 MODEL: HEATERTIME

=3.06

NO. TEMP ITER = 4 TEMP = 540.77

KODE = 1 NTRIAL = 3 T = 540.8

0.1014E+06 V = 1.000 Q = O.OOOOE+OO

x i i i

p =

Page 89: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 89/115

:K =

CONVERGENCE BLOCK $OLVER02TIME =

ITER 4 FOR SPECS:SPEC 1 ERROR = -6.2790

O.23959E-Ol

METHOD: SECANT3.20

QTEMOLD X = 0.23959E-Ol NEW

LOOP $OLVER02 ITER 4 :0.31395

TIME =

*** CONVERGED *** , MAX ERR/TOL3.21

UOS BLOCK QUEN2 MODEL: HEATERTIME = 3.22

NO. TEMP ITER = 4 TEMP = 540.77

KODE = 1 NTRIAL = 3 T = 540.8

O.1014E+06 V = 1.000 Q = O.OOOOE+OO

UOS BLOCK FILTER MODEL: FABFLTIME = 3.34

PRESSURE DROP = 3447. EFFICIENCY =0.9890

SIMULATION CALCULATIONS COMPLETED

TIME = 3.35

PDF UPDATEDTIME = 3.58

REPORT WRITER ENTEREDTIME = 3.59

REPORT GENERATEDTIME = 5.22

NO ERRORS OR WARNINGS GENERATED

*************************************************** ASPEN PLUS SIMULATION PROGRAM ENDS EXECUTION ***************************************************

P =

NUMBER OF APRU USED: 46.47

xiv

Page 90: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 90/115

APPENDIX B

REPORT OF THE SIMULATION

TABLE OF CONTENTS

RUN CONNTROL SECTION............................ 1RUN CONTROL INFORMATION.•................. 1DESCRIPTION. . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . 1BLOCK STATUS.............................. 1

FLOWSHEET SECTION........•..••......•.........• 2FLOWSHEET CONNECTIVITY BY STREAMS ......••. 2FLOWSHEET CONNECTIVITY BY BLOCKS •........• 2DESIGN-SPEC: QTEMP ..••.......•........... 2DESIGN-SPEC: QTEM ..•.•...•...........•.•. 2FORTRAN BLOCK: CONVER .•.....•............ 3

FORTRAN BLOCK: CBREC 3FORTRAN BLOCK: CBPROP........•.........•. 4CONVERGENCE BLOCK: $OLVEROl ...........•.. 4CONVERGENCE BLOCK: $OLVER02 ••............ 5COMPUTATIONAL SEQUENCE .......••........•.• 5

OVERALL FLOWSHEET BALANCE ...••............ 5

PHYSICAL PROPERTIES SECTION ......••......••.••. 6

COMPONENTS . . . . . . . . • . . . . . . . . . . • . . . . . . . • . . . . 6

SECTION .....•.......•........•.....FABFL ..•...•••....

HEATER......••....HEATER......•.....

HEATER .HEATER.......•....RSTOIC .....••.....RGIBBS .

U-O-S BLOCKBLOCK:

BLOCK:BLOCK:BLOCK:BLOCK:BLOCK:BLOCK:BLOCK:

FILTER

HEAT1HEATMIXQUENCHQUEN2

REACTREACT1

MODEL:

MODEL:MODEL:MODEL:MODEL:MODEL:MODEL:MODEL:

7

7

89

MIXER......•••.•.. 1011

12

13

14

STREAM SECTION . . . . . . . • . . . . . . . • . . . . . . . . . . . . . . . . . 16SUBSTREAM ATTR PSD TYPE: PSD ........•..... 16BLACK COMBCl COMBC2 COMBH FCB 17

GASES WATER WATIN.........•........•...... 19AIR AUXAIR AUXIL CH4IN COMGAS .....•....... 21

FEED GASBLK H2IN H20UT OILFED 22

oI LOUT. . . . . . . . . • • . . • • . . . • . • . . . . . . . . . . . . . . . 23

xv

Page 91: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 91/115

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACKRUN CONTROL SECTION

RUN CONTROL INFORMATION

TYPE OF RUN: NEW

INPUTFILE NAME:

TH3

OUTPUT PROBLEM DATA FILE NAME: TH3

LOCATED IN : BAT195

VERSION NO. 1

PDF SIZE USED FOR INPUT TRANSLATION:

NUMBER OF FILE RECORDS (PSIZE) = 200

NUMBER OF IN-CORE RECORDS = 200

PSIZE NEEDED FOR SIMULATION = 75

CALLING PROGRAM NAME: TH3

LOCATED IN:

SIMULATION REQUESTED FOR ENTIRE FLOWSHEET

DESCRIPTION

THIS IS A MODEL OF FURNACE PROCESS FOR THEMANUFACTURE OF CARBON BLACK BY DECOMPOSITION OF AROMATICHYDROCARBONS. PURPOSE IS TO SIMULATE CARBON BLACK PROCESS.

BLOCK STATUS

***********************************************************ALL UNIT OPERATION BLOCKS WERE COMPLETED NORMALLY

ALL CONVERGENCE BLOCKS WERE COMPLETED NORMALLY

***********************************************************CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACKFLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS

STREAM SOURCE DEST STREAM SOURCEDEST

OILFED HEAT AIR

REACTCH4IN REACT H2IN

M2

AUXIL HEATl FCB

MIX

WATIN QUENCH WATER

xvi

Page 92: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 92/115

QUEN2OILOUT HEAT Ml

REACTl

FEED Ml REACTl

REACTl

AUXAIR HEATl REACTl

MIX

COMBH MIX QUENCHQUEN2COMBC2 QUEN2 FILTER

BLACK FILTER

FLOWSHEET CONNECTIVITY BY BLOCKS

- - - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - -

COMGAS

H20UT

GASBLK

COMBCl

GASES

REACT

M2

REACTI

QUENCH

FILTER

BLOCKHEATREACTMl

M2HEATl

REACTl

MIX

QUENCHQUEN2FILTER

INLETS

OILFED

CH4IN AIR

OILOUT

H2INAUXIL

COMGAS AUXAIR FEED H20UT

GASBLK FCB

COMBH WATINCOMBCl WATERCOMBC2

OUTLETSOILOUT

COMGAS

FEED

H20UTAUXAIRGASBLKCOMBH

COMBC1COMBC2GASES BLACK

DESIGN-SPEC: QTEMP

SAMPLED VARIABLES:

T : TEMPERATURE IN STREAM COMBCl SUBSTREAM MIXEDSPECIFICATION:

MAKE T APPROACH 1,250.00WITHIN 10.0000

MANIPULATED VARIABLES:

VARY : TOTAL MASSFLOW IN STREAM WATIN SUBSTREAM MIXEDLOWER LIMIT = 100.0000 LB/HR

UPPER LIMIT = 20,000.0 LB/HR

DESIGN-SPEC: QTEM

SAMPLED VARIABLES:

Tl : TEMPERATURE IN STREAM COMBC2 SUBSTREAM MIXED

xvi i

Page 93: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 93/115

SPECIFICATION:MAKE Tl APPROACH 520.000

WITHIN 20.0000

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO2/20/90 PAGE 3

CONVERSION OF AROMATIC HYDROCARBONS TO CARBONBLACK

FLOWSHEET SECTION

DESIGN-SPEC: QTEM (CONTINUED)

MANIPULATED VARIABLES:VARY : TOTAL MASS FLOW IN STREAM WATER SUBSTREAM MIXEDLOWER LIMIT = 50.0000 LB/HRUPPER LIMIT = 10,000.0 LB/HR

FORTRAN BLOCK: CONVER

SAMPLED VARIABLES:OXYGEN 02 MOLEFLOW IN STREAM AIR SUBSTREAM MIXEDCH4MOL CH4 MOLEFLOW IN STREAM CH4IN SUBSTREAM MIXEDCONV1 SENTENCE=CONV VARIABLE=CONV I01=1 IN UOS

BLOCK REACTCONV2 SENTENCE=CONV VARIABLE=CONV I01=2 IN UOS

BLOCK REACT

FORTRAN STATEMENTS:OXYREC = CH4MOL*2.0DOIF (OXYGEN .GT. OXYREC) GOTO 10

X = 2.0DO*(2.0DO*CH4MOL-OXYGEN)CONVI = (CH4MOL-X)/CH4MOL

CONV2 = 1.ODO-CONVlGOTO 20

10 CONV1 = 1.000

CONV2 = ODO

20 CONTINUE

EXECUTE BEFORE BLOCK REACT

FORTRAN BLOCK: CBREC

SAMPLED VARIABLES:OILFLO TOTAL MASSFLOW IN STREAM OILFED SUBSTREAM MIXEDCARFLO : C MOLEFLOW IN STREAM OILFED SUBSTREAM MIXED

H2FLOSFLO

: H2 MOLEFLOW IN STREAM OILFED SUBSTREAM MIXED: S MOLEFLOW IN STREAM OILFED SUBSTREAM MIXED

xvi i i

Page 94: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 94/115

AUXOXY

AUXNITTEMP

GAS

MIXEDAIR

CBFACTFACTI

02 MOLEFLOW IN STREAM AUXAIR SUBSTREAM MIXED

N2 MOLEFLOW IN STREAM AUXAIR SUBSTREAM MIXED

TEMPERATURE IN STREAM COMGAS SUBSTREAM MIXED

: TOTAL MOLEFLOW IN STREAM CH4IN SUBSTREAM

TOTAL MOLEFLOW IN STREAM AIR SUBSTREAM MIXED

TOTAL MASS FLOW IN STREAM FCB SUBSTREAM CIPSDSENTENCE=PARAM VARIABLE=FACTOR IN UOS BLOCK MlSENTENCE=PARAM VARIABLE=FACTOR IN UOS BLOCK M2

FORTRAN STATEMENTS:RECDIA=l.ODORECLEN=11.0DOAPI=13.4DO

PPM=O.ODOSPGR=141.5DO/(API+131.5DO)

FAN=SPGR*8.543DO1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO

2/20/90 PAGE 4CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

FLOWSHEET SECTION

FORTRAN BLOCK: CBREC (CONTINUED)AREA=3.14159DO*RECDIA*RECDIA/4.0DOWTCAR=CARFLO*12.0DOWTHYD=H2FLO*2.0DOWTSUL=SFLOW*32.0DOWTOIL=WTCAR+WTSUL+WTHYD

WTMET=CH4MOL*16.0DOTOTHC=WTMET+WTHYD+WTCAR

WTAIR=AIR*28.84DOWTNIT=AUXNIT*28DO

WTOXY=AUXOXY*32.0DOTOTAIR=WTAIR+WTNIT+WTOXYTATHC=TOTAIR/TOTHCAGRAT=AIR/CH4MOLOXYAVA=AUXOXY+O.21*AIROXYNED=CARFLO + 0.50DO * H2FLO + 2*CH4MOLSTOICR = OXYAVA/OXYNED

YIELD=124.799-I68.820*STOICR-l.217*AGRAT

BLKFOR=YIELD*OILFLO/IOO.ODOCB=BLKFOR

FACT=(lOO.ODO-YIELD)/IOO.ODO

FACTI=H2FLO * YIELD/IOO.ODO

WRITE(NHSTRY,*) '*******************************************'

WRITE(NHSTRY,*) FACTlWRITE(NHSTRY,*) 'YIELD=',YIELD

xix

Page 95: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 95/115

WRITE(NHSTRY,*) 'TEMPERATURE=',TEMP

WRITE (NHSTRY,*) '********************************************'WRITE(NHSTRY,*)

EXECUTE AFTER BLOCK REACT

FORTRAN BLOCK: CBPROP

SAMPLED VARIABLES:TOTGAS : TOTAL MOLEFLOW IN STREAM GASBLK SUBSTREAM MIXED

FORTRAN STATEMENTS:VOLUME=TOTGAS*(TEMP+460.0DO)*O.7203DOVEL=VOLUME/AREAVELOCI=VEL/3600.0DO

RESTIM=RECLEN/VELOCIRESTIM=RESTIM*lOOO.ODOSFAREA=174.04-3.l85746*RESTIM

OILABS=1.345-0.009*PPM

WRITE(NHSTRY,*) '******************************************'WRITE(NHSTRY,*)WRITE(NHSTRY,*) 'RESIDENCE TIME =',RESTIM,'MILLI

SECONDS'WRITE(NHSTRY,*) 'SURFACE AREA OF CARBON

BLACK=',SFAREA,'SQM/GM'WRITE(NHSTRY,*) 'OIL ABSORBTION =',OILABS,'CC/GM'

WRITE(NHSTRY,*)WRITE(NHSTRY,*) '***************************************'

EXECUTE AFTER BLOCK REACTl

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO2/20/90 PAGE 5CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

FLOWSHEET SECTION

CONVERGENCE BLOCK: $OLVEROl

SPECS: QTEMPMAXIT= 30 STEP-SIZE= 1.0000 % OF RANGE

MAX-STEP= 100. % OF RANGE

METHOD: SECANT STATUS: CONVERGEDTOTAL NUMBER OF ITERATIONS: 4

x OLD XERR/TOL

TOTAL MASSFL LB/HR0.3667852D+04 -.10772070+00

xx

0.36678520+04

Page 96: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 96/115

CONVERGENCE BLOCK: $OLVER02

SPECS: QTEMMAXIT= 30 STEP-SIZE= 1 . 0 0 0 0 % OF RANGE

MAX-STEP= 1 0 0 . % OF RANGEMETHOD: SECANT STATUS: CONVERGED

TOTALNUMBER OF ITERATIONS: 4

x OLD X

ERR/TOLTOTAL MASSFL LB/HR

0 . 3 4 2 5 6 7 1 0 + 0 4 - . 3 1 3 9 4 8 2 D + 0 0

COMPUTATIONAL SEQUENCE

0 . 3 4 2 5 6 7 1 0 + 0 4

(LBMOL/HR)8 3 .9 1 5 3 4 9 .0 7 0 2

7 7 . 1 4 2 8 0 . l 3 2 6 3 6 E - 0 6

2 9 0 .2 0 4 2 9 0 .2 0 4

O.OOOOOOE+OO 7 5 . 2 1 1 8

O.OOOOOOE+OO 1 8 . 0 9 4 5

3 9 3 . 7 5 2 4 3 5 . 8 2 0

2 3 .8 0 0 0 0 .4 9 7 1 7 9 E - 0 6

O.OOOOOOE+OO 0 . 4 0 8 2 4 1

2 0 8 .7 9 8 7 3 . 5 8 2 4

0 .7 9 4 1 7 9O.OOOOOOE+OO

1 0 7 8 . 4 1 9 4 2 . 3 9 2

x x i

SEQUENCE USED WAS:HEATl CONVER REACT CBREC HEAT M1 M2 REACTl CBPROP MIX

$OLVEROl QUENCH$OLVEROl<--- $OLVER02 QUEN2 $OLVER02<--- FILTER

OVERALL FLOWSHEET BALANCE

*** MASS AND ENERGY BALANCE ***IN OUT

RELATIVE DIFF.

CONVENTIONAL COMPONENTSH2

0 . 4 1 5 2 4 1

02

1 . 0 0 0 0 0

N20 . 1 9 5 8 7 4 E - l 5

CO- 1 . 0 0 0 0 0

C02- 1 . 0 0 0 0 0

H20- 0 . 9 6 5 2 6 8 E - 0 1

CH41 . 0 0 0 0 0

S0 2

- 1 . 0 0 0 0 0C

0 . 6 4 7 5 9 0

S

1 . 0 0 0 0 0

TOTAL BALANCEMOLE (LBMOL/HR)

Page 97: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 97/115

0.126126

MASS (LB/HR 20775.9 19892.9

O.425006E-Ol

ENTHALPY (BTU/HR -0.849592E+07 -0.489781E+08

0.826536

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO2/20/90 PAGE 6

CONVERSION OF AROMATIC HYDROCARBONS TO CARBONBLACK

PHYSICAL PROPERTIES SECTION

COMPONENTS

IO TYPE FORMULA NAME OR ALIAS REPORT NAME

H2 C H2 H2 H202 C 02 02 02N2 C N2 N2 N2CO C CO CO CO

CO2 C CO2 CO2 CO2

H2O C H2O H2O H2OCH4 C CH4 CH4 CH4S02 C 02S 02S S02

C C C C C

S C S S S1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO

2/20/90 PAGE 7CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACKU-O-S BLOCK SECTION

BLOCK: FILTER MODEL: FABFL

INLET STREAM:OUTLET STREAMS:PROPERTY OPTION SET:

COMBC2GASESSYSOPl

BLACK

*** MASS AND ENERGY BALANCE ***IN OUT

RELATIVE DIFF.

TOTAL BALANCEMOLE (LBMOL/HR) 942.392 942.392

0.120637E-15

MASS (LB/HR 19892.9 19892.9

0.914390E-16

ENTHALPY (BTU/HR -0 .489781E+08 -0.489781E+08

O.OOOOOOE+OO

*** INPUT DATA ***DESIGN MODE SPECIFIED AND

xxii

Page 98: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 98/115

TIME OF FILTRATION IS CALCULATED

GAS VELOCITY ,FT/SEC

DUST RESISTANCEBAG DIAMETER ,FT

AREA PER FILTER BAG ,SQFTPRESSURE DROP DUE TO CLOTH ONLY

MAX. PRES. DROP BEFORE CLEANING

FILTERING TIME ,HRCLEANING TIME ,HRMAXIMUM GAS VELOCITY ,FT/SEC

MIMIMUM GAS VELOCITY ,FT/SEC

.049213

60,000.00.5052515.9306

,PSI 0.036259

,PSI .50000

17.54030.0083333.15000.0083333

*** RESULTS ***

3

1

78

0.98900

17.5403

INST: U-OHIOEL:7 .2-5

NUMBER OF CELLS(CALC)NUMBER OF CELLS BEING CLEANED (CALC)NUMBER OF BAGS PER CELL (CALC)OVERALL COLLECTION EFFICIENCYFLOOR SPACE REQUIRED ,SQFT

FILTERING TIME ,HR

1 ASPEN PLUS VER: IBM-CMS2/20/90 PAGE 8

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

U-O-S BLOCK SECTION

BLOCK: HEAT 1 MODEL: HEATER

INLET STREAM(S): AUXILOUTLET STREAM: AUXAIRPROPERTY OPTION SET: SYSOPl

FREE WATER OPTION SET: SYSOPl2

SOLUBLE WATER OPTION: ORGANIC OPTION SET

*** MASS AND ENERGY BALANCE ***IN OUT

RELATIVE DIFF.

TOTAL BALANCE

MOLE (LBMOL/HR) 10.2040 10.20400.870422E-16

MASS (LB/HR 294.389 294.389-0 .193090E-15

ENTHALPY (BTU/HR -29 .9281 -29 .9281O.OOOOOOE+OO

TWOPHASE TP FLASHSPECIFIED TEMPERATURE

77.0000SPECIFIED PRESSURE

*** INPUT DATA ***

F

PSI

xxi i i

Page 99: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 99/115

14.7000MAXIMUM NO. ITERATIONS

30CONVERGENCE TOLERANCE

0.000100000

OUTLET TEMPERATURE

77.000OUTLET PRESSURE

14.700HEAT DUTY

-0.79798E-14VAPOR FRACTION

1.0000

*** RESULTS ***FPSI

BTU/HR

V-L PHASE EQUILIBRIUM :

COMP

K(I) F(I) XCI) Y(I)

02 0.21000 0.24332 0.21000212.08N2 0.79000 0.75668 0.79000

256.471 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO

2/20/90 PAGE 9CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

U-0-5 BLOCK SECTION

BLOCK: HEAT MODEL: HEATER

INLET STREAM(S): OILFEDOUTLET STREAM: OILOUT

PROPERTY OPTION SET: SYSOPIFREE WATER OPTION SET: SYSOP12SOLUBLE WATER OPTION: ORGANIC OPTION SET

*** MASS AND ENERGY BALANCE ***IN OUT

RELATIVE DIFF.

TOTAL BALANCE

MOLE (LBMOL/HR)O.OOOOOOE+OO

MASS (LB/HRO.OOOOOOE+OO

ENTHALPY (BTU/HR-0.596987E-Ol

219.915

1818.67

0.398806E+08

xxiv

219.915

1818.67

0.424126E+08

Page 100: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 100/115

TWO PHASE TP FLASH

SPECIFIED TEMPERATURE

6 7 5 . 0 0 0SPECIFIED PRESSURE

1 4 . 7 0 0 0

MAXIMUM NO. ITERATIONS30CONVERGENCE TOLERANCE

0 .0 0 0 1 0 0 0 0 0

*** INPUT DATA ***FPSI

OUTLET TEMPERATURE

6 7 5 . 0 0OUTLET PRESSURE

1 4 . 7 0 0HEAT DUTY

0.25320E+07VAPOR FRACTION

1 . 0 0 0 0

*** RESULTS ***FPS I

BTU/HR

V-L PHASE EQUILIBRIUM :

COMP

K (I)F ( I ) XCI) Y (1)

H2 0 . 3 8 1 5 4 0 . 1 5 2 7 1 0 . 3 8 1 5 42 9 3 . 1 1C 0 .6 1 4 8 5 0 .8 4 2 3 4 0 .6 1 4 8 5

8 5 . 6 8 7

S 0 .3 6 1 1 3 E -0 2 0 .4 9 4 7 5 E -0 20 .3 6 1 1 3 E-0 2 8 5 . 6 8 7

1 ASPEN PLUS VER: IBM-CMS REL: 7 . 2 - 5 INST: U-OHIO2 / 2 0 / 9 0 PAGE 10

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

U-O-S BLOCK SECTION

BLOCK: MIX MODEL: MIXER

INLET STREAM(S): GASBLK FCBOUTLET STREAM: COMBH

PROPERTY OPTION SET: SYSOPlFREE WATER OPTION SET: SYSOP12SOLUBLE WATER

OPTION:ORGANIC

OPTION SET*** MASS AND ENERGY BALANCE ***IN OUT

xx v

Page 101: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 101/115

RELATIVE DIFF.

TOTAL BALANCEMOLE (LBMOL/HR) 548.639 548.639

O.OOOOOOE+OOMASS (LB/HR 12799.4 12799.4

O.OOOOOOE+OOENTHALPY (BTU/HR -482564. -482571.

O.147275E-04

*** INPUT DATA ***TWO PHASE FLASHMAXIMUM NO. ITERATIONS

30CONVERGENCE TOLERANCE

0.000100000

OUTLET PRESSURE PSI

14.7000

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 I NST : U-OHIO2/20/90 PAGE 11

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACKU-0-5 BLOCK SECTION

BLOCK: QUENCH MODEL: HEATER

INLET STREAM(S): COMBH WATINOUTLET STREAM: COMBC1PROPERTY OPTION SET: SYSOP1FREE WATER OPTION SET: SYSOP12SOLUBLE WATER OPTION: ORGANIC OPTION SET

*** MASS AND ENERGY BALANCE ***IN OUT

RELATIVE DIFF.TOTAL BALANCE

MOLE (LBMOL/HR) 752.237 752.237

-0.151132E-15

MASS (LB/HR 16467.3 16467.3

-O.276153E-15

ENTHALPY (BTU/HR -O.255581E+08 -O.255581E+08

O.681022E-07

TWO PHASE PQ FLASHSPECIFIED PRESSURE

14.7000

SPECIFIED HEAT DUTY0.0

MAXIMUM NO. ITERATIONS30

*** INPUT DATA ***

PSI

BTU/HR

xxvi

Page 102: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 102/115

CONVERGENCE TOLERANCE0.000100000

OUTLET TEMPERATURE

OUTLET PRESSURE

VAPOR FRACTION

*** RESULTS ***FPSI

1248.9

14.700

1.0000

V-L PHASE EQUILIBRIUM :

COMPK(l)

F(l) XCI) Y(I)

H2 0.72305E-01 0.15316E-120.72305E-Ol 156.44

02 0.19544E-09 0.43211E-200.19544E-09 91.105

N2 0.42762 0.68762E-12 0.42762

80.240CO 0.11082 0.74524E-12 0.11082

31.995C02 0.26662E-01 0.20822E-l l

0.26662E-01 0.74012E+06H20 0.36199 1.0000 0.361990.18200E+06

CH4 0.73260E-09 0.82619E-210.73260E-09 159.49

S02 0.60154E-03 0.10745E-070.60154E-03 2456.81 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO

2/20/90 PAGE 12

CONVERSION OF AROMATIC HYDROCARBONS TO CARBONBLACK

U-O-S BLOCK SECTION

BLOCK: QUEN2 MODEL: HEATER

INLET STREAM(S): COMBC1 WATERO UTLET STR EA M: COMBC2PROPERTY OPTION SET: SYSOPlFREE WATER OPTION SET: SYSOPl2SOLUBLE WATER OPTION: ORGANIC OPTION SET

*** MASS AND ENERGY BALANCE ***

IN OUTRELATIVE DIFF.

TOTAL BALANCEMOLE (LBMOL/HR) 942.392 942.392

xxvii

Page 103: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 103/115

O.OOOOOOE+OO

MASS (LB/HR0.914390E-16

ENTHALPY (BTU/HR0.354197E-05

TWO PHASE PQ FLASH

SPECIFIED PRESSURE

SPECIFIED HEAT DUTY

MAXIMUM NO. ITERATIONSCONVERGENCE TOLERANCE

***

19892.9 19892.9

-0.489779E+08 -0.489781E+08

INPUT DATA ***

PSI 14.7000

BTU/HR 0.030

0.000100000

*** RESULTS ***OUTLET TEMPERATURE

OUTLET PRESSUREVAPOR FRACTION

F

PSI

513.7214.7001.0000

V-L PHASE EQUILIBRIUM :

COMP

K(I)F(I) XCI) Y ( I )

H2 O.56480E-01 0.19399E-I00.56480E-Ol 0.14269E+06

02 0.15266E-09 0.30875E-180.15266E-09 69878.

N2 0.33402 0.83111E-10 0.334020.15123E+06

CO 0.86569E-Ol 0.72590E-100.86569E-01 61367.

C02 O.20827E-Ol O.82814E-I0

0.20827E-01 0.23165E+07H20 0.50163 1.0000 0.50163

42.873CH4 0.57225E-09 0.86564E-19

0.57225E-09 O.40858E+06

S02 O. 46989E-03 0.. 53030E-07O.46989E-03 2065.91 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO2/20/90 PAGE 13

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

U-O-S BLOCK SECTION

BLOCK: REACT

INLET STREAM:

OUTLET STREAM:

MODEL: RSTOIC

CH4INCOMGAS

xxvi i i

AIR

Page 104: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 104/115

PROPERTY OPTION SET: SYSOP1FREE WATER OPTION S ET : SYSOP12SOLUBLE WATER OPTION: ORGANIC OPTION SET

*** MASS AND ENERGY BALANCE ***IN OUT

GENERATION RELATIVE DIFF.

TOTAL BALANCEMOLE (LBMOL/HR) 380.943

O.OOOOOOE+OO -0.149218E-15

MASS (LB/HR ) 10685.5

0.556829E-06

ENTHALPY (BTU/HR -767321.

-0.411726E-06

380.943

10685.5

-767321.

*** INPUT DATA ***

SIMULTANEOUS REACTIONSSTOICHIOMETRY MATRIX:

REACTION # 1:SUBSTREAM MIXED02 -2 .00

CH4 -1 .00

REACTION # 2:

SUBSTREAM MIXED02 -1.50

CH4 -1 .00

C02

CO

1 .00

1.00

H20

H20

2.00

2.00

REACTION CONVERSION SPECS: NUMBER=REACTION # 1:

SUBSTREAM:MIXED KEY COMP:CH4

2

CONV FRAC: 1.000

REACTION # 2:

SUBSTREAM:MIXEDO.OOOOE+OO

KEY COMP: CH4 CONV FRAC:

ONE PHASE PQ FLASH SPECIFIED PHASE IS VAPORSPECIFIED PRESSURE PSI 14.7000

SPECIFIED HEAT DUTY BTU/HR 0.0

MAXIMUM NO. ITERATIONS 30CONVERGENCE TOLERANCE 0.000100000

OUTLET TEMPERATUREOUTLET PRESSURE

*** RESULTS ***FPSI

xxix

2655.2

14.700

Page 105: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 105/115

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO2/20/90 PAGE 14

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

U-O-S BLOCK SECTION

BLOCK: REACT1 MODEL: RGIBBS

INLET STREAM(S):H20UTOUTLET STREAM(S):PROPERTY OPTION SET:

COMGAS

GASBLK

SYSOPl

AUXAIR FEED

0.210345E+08 -0.136873E+07

*** MASS AND ENERGY BALANCE ***IN OUT

GENERATION RELATIVETOTAL BALANCE

MOLE (LBMOL/HR)0.422439E-16

MASS (LB/HR )-0.112166E-05

ENTHALPY (BTU/HR1.06507

DIFF.

504.600

11915.6

475.057

11915.6

-29.5428

2600.0

2600.0

14.700

*** INPUT DATA ***

EQUILIBRIUM SPECIFICATIONS:BOTH PHASE AND CHEMICAL EQUILIBRIUM ARE CONSIDEREDTHE MAXIMUM NUMBER OF FLUID PHASES CONSIDERED IS 2INCLUDING A VAPOR PHASE

SYSTEM TEMPERATURE FTEMPERATURE

FOR FREEENERGY EVALUATION

FSYSTEM PRESSURE PSI

ATOM MATRIX:ATOM NUMBER 1 2 3 4 5

CO 1.00 0.00 1.00 0.00 0.00

H2O 0.00 2.00 1.00 0.00 0.00

H2 0.00 2.00 0.00 0.00 0.00

CO2 1.00 0.00 2.00 0.00 0.00

CH4 1.00 4.00 0.00 0.00 0.00

02 0.00 0.00 2.00 0.00 0.00

N2 0.00 0.00 0.00 2.00 0.00

C 1.00 0.00 0.00 0.00 0.00

S 0.00 0.00 0.00 0.00 1.00S02 0.00 0.00 2.00 0.00 1.00

*** RESULTS ***

xxx

Page 106: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 106/115

12

INST: U-OHIO

2600.0

14.700

-0.22403E+08

1.0000

FPSI

BTU/HR

TEMPERATUREPRESSURE

HEAT DUTYVAPOR FRACTION

NUMBER OF FLUID PHASESNUMBER OF CONVENTIONAL SOLID PHASES

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5

2/20/90PAGE

15

CONVERSION OF AROMATIC HYDROCARBONS TO CARBONBLACK

U-O-S BLOCK SECTION

BLOCK: REACT1 MODEL: RGIBBS (CONTINUED)

FLUID PHASE MOLE FRACTIONS:

PHASEPHASE FRACTION

PLACED IN STREAMCO

H20H2

C02

CH402

N2

S02

LBMOL/HR

VAPOR1.000000

GASBLK0.1583217

0.8855428E-010.1032933

0.3808910E-01

0.1046568E-08

0.2792000E-09

0.6108823

0.8593514E-03

475.0571

PURE COMPONENT SOLID PHASES PLACED IN STREAM GASBLKC S

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO

2/20/90 PAGE 16

CONVERSION OF AROMATIC HYDROCARBONS TO CARBONBLACK

STREAM SECTION

SUBSTREAM ATTR PSD TYPE: PSD

INTERVAL

1

2

3

LOWER LIMIT

3.2808-06 FT

6.5617-06 FT

9.8425-06 FT

UPPER LIMIT

6.5617-06 FT

9.8425-06 FT

1.3123-05 FT

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO

2/20/90 PAGE 17CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACKSTREAM SECTION

xxxi

Page 107: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 107/115

BLACK COMBC1 COMBC2 COMBH FCB

STREAM ID

COMBH FCB

FROM :

BLACK COMBC1 COMBC2

FILTER QUENCH QUEN2 MIX

0.0 18.0945 18.0945

0.0 245.6660 435.8205

0.0 75.2118 75.2118

0.0 0 .0 0 .0

FILTERUEN2

0.0 8.4656+05 6.1687+05

O. 0 1. 5583+04 1.9009+04

0.0 678.6547 868.8092

0.0 1.3264-07 1.3264-07

0.0 290.2040 290.2040

0.0 4.9718-07 4.9718-07

MISSING 1248.9228 513.7210

874.0763 1.6467+04 1.9893+04

0.0 49.0702 49.0702

0.0 0.4082 0.4082

9.3866+04 -2.5558+07 -4.8978+07

0.0 0.0 0 .0

MIXCIPSD MIXCIPSD MIXCIPSD

MIXED VAPOR VAPOR

TO

QUENCH MIX

CLASS:

MIXCIPSD MIXCIPSD

TOTAL STREAM:LB/HR

1.2799+04 883.7981

BTU/HR

-4.8257+05 8.8617+05

SUBSTREAM: MIXEDPHASE:

VAPOR MIXED

COMPONENTS: LBMOL/HRH2

49.0702 0.0

02

1.3264-07 0.0

N2

290.2040 0.0

CO

75.2118 0.0

C02

18.0945 0.0

H20

42.0683 0.0

CH44.9718-07 0.0

S02

0.4082 0.0

C

0 .0 0.0

S

0.0 0 .0

TOTAL FLOW:LBMOL/HR

475.0571 0.0

LB/HR

1.1916+04 0.0

CUFT/HR

1.0613+06 0.0

STATE VARIABLES:

TEMP F

xxxii

Page 108: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 108/115

MISSING

MISSING

MISSING

MISSING

1.0000

14.7000

0.0

0 .0

1.0000

14.7000

0.0

0 .0

MISSING 1.8408-02 3.0815-02

MISSING -2.5897+07 -4.9073+07

MISSING - 1661 .8513 -2581.5492

MISSING -3.8160+04 -5.6483+04

MISSING 8.0166-04 1.4084-03

MISSING 22.9623 21.8795

MISSING 10.1442 3.4510

MISSING 0.4418 0.1577

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSINGPSI

MISSING

2599.9985

PRES14.7000

VFRAC

1.0000

LFRAC

0.0

SFRAC0.0 MISSING

ENTHALPY:BTU/LBMOL

-2881.2085

BTU/LB-114.8694

BTU/HR-1.3687+06

ENTROPY:BTU/LBMOL-R

18.4117 MISSINGBTU/LB-R

0.7340 MISSINGDENSITY:LBMOL/CUFT

4.4763-04 MISSINGLB/CUFT

1.1228-02

AVG MW

25.0825

0.0

0.0

0.00 .0

0.0

0 .0

0.0

0 .0

73.5824

INST: U-OHIO

0 .0

0 .0

0 .00.0

0.0

0.0

0.0

0 •.073.5824

REL: 7.2-5

0 .0

0.0

0 .00 .0

0.0

0 .0

0.0

0 .0

72.7730

STRUCTURE: CONVENTIONAL

0.0

0.0

0.00.0

0.0

0 .0

0.0

0 .0

SUBSTREAM: CIPSDCOMPONENTS: LBMOL/HR

H2 0.0

02 0.0

N2 0.0CO 0.0

C02 0.0

H20 0.0

CH4 0.0

S02 0.0

C

73.5824 73.5824

1 ASPEN PLUS VER: IBM-CMS2/20/90 PAGE 18

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

STREAM SECTION

BLACK COMBC1 C O ~ B C 2 COMBH FCB (CONTINUED)

STREAM ID BLACK COMBC1 COMBC2

xxxiii

Page 109: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 109/115

COMBH FeB

S 0 .0 0 .0 0 .0

' 0 . 0 0 .0

TOTAL F.LO'H:

LBMOL/HR 7 2 . 7 7 3 0 7 3 . 5 8 2 4 7 3 . 5 8 2 4

7 3 . 5 8 2 4 7 3 . 5 8 2 4

LB/HR 8 7 4 . 0 7 6 3 8 8 3 . 7 9 8 1 8 8 3 . 7 9 8 1

8 8 3 . 7 9 8 1 8 8 3 . 7 9 8 1

CUFT/HR 6 . 1 7 5 9 6 . 2 4 4 6 6 . 2 4 4 6

6 . 2 4 4 6 6 . 2 4 4 6

STATE VARIABLES:

TEMP F 5 1 3 . 7 2 1 0 1 2 4 8 . 9 2 2 8 5 1 3 . 7 2 1 0

2 5 99 . 9 9 8 5 2 60 0 .0 0 0 0

PRES P S I 1 4 . 2 0 0 0 1 4 . 7 0 0 0 1 4 . 7 0 0 0

1 4 . 7 0 0 0 1 4 . 7 0 0 0

VFRAC 0 .0 0 .0 0.0

0 .0 0 .0

LFRAC 0.0 0 .0 0.0

0 .0 0 .0

SFRAC 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 01 . ~ O O O 1 . 0 0 0 0

ENTHALPY.:BTU/LBHOL 1 2 8 9 . 8 4 7 3 4 6 1 1 . 1 6 9 8 1 2 8 9 . 8 4 7 3

1 . 2 0 4 3 + 04 1 .2 0 4 3 + 0 4

BTU/LB 1 0 7 . 3 8 8 8 3 8 3 . 9 1 2 2 1 0 7 . 3 8 8 8

1 0 0 2 . 6 8 0 6 1 0 0 2 . 6 8 1 3

BTU/HR 9 . 3 8 6 6 + 0 4 3 . 3 9 3 0 + 0 5 9 . 4 9 1 0 + 0 4

8 . 8 6 1 7 + 05 8 .8 6 1 7 + 0 5

ENTROPY:

B TU/LB HOL- R 1 . 7 0 7 7 4 . 2 1 4 5 1. 7 0 7 7

7 . 4 0 0 5 7 . 4 0 0 5

BTU/LB-R 0 . 1 4 2 2 0 . 3 5 0 9 0 . 1 4 2 2

0 . 6 1 6 1 0 . 6 1 6 1DEN.SITY:

LBMOL/CUFT 1 1 . 7 8 3 3 1 1 . 7 8 3 3 1 1 . 7 8 3 3

1 1 . 7 8 3 3 1 1 . 7 8 3 3

LB/CUFT 1 4 1 . 5 2 9 3 1 4 1 . 5 2 9 3 1 4 1 . 5 2 9 3

1 4 1 . 5 2 9 3 1 4 1 . 5 2 9 3

AVG MW 1 2 . 0 1 1 0 1 2 . 0 1 1 0 1 2 . 0 1 1 0

1 2 . 0 1 1 0 1 2 . 0 1 1 0

SUBSTREAM ATTRIBUTES:

PSD

FRACl 0 . 2 0 0 0 0 . 2 0 0 0 0 . 2 0 0 0

0 . 2 0 0 0 0 . 2 0 0 0

FRAC2 0 . 6 0 0 0 0 . 6 0 0 0 0 . 6 0 0 0

0 . 6 0 0 0 0 . 6 0 0 0FRAC3 0 . 2 0 0 0 0 . 2 0 0 0 0 . 2 0 0 0

0 . 2 0 0 0 0 . 2 0 0 0

1 ASPEN PLUS VER: IBM-eMS REL: 7.2-5 INST: U-OHIO

xxxiv

Page 110: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 110/115

2/20/90 PAGE 19

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

STREAM SECTION

GASES WATER WATIN

1.9019+04 3425.6712 3667.8519- 4.9 072+07 -2.3 420+07 -2. 5076+07

-5.6483+04 -1.2316+05 -1.2316+05-2581.5492 - 6836 .5657 - 6836 .5657- 4.9073+07 -2.3420+07 -2.5076+07

STREAM IOFROM :

TO

CLASS:

TOTAL STREAM:

LB/HR

BTU/HR

SUBSTREAM: MIXED

PHASE:

COMPONENTS: LBMOL/HR

H2

02

N2

CO

C02

H20

CH4

S02

C

S

TOTAL FLOW:

LBMOL/HR

LB/HR

CUFT/HR

STATE VARIABLES:

TEMP F

PRES PSI

VFRAC

LFRAC

SFRAC

ENTHALPY:

BTU/LBMOL

BTU/LB

BTU/HR

ENTROPY:

BTU/LBMOL-R

BTU/LB-R

DENSITY:

LBMOL/CUFTLB/CUFT

AVG MW

VAPOR

49.07021.3264-07290.2040

75.211818.0945

435.8205

4.9718-070.40820 .0

0 .0

868.8092

1.9009+0415.1687+05

513.721014.2000

1.00000 .0

0 .0

3.45100.1577

1.4084-033.0815-0221.8795

xxxv

LIQUID

0 .0

0 .0

0 .0

0 .0

0 .0

190.15450 .0

0 .0

0 .0

0 .0

190.15453425.6712

55.2595

77.000014.7000

0 .0

1.00000 .0

-39.8733-2 .2133

3.441161.992518.0152

LIQUID

0 .0

0 .0

0 .0

0 .0

0 .0

203.5976

0 .0

0 .0

0 .0

0 .0

203.59763667.8519

59.1661

77.0000

14.70000 .0

1.00000 .0

-39.8733-2 .2133

3.441161.992518.0152

Page 111: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 111/115

U-OHIO

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

INST:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7.2-5

STRUCTURE: CONVENTIONALUBSTREAM: CIPSD

COMPONENTS: LBMOL/HRH2 0.0

02 0.0

N2 0.0

CO 0.0

C02 0.0

H20 0.0

CH4 0.0

S02 0.0

C 0.8094

1 ASPEN PLUS VER: IBM-CMS REL:

2/20/90 PAGE 20

CONVERSION OF AROMATIC HYDROCARBONS TO CARBONBLACK

STREAM SECTION

GASES WATER WATIN (CONTINUED)

STREAM ID GASES WATER WATIN

MISSING

MISSING

MISSING

MISSING

MISSING

0 .0

0.0

0.0

0.0

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSINGMISSING

INST: U-OHIO

0 .0

0 .0

0 .0

0.0

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

1.7077

0.1422

0.0

11.7833

141.5293

12.0110

513.7210

14.2000

0.0

0.0

1.0000

1289.8473

107.3888

1044.0103

0.8094

9.7218

6.8691-02

S

TOTAL FLOW:LBMOL/HRLB/HR

CUFT/HR

STATE VARIABLES:

TEMP F

PRES PSI

VFRACLFRACSFRAC

ENTHALPY:

BTU/LBMOLBTU/LB

BTU/HR

ENTROPY:BTU/LBMOL-R

BTU/LB-R

DENSITY:

LBMOL/CUFTLB/CUFT

AVG MWSUBSTREAM ATTRIBUTES:

PSD

FRAC1 0.2000 MISSING

FRAC2 0.6000 MISSINGFRAC3 0.2000 MISSING

1 ASPEN PLUS VER: IBM-eMS REL: 7.2-5

2/20/90 PAGE 21

xxxvi

Page 112: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 112/115

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

STREAM SECTION

AIR AUXAIR AUXIL CH4IN COMGAS

- - - - - ~ - ~ - - - - - - - - - - - - - - - - - - - - -STREAM ID AIR AUXAIR AUXIL

CH4IN COMGAS

FROM HEAT1

REACT

TO REACT REACT 1 HEAT1

REACT REACT1

SUBSTREAM: MIXED

PHASE: VAPOR VAPOR VAPOR

VAPOR VAPOR

COMPONENTS: LBMOL/HR

H2 0.0 0 .0 0 .0

0 .0 0 .0

02 75.0000 2.1428 2.1428

0.0 27.4000

N2 282.1428 8.0612 8.0612

0 .0 282.1428

CO 0.0 0 .0 0 .0

0 .0 0 .0

CO2 0.0 0 .0 0 .0

0 .0 23.8000

H2O 0.0 0 .0 0 .0

0 .0 47.6000

CH4 0.0 0 .0 0 .0

23.8000 0.0

502 0.0 0 .0 0 .0

0 .0 0 .0C 0.0 0 .0 0 .0

0 .0 0 .0

S 0.0 0.0 0 .0

0 .0 0 .0

TOTAL FLOW:

LBMOL/HR 357.1428 10.2040 10.2040

23.8000 380.9428

LB/HR 1.0304+04 294.3888 294.3888

38 1.8234 1.0686+04

CUFT/HR 1.3986+05 3995.8976 3995.8976

9307.1567 8.6638+05

STATE VARIABLES:

TEMP F 77.0000 77.0000 77.000077.0000 2655.2308

PRES PSI 14.7000 14.7000 14.7000

14.7000 14.7000

xxxvii

Page 113: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 113/115

1.0000 1.0000

0.0 0.0

0.0 0 .0

-2 .9330 -2.9330

-0.1017 -0 .1017

-29.9281 -29.9281

1.0156 1.0156

3.5201-02 3.5201-02

2.5536-03 2.5536-03

7.3673-02 7.3673-02

VFRAC 1.0000

1.0000 1.0000

LFRAC 0.0

0.0 0.0

SFRAC 0 .0

0.0 0.0

ENTHALPY:

BTU/LBMOL -2.9330- 3.2196+04 -2014.2672

BTU/LB -0 .1017

-2006.8791 -71.8095

BTU/HR -1047.4906

-7. 6627+05 -7. 6732+05

ENTROPY:BTU/LBMOL-R 1.0156

-19.2824 14.5546

BTU/LB-R 3.5201-02

-1.2019 0.5189

DENSITY:LBMOL/CUFT 2.5536-03

2.5572-03 4.3969-04LB/CUFT 7.3673-02

4.1025-02 1.2334-02

AVG MW 28.8503 28.8503 28.8503

16.0430 28.0502

1 ASPEN PLUS VER: IBM-CMS REL: 7.2-5 INST: U-OHIO2/20/90 PAGE 22

CONVERSION OF AROMATIC HYDROCARBONS TO CARBON

BLACK

STREAM SECTION

FEED GASBLK H2IN H20UT OILFED

STREAM ID

H20UT OILFEDFROM :

FEED

M1

GASBLK

REACT1

H2IN

M2

TOREACT 1 HEAT

REACT1 MIX M2

SUBSTREAM: MIXED

PHASE:VAPOR LIQUIDCOMPONENTS: LBMOL/HR

H2 43.1308 49.0702

02 0 .0 1.3264-07

N2 0.0 290.2040

CO 0.0 75.2118

C02 0 .0 18.0945

VAPOR

1.0000-02

0.00 .0

0 .0

0 .0

VAPOR

0.4077

0 .0

0.0

0 .0

0 .0

VAPOR

83.9053

0 .0

0 .0

0 .0

0 .0

xxxvii i

Page 114: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 114/115

AROMATIC HYDROCARBONS TO CARBON

5.1420-03

2.5509-03

2.0158

INST: U-OHIO

0.7340 -4 .7547-04

18.4117 -9 .5844-04

1.1228-02

4.4763-04

25.0825

0.0 0.0

0 .0 0.0

0.0 0.0

0 .0 135.2154

0.0 0.7942

475.0571 1.0000-02

1.1916+04 2.0158-02

1.0613+06 3.9203

2600.0000 77.0000

14.7000 14.7000

1.0000 1.0000

0.0 0.0

0.0 0 .0

-2881.1949 0.4357

-114.8689 0.2162

-1.3687+06 4.3573-03

REL: 7.2-5

0.0

0 .0

0 .0

0 .0

0 .0

3.3857

27.9991

8.2699

1.0000

9.9938-03

0.0

0 .0

1.2085-03

14.7000

675.0000

9.3545+04

934.8719

113.0454

2.1802+07

2.3321+04

1.9286+05

42.0683

4.9718-07

0.4082

0.0

0 .0

0.3478

2.8762

0.9016

7.4559

0.0

1.0000

0.0

H20 0.0

CH4 0.0

S02 0.0

C 69.5063

S 0.4082

TOTAL FLOW:

LBMOL/HR

0.4077 219.9149

LB/HR

0.8219 1818.6700

CUFT/HR

159.8463 243.9230

STATE VARIABLES:

TEMP F

77.0000 77.0000

PRES PSI

14.7000 14.7000

VFRAC

1.0000

LFRAC

0.0SFRAC

0.0

ENTHALPY:

BTU/LBMOL

0.4357 1.8135+05

BTU/LB

0.2162 2.1928+04

BTU/HR

0.1777 3.9881+07

ENTROPY:

BTU/LBMOL-R

-9 .5844-04

BTU/LB-R-4 .7547-04

DENSITY:

LBMOL/CUFT

2.5509-03

LB/CUFT

5.1420-03

AVG MW2.0158 8.2699

1 ASPEN PLUS VER: IBM-CMS

2/20/90 PAGE 23

CONVERSION OF

BLACK

STREAM SECTION

OILOUT

xxxix

Page 115: Modelling of Oil Furnace Black Manufacturing Process Using Aspen

7/29/2019 Modelling of Oil Furnace Black Manufacturing Process Using Aspen

http://slidepdf.com/reader/full/modelling-of-oil-furnace-black-manufacturing-process-using-aspen 115/115

STREAM ID

FROM :

TO

SUBSTREAM: MIXED

PHASE:

COMPONENTS: LBMOL/HR

H2

02

N2CO

C02

H20

CH4

S02

C

S

TOTAL FLOW:

LBMOL/HR

LB/HR

CUFT/HR

STATE VARIABLES:

TEMP F

PRES PSI

VFRAC

LFRAC

SFRAC

ENTHALPY:

BTU/LBMOL

BTU/LB

BTU/HR

ENTROPY:

BTU/LBMOL-RBTU/LB-R

DENSITY:

LBMOL/CUFT

LB/CUFT

OILOUT

HEAT

M1

VAPOR

83.9053

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

135.2154

0.7942

219.9149

1818.6700·

1.8198+05

675.0000

14.7000

1.0000

0 .0

0 .0

1.9286+05

2.3321+04

4.2413+07

27.99913.3857

1.2085-03

9.9938-03