Modelling of Multistream LNG Heat

Embed Size (px)

Citation preview

  • 7/28/2019 Modelling of Multistream LNG Heat

    1/67

    Natural Gas TechnologyJune 2011

    Kjell Kolsaker, EPT

    Submission date:

    Supervisor:

    Norwegian University of Science and Technology

    Department of Energy and Process Engineering

    Modelling of Multistream LNG HeatExchangers

    Joan Soler Fossas

  • 7/28/2019 Modelling of Multistream LNG Heat

    2/67

  • 7/28/2019 Modelling of Multistream LNG Heat

    3/67

    I

    AbstractThe main goal of this thesis is to find out if a liquefied natural gas multistream heat

    exchanger

    numerical

    model

    is

    achievable.

    This

    should

    include

    several

    features

    usually

    neglected in nowadays available heat exchanger models, such as flow maldistribution,

    changes in fluidpropertiesandheatexchangerdynamicbehaviour. Inorder toaccomplish

    thatobjectiveasimplercaseismodelled.Effortsareputinachievingnumericalstability.

    A counter flow natural gas and mixed refrigerant heat exchanger is modelled. Some

    importantcharacteristicsoftheobtainedmodelare:(1)itallowsadynamicstudyoftheheat

    exchanger, (2)mass flowrate isaconsequenceof inletandoutletpressuredifference, (3)

    fluidpropertieschangeistakenintoaccount,(4)itpresentsatimestepcontrolfunctionand

    (5)fluidmovementisnotneglected.

    Someinterestingnumericalbehavioursincludedinheatexchangersmodelsdesignthathave

    beenobservedduringthecourseofthisthesisarediscussed.Forinstance,thecomparisonof

    theeffectsofchoosingoneheattransferscorrelationoranother.

    Dynamic response of themodelled heat exchanger during start up and during an abrupt

    changeinmixedrefrigerantinlettemperatureareshownanddiscussed.

  • 7/28/2019 Modelling of Multistream LNG Heat

    4/67

    II

    PrefaceThisMasterthesiswascompletedattheDepartmentofEnergyandProcessEngineeringof

    theNorwegianUniversityof Science andTechnology (NTNU) from February2011 to June

    2011.

    First, Iwould like to thankmy supervisor,NTNUprofessorKjellKolsaker, forhishelpand

    guidelinesduringthecourseofthisMasterthesis. Ispeciallyappreciatethathehasalways

    beenopenedtomyquestionsanddoubts,nomatterthetimeittooktosolvethem.

    Iwouldalso like to thank toivindWilhelmsen,whobelongs toSINTEF staff.Hisadvices

    duringallthesemesterhelpedmea lot. Specially,attheend,whenhishelp instructuring

    thethesisbecamereallyvaluable.

    Iwouldliketothankthiscountryanditspeople,NorwayandtheNorwegians,forgivingan

    allday

    example

    of

    the

    well

    done

    work.

    Iwouldalso like to thankmy friends, inNorwayandabroad,becauseno thesiscouldgive

    whatafriendshipdoes.

    Iwouldliketothankmyparentsfortheexcellentexamplethattheyhavealwaysbeen,for

    theunconditional lovethat theyhavealwaysshownand forhow fortunate theymakeme

    feel.

    Finally,IwouldliketothankNriabecauseshealwaysmakesthethingslookbrighter.

  • 7/28/2019 Modelling of Multistream LNG Heat

    5/67

    III

    TableofContentsAbstract.......................................................................................................................................I

    Preface........................................................................................................................................II

    Listof

    figures

    ..............................................................................................................................

    V

    Listoftables..............................................................................................................................VI

    Nomenclaturetable.................................................................................................................VII

    1 Backgroundandobjective..................................................................................................1

    1.1 Introduction.................................................................................................................1

    1.2 Aimofthethesis..........................................................................................................3

    1.3 Descriptionofthethesis..............................................................................................4

    2

    Preliminaryconcepts

    ..........................................................................................................

    5

    2.1 Heatexchangers..........................................................................................................5

    2.1.1 Heattransferandpressuredropcharacteristics.................................................5

    2.2 Finitedifferencemethods.........................................................................................11

    3 Calculations.......................................................................................................................14

    3.1 Caseofstudy..............................................................................................................14

    3.1.1 Counterflowheatexchanger:Naturalgasliquefaction....................................15

    3.2 Themodel..................................................................................................................20

    3.2.1 Procedure...........................................................................................................20

    3.2.2 Structureandoperation.....................................................................................21

    4 Resultsanddiscussion......................................................................................................32

    4.1 Evaluationofthemodelrobustnessandtimeconsumption....................................32

    4.1.1 Phasechangeathighpressure...........................................................................32

    4.1.2 GnielinskiandDittusandBoelterheattransfercorrelationsnumericaleffects35

    4.1.3 Advantagesofthevaryingrelaxingcoefficient..................................................37

    4.1.4 Effectoftimesteplengthandgridmeshingonthenumericalstability............37

    4.2 Caseresults................................................................................................................39

    4.2.1 Thermaldynamicsduringthestartup...............................................................41

    4.2.2 Thermaldynamicsduringanabruptchangeintheshellinlettemperature.....44

    5 Conclusionsandrecommendationsforfurtherwork......................................................48

    5.1 Conclusions................................................................................................................48

    5.2 Recommendationsforfurtherwork..........................................................................49

  • 7/28/2019 Modelling of Multistream LNG Heat

    6/67

    IV

    6 Bibliography......................................................................................................................50

    7 Appendix...........................................................................................................................51

  • 7/28/2019 Modelling of Multistream LNG Heat

    7/67

    V

    ListoffiguresFigure1 TypicalBreakdownofLiquefactionPlantCapitalCost[1].........................................1

    Figure2 SeveraltypicalassumptionsimpactontheHEdesigndependingontheHE

    effectiveness[2].........................................................................................................................2

    Figure3

    Two

    phase

    flow

    types

    .................................................................................................

    6

    Figure4 Geometricinterpretationofthedifferentapproximations.....................................12

    Figure5 Shellandtwotubesmultistreamheatexchangerscheme......................................14

    Figure6 Shellandtubeheatexchangerscheme...................................................................15

    Figure7 Naturalgasinputpressuredependenceontime....................................................17

    Figure8 Mixedrefrigerantinlettemperaturedependenceontime.....................................17

    Figure9 Mixedrefrigerantinletpressuredependenceontime...........................................18

    Figure10 Discretizedschemeoftheheatexchangermodelled............................................21

    Figure11 Modeloperationscheme.......................................................................................23

    Figure12Tubesidecellenergybalancescheme.....................................................................25

    Figure13 Numericallystablesituation..................................................................................26

    Figure14 Numericallyunstablesituation..............................................................................26

    Figure15 Fixedcoefficientrelaxingsolutionscheme............................................................27

    Figure16Behaviouroftherelaxingthesolutionfunctiondevelopedandusedinthemodel

    ..................................................................................................................................................28

    Figure17 Modeltimestepfunctionscheme.........................................................................30

    Figure18 Vapourfractionvs.Enthalpyat50bar...................................................................32

    Figure19 Heattransfercoefficientdependencevs.Enthalpyat50bar................................33

    Figure20 Vapourfractionvs.Enthalpyat54bar...................................................................33

    Figure21 Heattransfercoefficientvs.Enthalpyat54bar.....................................................34

    Figure22 Vapourfractionvs.Enthalpyat55bar...................................................................34

    Figure23 Heattransfercoefficientvs.Enthalpyat50bar.....................................................35

    Figure24 NumberofiterationsnecessarytoachieveconvergencewhenGnielinski

    correlationisused....................................................................................................................36

    Figure25 NumberofiterationsnecessarytoachieveconvergencewhenDittusandBoelter

    correlationisused....................................................................................................................36

    Figure26

    Number

    of

    iterations

    necessary

    to

    achieve

    convergence

    when

    afixed

    relaxing

    coefficientvalueisused...........................................................................................................37

    Figure27 Mixedrefrigerantinlettemperaturedependenceontime...................................39

    Figure28 Codeofcoloursusedwhenplottingdifferentcellsofasamestream..................39

    Figure30 Mixedrefrigeranttemperatureinseveralshellcells.............................................40

    Figure31 Naturalgasmassflowrateduringtime.................................................................41

    Figure31 Naturalgascellstemperaturesduringt

  • 7/28/2019 Modelling of Multistream LNG Heat

    8/67

    VI

    ListoftablesTable1Naturalgasandmixedrefrigerantscomposition.....................................................15

    Table2Tubeandshellgeometricaldata..............................................................................16

    Table3 Aluminiumproperties...............................................................................................16

  • 7/28/2019 Modelling of Multistream LNG Heat

    9/67

    VII

    Nomenclaturetable, , Friedelscorrelationconstants

    hydraulicdiameter

    frictionfactor polynomiallinkingfunction Froudenumber gravitationalacceleration massflux

    heattransfercoefficient

    intensiveenthalpy length massflowrate totalcellsnumber pressure

    heatflux

    Reynoldsnumber surface time specificvolume volume

    Webbernumber

    thermodynamicequilibriumquality streamwisecoordinateGreeksymbols voidfraction channelaspectratio

    thermalconductivity

    viscosity

    density

    surfacetension

    twophasepressuredropmultiplierSuperscripts twophase timestepSubscripts

    accelerational

    contraction expansion fluid saturatedvapour cellposition

    channelinlet

    saturatedliquid laminarflow liquidonly channeloutlet Shell

    singlephase

    tube total twophase transitionalflow turbulentflow

    wall

  • 7/28/2019 Modelling of Multistream LNG Heat

    10/67

  • 7/28/2019 Modelling of Multistream LNG Heat

    11/67

    2

    is the result of hundreds of thin shell and two tubes working in parallel. Usually, a low

    pressurerefrigerantsuchasapureormulticomponentrefrigerantflowsdowntheshellside.

    Thetubesideisoccupiedbythehotstreams;usuallyeachstreamfillsonetube.

    Heat exchangers are the main components in cryogenic processes. In LNG plants they

    represent2030%of the investmentcost [2,3]. Inaddition, theirperformanceaffects the

    sizinganddesignofotherequipment,namelycompressorsandtheirpowerdrivers.

    Ithasbeenstudiedbyseveralauthorshowthermodynamicconsiderationsmakecryogenic

    processesverysensitivetotheHEperformance[2,4,5].

    AcryogenicHEinaLNGplantisexpectedtohaveanefficiencyhigherthan90%.Thismeans

    thatthedesignhastobereallyaccurateandithasbeennoticedthatseveraleffectsthatare

    neglectedwhendesigningahightemperatureHEshouldnotbeneglectedwhendesigninga

    HEfor

    cryogenic

    applications.

    These nonnegligible effects are: changes in fluid properties, flow maldistribution,

    longitudinal thermal conduction and heatinleakage. The consideration of this effects

    dependontheeffectivenessthataHEisexpectedtoperform:

    Figure2 SeveraltypicalassumptionsimpactontheHEdesigndependingontheHEeffectiveness[2]

    Thus,asithasbeenexplainedMSHEsplayanimportantroleintheoperationandthedesign

    ofaLNGplant. It is theengineerspriority to find theway to improve theirdesignand to

    predicttheirperformance.Thereforelotsofheatexchangerssimulationsmodelshavebeen

    developed in the last decades and are used extensively for both designing plants and

    evaluatingtheactualperformanceofaplant.

    However,over

    the

    last

    years

    it

    has

    been

    seen

    that

    there

    is

    aneed

    to

    improve

    HE

    models

    for

    cryogenicapplications.This isspecially thecasewhen itcomes toreducing thenumberof

  • 7/28/2019 Modelling of Multistream LNG Heat

    12/67

    3

    assumptionsof idealconditions thatareused.Oneof thereasons isthepursuingofmore

    energy,costandspaceefficientplants.Featuresusedtoachievethis includeamongothers

    mixed refrigerant andmore compact heat exchangers. These featureswill inmany cases

    lead to conditions where ideal assumptions are no longer valid. If this is not taken into

    accountwhen

    designing

    the

    plant,

    it

    could

    give

    operational

    challenges

    and

    as

    well

    lead

    to

    an

    energyconsumptionthatishigherthananticipated.

    Becauseof itsownnature,MSHEswithphasechange involveseveralphysicalphenomena

    thatshouldbeconsideredwhenmodellingthem.

    Characteristicsitisimportanttoaccountforinthedesignphaseinclude:

    Distributionoftwophasefluidsintoseveralparallelchannels. Instabilitiesinchannelswithevaporation/condensation. Maldistributionoftwophasefluidswithinheatexchangerschannels. Two phase non equilibrium conditions (both thermodynamic and fluid dynamic

    effectslikeslip).

    Heatexchangerdynamicbehaviour,forinstanceatstartupandshutdown.Both steady state and dynamic heat exchanger models are widely used in the design

    processesofheatexchangersandoverallLNGproductionplants.Detailedplantoperability

    analysisrequiresgooddynamicheatexchangermodels.Astheplantcomplexityincreases,it

    isseenthatthesekindofanalysisareimportantpartsoftheplantprocessaswell.

    Theheat

    exchanger

    models

    which

    are

    used

    are

    usually

    based

    on

    enthalpy

    balance

    calculations or on heat transfer and pressure drop correlations. The latter method is

    normallymoredetailedandgeometrydependentthanthefirstone.

    The correlation basedmodelswill in addition to correlations, based on empirical results,

    contain some kind of assumptions in order to simplify the heat exchanger modelling.

    Assumptions of equal two phase distribution, stable flow conditions and thermodynamic

    equilibriumarecommon.

    SINTEF Energy Research is currently running a competence building project (KMB: Low

    emissionsLNG systems)withcontribution fromNTNUand industrypartners, focusingon

    bothfundamentalphysics,heatexchangerdesignandsystemoptimisation.

    This thesis aims to produce a model capable of including part of the problematic here

    explained.ThegoalistoproduceatoolthatallowsimprovedLNGprocessdesigns.

    1.2 AimofthethesisTheobjectiveofthisthesisistofindoutifitispossibletodevelopaMSHEnumericalmodel

    that includes most of the problematic already explained. This model should simulate a

    multistreamheat

    exchanger

    working

    with

    natural

    gas.

    The

    model

    should

    be

    able

    to

    simulate

  • 7/28/2019 Modelling of Multistream LNG Heat

    13/67

    4

    satisfactorily phase changes in transient conditions. Minimum simplifications as possible

    shouldbeassumedinfluidpropertiesfield.

    Main model characteristics thatwill be appreciated are numerical stability, accuracy and

    CPU timeconsumption.Specially, firstonewillbethemost importantsincetheother two

    canbeimprovedlaterifastablemodelisdeveloped.

    Toachievethisconclusion,asimplermodelwillbedeveloped.Acounterflowtwostreams

    shellandtubeheatexchangerwillbemodelled.Thismodelshouldbea toolthatallowsa

    heatexchangerdesignerknowmoreabouttheLNGprocessdynamics.

    Effortswillbeputinachievingaworkingnumericallystablemodel.Experimentalvalidityof

    theresultsisnotthegoalofthisthesis,hence,therecanbesomeoftheuseddatathatmay

    notbeasaccurateasdesired inafinalheatexchangerdesign.Besides,theoptimisationof

    themodel

    can

    be

    done

    afterwards

    in

    further

    work

    researches.

    1.3 DescriptionofthethesisInchapter2isanexplanationofthepreliminaryconceptsthatarenecessarytounderstand

    thisthesis.Chapter2.1focusesontheheatexchanger,whatitis,whereitisusedandhowit

    isdesigned. Sinceaheatexchangermodel isdeveloped in this thesis, chapter2.1.1 goes

    deeperinthedesignissueandtheheattransferandpressuredropcorrelationsusedinthe

    model are explained there. Chapter 2.2 is a basic theory explanation of finite different

    methodsanditsbasicconcepts.

    Calculations belong to chapter 3. First, in chapter 3.1, the case modelled is explained in

    detail.Chapter3.2 isanexplanationofthemodelsolutionmethodology,theprocedureto

    achievethesatisfactorycodeanditsstructureandoperationaredescribedinit.

    Chapter4consistsoftheresultsandobservationsthatareproductofthisthesis.Inchapter

    4.1 some relevant numeric characteristics that have been observed during the model

    developmentarepresentedanddiscussed.Chapter4.2 isan illustrationanddiscussionof

    theresultsobtainedfromthecaseofstudy.

    Chapter5summarizes

    the

    most

    important

    and

    relevant

    issues

    that

    are

    product

    of

    this

    thesis.

    Afutureworkproposalisdoneinchapter5.2.

  • 7/28/2019 Modelling of Multistream LNG Heat

    14/67

    5

    2 Preliminaryconcepts2.1 HeatexchangersShah and Sekulic give the following heat exchanger definition [6]:A heat exchanger is a

    devicethat

    is

    used

    for

    transfer

    of

    thermal

    energy

    (enthalpy)

    between

    two

    or

    more

    fluids,

    betweena solid surfaceanda fluid,orbetween solidparticulatesanda fluid,atdiffering

    temperaturesandinthermalcontact,usuallywithoutexternalheatandworkinteractions.

    Inmostheatexchangers,thefluidsareseparatedbyaheattransfersurface,and ideallydo

    notmix.Aheatexchangerconsistsofaheatexchangingelementssuchascoreoramatrix

    containing the heat transfer surface, and fluid distribution elements such as headers,

    manifolds,tanks,inletandoutletnozzles...Usually,therearenomovingparts.

    Theheattransfersurfaceisasurfaceoftheheatexchangercorethatisindirectcontactwith

    fluidsandthroughwhichheatistransferredbyconduction.

    Thebalancedifferentialequationthatgovernsthefluidenthalpyvariationwhenthefluidis

    incontactwiththeheattransfersurfaceisthefollowing:

    Eq.1Wherethelasttermintherighthandoftheequation isthedifferentialheatflow,whichis

    definedbythenextequation:

    , Eq.2Notice that theheat transfer coefficient is then theparameterwhichwilldefine theheat

    exchangervolumeinadesign,ortheonethatwillgovernitsefficiencywhenevaluatingthe

    HEperformance.

    AnotherimportantpartofaHEdesignisthepressuredropthatiscausedbythefluidgoing

    throughit.Pressuredropwilldirectlydefinethecapitalandoperationalcostsoftheprocess

    wheretheheatexchangerisused.Afluidthatsuffersahighpressuredropgoingthrougha

    HEwillprovokehighcostsincompressorsorpumpsinvestmentandpowerconsumption.

    Thus,heat transferandpressuredrop inheatexchangerare two important features that

    which need a special attention of the designer. Therefore, chapter below gives a further

    explanationofthemandofthewaytheyhavebeenmodelledinthisthesis.

    2.1.1 HeattransferandpressuredropcharacteristicsHeattransferandpressuredrop insideaheatexchangeraretwocomplexphenomenathat

    havebeenstudiedindecades.Researchershavebeenconcernedwithdevelopingpredictive

    modelsfor

    several

    industries,

    such

    as

    traditional

    ones

    like

    steam

    and

    nuclear

    power

  • 7/28/2019 Modelling of Multistream LNG Heat

    15/67

    6

    generation, chemical and petroleum, etc. or newer ones like electronics and all micro

    channelrefrigerationsystemsthatitincludes.

    2.1.1.1 TwophaseflowtypesIt

    is

    known

    that

    pressure

    drop

    and

    heat

    transfer

    characteristics

    depend

    strongly

    on

    two

    phase flow types.Dependingonmassandheat flowsandon vapour fraction,apart from

    othervariables,twophaseflowtypesare:

    Bubbleflow:Liquidfillsallthepipewhilesomesmallvapourbubblesareinamixturewithit.

    Slugflow:Bigvapourbubblestravelthroughthepipeseparatedbyaliquidfilm. Annularflow:Liquidcoversonlyathinfilmthroughthepipewallwhilevapourflows

    throughaninsidechannelwithsomedropletsinit.

    Figure3 Twophaseflowtypes

    Intheupperfigurethedifferentflowtypescanbeobserved.Churnandwispyannularflow

    canbeconsideredmiddletermsbetweenslugandannularflow.

    Twophase

    correlations

    described

    below

    base

    their

    calculations

    on

    the

    influence

    of

    each

    flow

    typewhenaphasechangeoccurs.

    2.1.1.2 Heattransfer2.1.1.2.1 Single phaseTwo popular single phase heat transfer coefficient correlations for turbulent flow ( 3000)inapipearetheonedevelopedbyDittusandBoelter[7]andGnielinski[8].DittusandBoeltercorrelationis:

    0.023.. Eq.3

  • 7/28/2019 Modelling of Multistream LNG Heat

    16/67

    7

    AndGnielinskicorrelationis:

    81000 112.78 1 Eq.4

    1.82 log 1.64 Eq.5It is decided to use Gnielinski heat transfer correlation since it was noticed after some

    simulations thatDittus andBoelter correlation introducedhighernumericaloscillations in

    thesystem.

    Hausen[9]correlationwillbethesinglephaselaminarflowheattransfercorrelationusedin

    themodel.So,for

    2300:

    3.66 0.0668 1 0 . 0 4 Eq.6IftheReynoldsnumberiswithintheupperlimitofHausencorrelationandthelowerlimitof

    theGnielinskicorrelation,Nusseltnumberwillbecalculatedasan interpolationofbothto

    guaranteeNusseltcontinuity.For2300 3000:

    , , Eq.7

    It isreminded thatonce theNusseltnumberhasbeendefined,heat transfercoefficient is

    foundbythefollowingequation:

    Eq.82.1.1.2.2 Two phase2.1.1.2.2.1 Evaporation

    Liu and Winterton [10] correlation is used when calculating evaporation heat

    transfer.

    . Eq.9Where is DittusBoelter single phase heat transfer coefficient for the liquid

    (alreadyexplained),isthenucleateboilingcoefficient: 55.log... Eq.10

    And

    and

    are:

  • 7/28/2019 Modelling of Multistream LNG Heat

    17/67

    8

    1 1. Eq.11

    1 0. 55..

    Eq.12

    2.1.1.2.2.2 CondensationThere are less available condensation heat transfer correlations than evaporation

    ones.Shahfilmcondensationcorrelation[11]hasbeenchosenhereforbeinganoldbroadly

    testedcorrelation.

    1 . 3.8.1 .. Eq.13Where

    is the vapour quality,

    is reduced pressure

    / and

    is

    DittusBoelter

    single

    phase

    heat

    transfer

    coefficient

    for

    the

    liquid.

    2.1.1.3 PressuredropConsideringthestudiesthatLeeandMudawardevelopedinevaporatorsfield[12],total

    pressuredropinaheatexchangercanbeexpressedas:

    , ,/ Eq.14Pressure drop inside a heat exchanger where phase change is happening includes the

    sudden contraction loss at the channels inlet and a sudden expansion recovery at the

    channelsoutlet.However,thesetwotermsarenotincludedwhencalculatingpressuredrop

    in this thesisbecause theyareconsidered tobeoutof thestudy.Asinglephasepressure

    drop term is included corresponding to the flow before the phase change conditions are

    achieved,meaningavapourprecoolingincondensersoraliquidpreheatinginevaporators.

    The two phase pressure drop term consists of frictional and accelerational components.

    Finally,another singlephase flow term is includedcorresponding to subcoolingor super

    heating that can occur in condensers orevaporators, respectively,when phase change is

    completed.

    2.1.1.3.1 Twophase pressure drop models2.1.1.3.1.1 HomogeneousEquilibriumModel(HEM)Thehomogenousequilibriummodelisbasedontheassumptionthatthetwophasemixture

    behavesasapseudosinglephase fluidwithmeanpropertiesweighted relative tovapour

    and liquid content, and that only latent heat may be exchanged between the phases.

    Propertyvariationsresultingfrompressurechangesalongthechannelresultincomplicated

    terms that account kinetic energy, flashing and compressibility. The resulting pressure

    gradientmaybeexpressedas:

  • 7/28/2019 Modelling of Multistream LNG Heat

    18/67

    9

    2 4 1

    1 1 1 1 1

    1

    1 Eq.15

    The first term in the numerator of Eq. (13) is the frictional gradient and the second the

    accelerational.Thedenominatorincludeskineticenergy,flashingandcompressibilityterms.

    The twophasepressuredropcanbedeterminedby integratingEq. (13)numericallyalong

    thestreamwisedirection.

    Eq.16

    ThetwophasefrictionfactorisafunctionofthetwophaseReynoldsnumber: Eq.17Thereareseveraltwophaseviscositymodels,McAdams[13]proposedthefollowing:

    1

    1

    Eq.18

    2.1.1.3.1.2 SeparatedFlowModel(SFM)In separated flowmodelsgasand liquidareconsidered to flowapart fromeachother. In

    these typesofmodelsaccelerationaland frictional termsare treated separately.The first

    oneisexpressedintermsofpipeinletandoutlet:

    , 1 ,1 , 1 ,

    1 Eq.19WherethevoidfractionisdeterminedfromZivis[14]relation:

    1 1 Eq.20OneofthemostpopularfrictionalpressuredropcorrelationistheoneproposedbyFriedel

    [15]:

    2

    ,

    Eq.21

  • 7/28/2019 Modelling of Multistream LNG Heat

    19/67

  • 7/28/2019 Modelling of Multistream LNG Heat

    20/67

    11

    2.2 FinitedifferencemethodsInthischapterdifferentbasicfinitedifferencemethodsareexplained.

    Theprincipleofafinitedifferencemethodisthatthederivativesinthepartialdifferential

    equationare

    approximated

    to

    linear

    combinations

    of

    function

    values

    at

    the

    grid

    points.

    So,

    havingadomainandagridlikethefollowing:

    0 , 0 , 1 , , , , 0, 1 , ,

    Thefunctionvaluesforeachgridpointwillbe:

    Firstorderderivativecanbedefinedwithanyofthesethreeequalities:

    l im l i m

    lim 2

    2 Eqs.36,37,38

    Resultingfromthatdefinition,threefirstderivativeapproximationscanbedone:

    Theforwardfinitedifference 2 Eq.39

    Therefore

    the

    absolute

    error

    of

    the

    forward

    finite

    difference

    is

    proportional

    to

    andtheapproximationisreferredasafirstorderapproximation.

    Thebackwardfinitedifference 2 Eq.40

    Whichisagainafirstorderapproximation.

    Thecentralfinitedifference

  • 7/28/2019 Modelling of Multistream LNG Heat

    21/67

    12

    2 2 6 Eq.41Theerror

    isproportionalto

    sotheapproximationisreferredasasecondorder

    approximation.Note

    that:

    12 Eq.42

    Figure4 Geometricinterpretationofthedifferentapproximations

    Approximationtohighordersderivativescanbeobtainedfromtheformulasforlowerorder

    derivatives.Thecentralfinitedifferenceschemeforthesecondorderderivativeis: 2 12 Eq.43

    Soitisasecondorderapproximation.

    Theonedimensionheatequationwithasourceisanequationofinterestinthisthesis.Itisa

    parabolicpartialdifferentialequation:

    , Eq.44If isaconstantvalueand thepartialderivativesarepresented in theirshorterway, theequationcanbewrittenlikethis:

    , Eq.45TheforwardEulermethod(forwardintime,centralinspace)is:

    2

    Eq.46

  • 7/28/2019 Modelling of Multistream LNG Heat

    22/67

    13

    0 , 1 , , 1 , 2 , , 1 ,wheretheboundaryconditions, and, aregiven,andwhere

    isanapproximationto

    ,

    and

    ,

    .

    Themaincharacteristicofthisschemeisthatthereisonlyoneunknownvaluewhichisthe

    function value in the next time step for this grid point . Thatmeans that each newfunctionvalueineachgridpointcanbecalculatedapartfromtheothers.

    However, to guarantee stability in a forward scheme the should satisfy the time steprestriction:

    0 2

    This time step restrictioncan implyabigdisadvantagewhen talkingaboutcomputational

    timeconsuming.

    The truncation error of this method is first order in time and second order in space.On theotherhand,thesameequationwritten inbackwarddifferencescheme (alsocalled

    implicitscheme)is:

    2 Eq.47Inan implicitschemetheonlyknownvalue is soa linearequationsystemneedstobesolvedforeverynewtimestep.

    The truncation error is also . The good point of this backward Euler methodschemeisunconditionallystable,meaningthatcouldtakeanyvalue.Comparisonbetweenthesemethods

    Theexplicit

    or

    forward

    finite

    difference

    scheme

    it

    is

    usually

    easier

    to

    implement

    because

    it

    goesoneequationbyoneequationandthatmakesitsimplytodevelop.However,thetime

    step restriction isaharddisadvantagebecause itcancausehighcomputational resources

    consumption.

    Theimplicitorbackwardfinitedifferenceschemehasthereallyattractivepropertyofbeing

    always stable, itdoesnotmatterwhich is thevalueof timestep.Thatpropertygives the

    model a really robust behaviour which is a valuable characteristic when programming.

    However, this scheme is more difficult to implement because of the matrix system that

    needsto

    be

    created.

  • 7/28/2019 Modelling of Multistream LNG Heat

    23/67

    14

    3 Calculations3.1 CaseofstudyThisthesisfocusesinashellandtubemultistreamLNGheatexchanger.Specifically,onlyits

    basicelement

    is

    going

    to

    be

    studied.

    A

    multipass

    shell

    and

    tube

    MSHE

    is

    composed

    of

    hundredsofshelltubeswhileeachofthemhasastubesinsideasstreamsareleft.

    Figure5 Shellandtwotubesmultistreamheatexchangerscheme

    Since the dynamics of a multistream shell and tubes heat exchanger is a complex

    phenomenon to model, a simpler case will be studied in this thesis. The dynamics of a

    counterflowshellandtubeheatexchangerhavebeenmodelled.Inthetubesidenaturalgas

    isliquefiedwhileintheshellsidemixedrefrigerantvaporizes.Althoughitisasimplercase,it

    hasprovedtobeaconsiderablechallenge.

  • 7/28/2019 Modelling of Multistream LNG Heat

    24/67

    15

    Figure6 Shellandtubeheatexchangerscheme

    Sinceflowmaldistributionispartoftheheatexchangersproblematicwherebetterdesigning

    toolsareneeded,massflowinthismodelisnotafixedvaluebutdependsonthedifference

    betweentheinletandoutletpressures.

    Anotherimportantissuethathastobetakenintoaccounttoachievebetterheatexchanger

    designs isfluidpropertiesdependenceonstate. Inthemodel,fluidpropertiesaregivenby

    TP_library,which isathermodynamicpackagecreatedbySINTEFRefrigerationEngineering

    whichreturnsitsuserseveralfluidpropertiesforacertainthermodynamicstate.

    3.1.1 Counterflowheatexchanger:NaturalgasliquefactionInthiscasethenaturalgasphasechangefromliquidtogasismodelled.

    3.1.1.1 GeneraldataThecompositionofthenaturalgasusedinthemodelisthefollowing:

    Table1Naturalgasandmixedrefrigerantscomposition

    Naturalgas Mixedrefrigerant

    MolefractionCH4 0.94480 0.29130

    MolefractionC2H6 0.00580 0.38870

    MolefractionC3H8 0.01890 0

    MolefractionnC4H10 0.00110 0.22710

    MolefractionN2 0.02950 0.09290

    Criticalpressure[bar] 56 44.16

  • 7/28/2019 Modelling of Multistream LNG Heat

    25/67

    16

    SincethroughTP_librarycriticalpressuresarenotdirectlyobtainable,naturalgasandmixed

    refrigerant critical pressures have been set at these approximate values. When accurate

    resultsaredesired,thesevaluesshouldbecheckedandreplacedifnecessary.

    Thegeometricaldataoftheheatexchangeris:

    Table2Tubeandshellgeometricaldata

    Tube Shell

    Innerdiameter[mm] 4 10

    Roughness[m] 1 1

    Length[m] 2

    Thetubematerialisaluminium.Itspropertiesareconsideredtobeconstantandare:

    Table3 Aluminiumproperties

    Density[kg/m3] 2700

    Intensiveheatcapacitance[J/kgK] 930.77

    Aluminiumheatconductivityisnotdisplayedbecauseitisassumedtobeinfinite.

    3.1.1.2 StartingconditionsWhenthesimulationbegins,thenaturalgasinthetubesideisconsideredtobeinauniform

    superheatedvapour

    state

    at

    298K

    and

    49.2

    bar.

    Tube

    wall

    temperature

    at

    the

    0 is297K through all its length. Finally,mixed refrigerant starting conditions are superheatedvapourat296Kand4.7barthroughalltheheatexchangerlength.

    3.1.1.3 Boundaryconditions3.1.1.3.1 Tube sideNaturalgas inletenthalpy is theonecorresponding to superheatedvapourat298Kand it

    keepsconstantduringallthesimulationtime.Outletpressure iskeptconstantat49.2bar

    whileinlet

    pressure

    raises

    from

    50

    at

    0 till55barat 3 0 .

  • 7/28/2019 Modelling of Multistream LNG Heat

    26/67

    17

    Figure7 Naturalgasinputpressuredependenceontime3.1.1.3.2 Shell sideMixedrefrigerant inletenthalpyat 0 istheonecorrespondingtosuperheatedvapourat296Kbutitdecreasestillbeingsubcooledliquidat110Kat 6 0 .Once steady state conditions have been reached, mixed refrigerant inlet temperature is

    raised again to observe the thermal dynamic behaviour of the heat exchanger. Inlet

    temperature raises from 110K at

    5 0 0 to 250K at

    5 2 0 where ismaintained till

    5 4 0 anddecreasedagainto110Kat

    5 6 0 .

    Figure8 Mixedrefrigerantinlettemperaturedependenceontime

  • 7/28/2019 Modelling of Multistream LNG Heat

    27/67

    18

    Inletandoutletpressuresfollowananalogouslawtonaturalgasonebutwithlowervalues.

    Figure9 Mixedrefrigerantinletpressuredependenceontime

    3.1.1.4 HeattransfercoefficientandpressuredropgradientdefinitionThecorrelationsselectedtobeusedinthemodelweredescribedinchapter6butthefinal

    definitionthroughthatmakesthemcontinuousthroughallfluidstateshasyettobedone.

    Single phase and two phase correlations need to be linked by some smooth functions,

    hence,there

    have

    to

    be

    defined

    some

    vapour

    fractions

    limits

    that

    these

    functions

    will

    link.

    Here, the lower limit isvapour fractionequal to0.3and theupper limit isvapour fraction

    equalto0.7.

    Equationsthatdefinetheheattransfercoefficientarethefollowing:

    Analogously,equationsthatdefinepressuredropgradientare:

  • 7/28/2019 Modelling of Multistream LNG Heat

    28/67

    19

    3.1.1.5 SimulationaccuracyThegridconsistsof40cellsandtheconvergencecriterionisequalto10

    3.

  • 7/28/2019 Modelling of Multistream LNG Heat

    29/67

    20

    3.2 Themodel3.2.1 ProcedureDuringtheperiodthisthesishasbeendeveloped,thesameprocedurehasbeenfollowedto

    createand

    evaluate

    different

    models.

    When

    developing

    amodel,

    it

    has

    been

    applied

    the

    fromsimpletocomplexrule,thatmeansthatfirstthewholestructureofthemodelwas

    builtwithout taking intoaccountcharacteristics thatcould introducemore instabilities.So

    firstapipewith fixedanddefinedwall temperaturewasmodelledwhere fluidproperties,

    heattransfercoefficientandpressuregradientwereconsideredtobeconstant.Andstepby

    step,morecomplexitywasintroduced.

    Once the pipe model proved to work correctly with constant fluid properties, real

    thermodynamicswere includedby theuseof TP_library.So, first themodelwas checked

    withpure

    water,

    because

    of

    the

    better

    knowledge

    of

    the

    thermodynamical

    behaviour

    of

    this

    fluid.Thenthemodelwascheckedwithpuremethaneastheworkingfluidwhichhasmuch

    more similaritieswithnaturalgasbut it is still apure component.Finally, themodelwas

    testedwithnaturalgaswhichasamulticomponent fluidwith theeffectson itsproperties

    thatcarriesrepresentedahigherchallenge.

    When real fluid properties hadbeen tested satisfactorily in themodel,heat transfer and

    pressure drop correlations were included. First, heat transfer coefficient correlation was

    includedwhile pressure dropwas set constant or following a linear rulewithmass flow.

    Thentheoppositesituationwasfollowed,pressuredropcorrelationwasincludedwhileheat

    transfercoefficientjustfollowedasimplerule.Finally,bothcorrelationswereincluded.

    At theend,once thepipemodelhadproved togive satisfactory results, thecounter flow

    heatexchangerwasmodelledfollowingthesamecalculationstructureasinthepipemodel.

  • 7/28/2019 Modelling of Multistream LNG Heat

    30/67

    21

    3.2.2 StructureandoperationThemodeldeveloped in this thesisallowssimulating thedynamicsofacounter flowheat

    exchangerwhere the two fluids suffer a phase change. In thismodel themass flowof a

    streamisnotdefinedbutdependsonthedifferenceoftheinletandoutletpressures.

    Figure10 Discretizedschemeoftheheatexchangermodelled

    TheprogramhasbeenwritteninMATLAB.

    Inthismodelthestateofthefluid issetthroughitsenthalpyandpressure.Othervariables

    liketemperatureandvapourfractionbecomeaconsequenceofthem.Thestateofthewall

    isdefinedbyitstemperature.

    Someassumptions

    are

    taken

    in

    this

    model:

    Stableflow. Homogenousflowregime. Thermodynamicequilibrium. Nonaxialheatconduction. Infinitewallthermalconductivity(walltemperatureisconsideredtobethesameon

    bothsidesofonewallcell).

    Therearesomeimportantcharacteristicsofthefinalandsatisfactorymodeldevelopedthat

    shouldbementioned.Firstoneisthatenthalpiesandwalltemperaturescalculationsfollow

  • 7/28/2019 Modelling of Multistream LNG Heat

    31/67

    22

    an implicit scheme. The second one is that it presents a varying time step (between

    established limits) depending on time derivatives. Also, a function that governs the

    weighting coefficient value in solution relaxation has been implemented. Further

    explanationofalltheseisgiveninthischapter.

    Theoperationofthemodelfollowstheschemebelow:

    1. Massflowandpressurescalculationofbothshellandtubestreams.2. Enthalpiescalculationofbothshellandtubestreams.3. Convergencecheckingonthestreamsobtainedsolutions.4. Relaxingstreamssolutions.5. Other streams variables calculation (temperatures, vapour fractions, heat flows,

    etc.).A flashcallgives thenew temperaturesandnewvapour fractions, then,new

    heattransfercoefficientsandnewheatflowscanbefound.

    6. Newwalltemperaturescalculation.7. Convergencecheckingonthewallobtainedsolution.8. Relaxingwallsolution.9. Ifboth streams andwall convergenceswere achieved, resultsare storedandnew

    time step calculationswill start. If convergencewasnot achieved, anew iteration

    startsagainwiththerecentcalculatedvalues.

  • 7/28/2019 Modelling of Multistream LNG Heat

    32/67

    23

    Figure11 Modeloperationscheme

  • 7/28/2019 Modelling of Multistream LNG Heat

    33/67

    24

    It is asked the reader to note that it is an iterating scheme and that,during calculations

    between time steps and , as many iterations as necessary will be done tillconvergenceisreachedforallcells.

    3.2.2.1 PressuresandmassflowcalculationThetotalstreampressuredrop istheresultofthe integrationofeachdifferentialpressure

    dropalongthefluiddirection:

    Eq.50Whendiscretized,thetotalpressuredropbecomesasumofeachcellpressuredrop.Taking

    intoaccountthattheothervariablesarekeptconstantduringthiscalculation,pressuredrop

    dependsonlyonthemassflow.

    Eq.51A combination of different numerical methods is used to find the mass flow rate which

    correspondstotheboundarypressuredrop.Thesecantmethod,thefalsepositionmethod

    andthehalving intervalsmethodareusedhere.First,acoupleof iterationsaredoneusing

    the secantmethod to find the upper and the lower limits for the false positionmethod.

    Then,acertainnumberofiterationsaredonewiththefalsepositionmethodusingitsrobust

    butalso

    fast

    characteristics.

    If

    convergence

    is

    not

    achieved

    after

    this

    certain

    number

    of

    iterations, the secant method is used to find the mass flow rate. The halving intervals

    methodisusedonlywhenconvergencehasnotbeenreachedbytheothertwomethods.

    3.2.2.2 EnthalpiescalculationThefollowingbalanceequationneedstobesolvedinthemodelforeachstream:

    Eq.52

    Ascheme

    of

    the

    energy

    balance

    for

    each

    cell

    in

    the

    tube

    is

    the

    following:

  • 7/28/2019 Modelling of Multistream LNG Heat

    34/67

    25

    Figure12Tubesidecellenergybalancescheme

    Whendiscretized,theimplicitschemeformoftheEq.50is:

    Eq.53Wheresuperscriptsdenotetimeandsubscriptsdenoteposition.

    However,heatflowdependsonseveralvariables(temperature,vapourfraction,...)thatwill

    befoundwiththeflashcall,whichdependagainontheenthalpy.So,heatflowstakevalues

    from

    last

    iteration

    because

    is

    not

    possible

    to

    directly

    isolate

    the

    enthalpy.

    Asithasbeenexplainedinthetheorypart,animplicitschemerequiressolvingasystemof

    equations.Thelinearsystemthathereneedstobesolvedis:

    MATLABpresentsa reallypowerfulcharacteristicswhenoperatingwithmatrices,soapart

    from the robust characteristics of the implicit scheme itself, the program gives an extra

    advantageinthispartofthemodel.

  • 7/28/2019 Modelling of Multistream LNG Heat

    35/67

    26

    3.2.2.3 SolutionrelaxationOncepressuresandenthalpieshavebeencalculated,newstateshavebeenfound.However,

    sometimestheseresultswould leadtonumerical instabilities.Sonewstatescannotalways

    be the results obtained in the calculation. In some cases it is needed to do a weighting

    relativebetween

    new

    new

    state

    results

    and

    the

    old

    new

    state

    results,

    this

    is

    called

    relaxing

    thesolution.

    1 0 1 Eq.55Heredenotesstateandisanenthalpyandpressurecouple,istheresultofaniteration.istheparameterusedtodotheweighting.Inthismodeltheparameterishasnotafixedvaluebutdependsonthecalculation.

    When iterating, thereare two situations typesof situations thatcouldoccur.First type is

    thateach

    iteration

    gives

    anew

    state

    that

    it

    is

    closer

    to

    the

    real

    solution

    than

    the

    one

    before,

    then it is a stable situation. Second type is that each iteration gives a new state that is

    further from real solution than the one before. Both types are shown in the following

    figures:

    Figure13 Numericallystablesituation

    Figure14 Numericallyunstablesituation

  • 7/28/2019 Modelling of Multistream LNG Heat

    36/67

    27

    Theusualstrategywhenrelaxingthesolutionistofixthevalueoftheweightingcoefficient

    for all the situations. If the coefficient is low enough and/or the convergence criterion is

    wideenough, thatbrings toastablesituation.However, thisstrategy isnotoptimalwhen

    thesituationisstablefromthebeginning.Inastablesituation,aweightingcoefficientvalue

    lowerthan

    one

    will

    lead

    to

    ahigher

    number

    of

    the

    necessary

    iterations

    to

    achieve

    convergencethanwhenthevalueofitisone.

    Figure15 Fixedcoefficientrelaxingsolutionscheme

    Inthemodeldeveloped inthisthesis thecoefficienthasnotaconstantvaluebutchanges

    dependingon the resultsof iteration.Actually,everynew time step the coefficient starts

    havingavalueequalto

    .Thevalueof

    issetbytheuserandcannotbehigherthan1.In

    thesimulation

    which

    results

    are

    showed

    in

    this

    thesis,

    this

    starting

    value

    is:

    0.5Aftereach iteration, resultsarecheckedand thecoefficient isdecreasedorkeptconstant

    dependingonthem.Thelogicalrulethatgovernsthecoefficientdecreasingisbasedonthe

    followingtwocharacteristicsofanunstablesituation(seefigure8):

    1. Absolutedifferencebetweenstatesraises:

    | | | |

    2. Differencebetweenstateschangesitsigneveryiteration: 0 0

    Ifanunstablesituationisdetected,theweightingcoefficientisreduced:

    0 . 9 5 Followingthatmethodologythesolution isrelaxedonlywhenneed,soafastestandstable

    solutionisachieved:

  • 7/28/2019 Modelling of Multistream LNG Heat

    37/67

    28

    Figure16Behaviouroftherelaxingthesolutionfunctiondevelopedandusedinthemodel

    Theweightingcoefficienthasaminimumvaluethatissetbytheuser.

    Asit

    has

    been

    explained,

    fluids

    states

    are

    set

    by

    apressure

    enthalpy

    couple,

    and

    there

    are

    twostreamsandseveralcellsforeachstream.Therelaxingcoefficientusedineachiteration

    tocalculatenewstateswillhavethesamevalueforallcellsandinbothstreams,thismeans

    that if one cell is found to be in an unstable situation the relaxing coefficient value will

    decreaseforallofthem.

    3.2.2.4 FlashcallOnce the solution relaxation ends, pressures and enthalpies values have been definitely

    established,whichmeansthatnewfluidstateshavebeenfound.Laststepistofindtherest

    ofthe

    variables

    that

    are

    basic

    for

    the

    calculus

    or

    may

    be

    interesting

    for

    the

    analysis.

    These

    variables are: temperature, vapour fraction, heat flow, heat transfer coefficient, etc.

    Temperature,vapourfractionandliquidandvapourmolarcompositionsarefoundthrough

    theTP_librarypressureenthalpyflashcall.

    Itcannumericallyhappenthatenthalpyvalueislowenoughthatitsrelatedtemperatureis

    0K, if thathappensall the fluidpropertiesgive falsevaluesand thecalculusof themodel

    crash.Therefore,aminimumoutputtemperaturewasset,iftheflashoutputtemperatureis

    lowerthan60Kthecellisconsideredtobeinliquidstateat60K.

    Similarsituationhappenswhentemperaturerisesabove1000K,sowhenthathappensthe

    cellisconsideredtobeinvapourstateat1000K.

    Apartfromflashoutputvariables,heatflowneedstobecalculated.Thedifferentialformof

    theheatflowis:

    , Eq.56Here

    , , is the convection coefficient,

    is thedifferential fluidwall contact

    surfaceand

    and

    arethewallandthefluidtemperature.

  • 7/28/2019 Modelling of Multistream LNG Heat

    38/67

    29

    Whendiscretized:

    Eq.57The convection coefficient is calculated by an internal function which includes all the

    necessarycorrelations

    which

    are

    linked

    by

    the

    pertinent

    linking

    functions.

    An

    important

    characteristic that has to be mentioned is that whether a condensing or an evaporating

    correlation isused inthe twophaseareadependsonlyon the inletconditions. If the fluid

    enterstheheatexchangerasliquid,thenanevaporatingcorrelationwillbeused.Ifthefluid

    enters theheatexchanger as vapour, then a condensing correlationwill beused. That is

    mentionedbecause, inacrossflowheatexchanger,heatflowdirectioncouldswap locally,

    whichcouldmeanavapourfractionincreasingofatwophasemixturethatwasexpectedto

    condense or, a vapour fraction decreasing of a two phasemixture thatwas expected to

    evaporate.

    3.2.2.5 TimestepfunctionTimestepinthemodelisnotconstant,itischangeddependingontimederivativesofsome

    of thevaluesof thevariables in it.These variablesarepressure,enthalpy,mass flowand

    temperatures. Although the first two are enough to define a state, the other ones have

    proved to give an accuracy increasing when taking into account. A new time step is set

    considering thatavariablecannotchange itsvaluemore thana fraction that issetby the

    user. Then, considering this fraction and the variable timederivative, themaximum time

    stepforeachvariableisfoundandtheminimumofallischosen:

    , , , , ,

    , , min,, ,, ,, ,

    Minimum and maximum time step values are set by the user in order to prevent

    unreasonablyshortorlongtimesteps.

    Since pressure, enthalpy and temperature values depend on the cell, a previous cell

    maximumtimederivativeselectionhastobedone.

    Timestepiscalculatedwhennewtimederivativesarenotstillknown,solastvaluesareused

    to calculate them. However, real new time derivatives may be different than the ones

    before,sovariablechangeswillbedifferentthanpredicted.

  • 7/28/2019 Modelling of Multistream LNG Heat

    39/67

    30

    Figure17 Modeltimestepfunctionscheme

    Although timederivativescanbedifferent thanpredictedno instabilitieswillbeprovoked

    becauseofthat.Infact,theobjectiveofthisfunctiontodetailedresultsduringdynamicsbut

    allowingfastresultswhensteadystateisreached.

    3.2.2.6 LinkingfunctionsWhen heat transfer coefficient and pressure drop correlations are used, a link has to be

    createdbetweenthesinglephaseandthe twophaseareas inordertoguarantee function

    continuityand, then,numerical stability. Itwasalsoobserved thatjustcontinuitywasnot

    alwaysenoughtoguaranteestabilityandthatitsderivativeneededtobealsocontinuous.In

    order to achieve that objective, linking polynomial functions are used in that case. The

    degreeof thesepolynomials is threeand theyachieve thecontinuityofboth the function

    anditsderivative.

    Thefirstofthesetwosmoothfunctionslinktheliquidsinglephaseareawiththe0.3vapour

    qualitytwophasearea.Thesecondsmoothfunctionlinksthe0.7vapourqualitytwophase

    areawithallvapoursinglephasearea.Theserelativelywiderangesofvapourqualitiesare

    neededto

    achieve

    the

    desired

    characteristics

    of

    the

    functions.

    3.2.2.7 WallenergybalanceConsideringthatitisassumedthatwalltemperatureisequalonbothfacesofthepipeinthe

    samecell,theenergybalanceequationthatgovernsthewalltemperatureisthefollowing:

    , , , Eq.58Where

    denoteswalland

    1and

    2denoteshellandtubefluidsrespectively.

    WhenEq.(50)isdiscretizedfollowingtheimplicitscheme:

  • 7/28/2019 Modelling of Multistream LNG Heat

    40/67

    31

    ,, , , , , , , Eq.57WalltemperatureoftimestepcanbeisolatedfromEq.(51):

    , , , ,, ,, , ,, Eq.59

  • 7/28/2019 Modelling of Multistream LNG Heat

    41/67

    32

    4 Resultsanddiscussion4.1 EvaluationofthemodelrobustnessandtimeconsumptionThemainobjectiveofthisthesiswastocreateanumericallystablemodel.Therefore,allthe

    functionsused

    in

    it

    have

    been

    analysed.

    Linking

    functions

    have

    been

    created

    when

    it

    has

    beennecessarytoavoiddiscontinuitiesthatcouldcarrynumericalinstabilities.Thisstudyof

    thenumericalbehaviourofthemodelhasrevealedsomefactsthataredescribedbelow.

    4.1.1 PhasechangeathighpressureSinceLNGisproducedathighpressuresjustbelowitscriticalpoint,whichinthisthesishas

    beensetat56bar,itwasfirstdecidedthatfinalinletandoutletpressuresduringsimulations

    wouldbe55and54.2barrespectively.However,thesesimulationsbroughtalwaysa

    numericalinstabilitywhoseoriginwasfinallyfoundandisexplainedhere.

    Ithasbeenobservedthatthenaturalgasphasechangeathighpressure isaphenomenon

    where vapour fraction varies abruptlywith enthalpy. Besides, it has been noticed that it

    could be considered a function discontinuity when pressure is high enough. That

    discontinuityhas severeconsequencesonother functionsof themodel, likeheat transfer

    coefficientone,andthatprovokesanirresolvablenumericalinstability.

    Thefollowingfiguresshowthevapourfractionandheattransfercoefficientdependenceon

    enthalpy at different pressures.Distance between dots in the phase change is 100 kJ/kg

    whichisashortintervalconsideringtheenthalpymagnitude.

    Resultswhenpressureisequalto50bar:

    Figure18 Vapourfractionvs.Enthalpyat50bar

  • 7/28/2019 Modelling of Multistream LNG Heat

    42/67

    33

    Figure19 Heattransfercoefficientdependencevs.Enthalpyat50bar

    Resultswhenpressure isequal to54bar (here,dotsenthalpy intervalwhen 0 0.1wassetequalto1kJ/kgtoassurethattherewasadiscontinuity):

    Figure20 Vapourfractionvs.Enthalpyat54bar

  • 7/28/2019 Modelling of Multistream LNG Heat

    43/67

    34

    Figure21 Heattransfercoefficientvs.Enthalpyat54bar

    Resultswhenpressure isequal to55bar (here,dotsenthalpy intervalwhen 0 0.6wassetequalto1kJ/kgtoassurethattherewasadiscontinuity):

    Figure22 Vapourfractionvs.Enthalpyat55bar

  • 7/28/2019 Modelling of Multistream LNG Heat

    44/67

    35

    Figure23 Heattransfercoefficientvs.Enthalpyat55bar

    Noticethatat54bar italreadyappearsadiscontinuityat lowvapourfractions.However,at

    55barthisdiscontinuitygoesfrom 0to 0.58,andthatprovokesthatheattransfersuffersalsoadiscontinuity thatgoesalmost from itsminimum value to itshighest value,

    whichwouldbeafocusofenormousnumericalinstabilities.

    Sincevapour

    fraction

    correspondence

    with

    enthalpy

    depends

    on

    the

    flash

    call,

    and

    this

    one

    depends itself on the TP_library, there is no possibility of avoiding this vapour fraction

    discontinuity without losing all the advantages and flexibility that TP_library allows.

    Therefore, it is decided to reduce the final inlet pressure to 50 bar,which is also a high

    pressurewhereinphasechangevariablespresentabruptlyvariationsbutiscontinuous.

    4.1.2 GnielinskiandDittusandBoelterheattransfercorrelationsnumericaleffects

    Another relevantobservation thathasbeennoticedduring simulations is that correlation

    electioncan

    have

    an

    important

    impact

    on

    the

    numerical

    oscillations

    created

    during

    calculations,hence,onCPUtimeconsumption.

    Two simulations were run to compare Gnielinski and Dittus and Boelter heat transfer

    correlationsnumericaleffects.All theparametersare the sameasdescribed in chapter8

    except from some accuracy parameters that have reduced to increase simulation speed.

    Thesechangesare:

    Grid:Thecellsnumberhasbeenreducedto20. Convergencecriterionissetat103. Timestepfunction: 1.

  • 7/28/2019 Modelling of Multistream LNG Heat

    45/67

    36

    So, once these modifications were done, both simulations were run until 4 0 . Thefollowingfiguresshowthenumberof iterationsnecessarytosolveeachtimestepforeach

    simulation:

    Figure24 NumberofiterationsnecessarytoachieveconvergencewhenGnielinskicorrelationisused

    Figure25 NumberofiterationsnecessarytoachieveconvergencewhenDittusandBoeltercorrelationisused

    ThemeannumberofiterationsusedinthesimulationwhereGnielinskicorrelationhasbeen

    used is15,175 iterationspersimulatedsecond,while in theonewhereDittusandBoelter

  • 7/28/2019 Modelling of Multistream LNG Heat

    46/67

    37

    hasbeenusedis43,125.BothcorrelationswouldbevalidtouseinthemodelbutGnielinski

    correlationprovedtogiveafastersolution,sothisisthecorrelationusedinthemodel.

    4.1.3 AdvantagesofthevaryingrelaxingcoefficientSince

    a

    function

    was

    developed

    just

    to

    control

    the

    relaxing

    coefficient

    value,

    it

    was

    necessary

    toproveitsusefulness.

    Same simulation parameters as the ones used to compare correlations were used in a

    simulationwithafixedrelaxingcoefficientvalue(andusingGnielinskicorrelation).

    The relaxing coefficientwas fixedat0.2and thenumberof iterationsnecessary to reach

    convergenceeachtimeisshowedinthefollowingplot:

    Figure26 Numberofiterationsnecessarytoachieveconvergencewhenafixedrelaxingcoefficientvalueisused

    The mean number of iterations when the coefficient is constant is 27,6 iterations per

    simulated second, while when it varies is only 15,125 (as showed in figure 24). So, the

    functiondeveloped

    to

    control

    the

    value

    of

    this

    coefficient

    proves

    to

    give

    afaster

    solution.

    4.1.4 EffectoftimesteplengthandgridmeshingonthenumericalstabilityIn linearnumerical implicitschemewhereparameters in ithaveaconstantvalue likeones

    explainedinchapter7,timesteplengthdoesnotjeopardizenumericalstability.Asexplained

    in chapter 7, only the explicit scheme is under a time step length restriction to avoid

    instabilities.

    However,themodeldevelopedinthisthesisisafollowsanonlinearimplicitscheme.Lotsof

    parameters

    vary

    with

    the

    state

    (like

    fluid

    properties).

    As

    a

    consequence,

    it

    has

    been

    observedthattimesteplengthdoescompromisethenumericalstabilityofthemodel.Asan

  • 7/28/2019 Modelling of Multistream LNG Heat

    47/67

    38

    example,samesimulationastheoneheresimulatedwithaminimumtimestepof5sinstead

    of2sanditconductedtoanumericalinstabilitythatmeantthefailureofthesimulation.

    Similarconsequencehasbeenobservedwhentalkingaboutgridmeshing.Samesimulation

    runwith20cellsasgridnumber,insteadof30,producedaseverenumericalinstability.

    Itisreasonabletothinkthatbigcellsunderbigchangeswillproducemoreoscillations,and

    sometimesinstabilities,thansmallercellsundersmallerchanges.

  • 7/28/2019 Modelling of Multistream LNG Heat

    48/67

    39

    4.2 CaseresultsThischaptershowtheobtainedresultswhensimulatingthecasepresentedinchapter3.1.

    Case of study boundary conditionswere set in order to study the behaviour of the heat

    exchangerduring

    start

    up

    conditions

    and

    during

    an

    abrupt

    change

    in

    the

    inlet

    mixed

    refrigeranttemperature.

    Itisremindedthatduringthestartup,bothmixedrefrigerantandnaturalgasinletpressures

    increase till 6 0 , and from then on are kept at a constant value. Natural gas inlettemperatureiskeptconstantat298Kduringallsimulationtime.However,mixedrefrigerant

    inlettemperaturefollowslawdependingontimethatisshowedinthefigurebelow:

    Figure27 Mixedrefrigerantinlettemperaturedependenceontime

    Whentheresultsofastreamareshownforseveralcells,acodeofcoloursisusedtoknow

    thepositionofthesecells.Thiscodeistheonerepresentedinthenextfigure:

    Figure28 Codeofcoloursusedwhenplottingdifferentcellsofasamestream

  • 7/28/2019 Modelling of Multistream LNG Heat

    49/67

    40

    Figure29 Mixedrefrigeranttemperatureinseveralshellcells

    Figureaboveshowsthetemperaturesduringthesimulatedtimeofseveralcellsintheshell

    side.Someinterestingissuescanbeexplainedfromit.

    First of all, it shows how the start up conditions last till after

    1 0 0 although mixed

    refrigerant inlet temperature was kept constant from 6 0 . So, the system needsapproximately40stoachievesteadystateconditions.Figure 29 also shows the effects of the abrupt change in the mixed refrigerant inlet

    temperature(seefigure27).NotethatMR inlettemperature iskeptconstantduring20sat

    220Kbuttheheatexchangerstillrespondstoitasifitwasapeakinput.

    Focusingonthenumericbehaviouronthemodel,animportantcharacteristicthatfigure30

    illustrates is the good response of the time step function. Note that time step length

    decreaseswhen

    the

    system

    is

    working

    in

    transient

    conditions

    and

    as

    aresult

    detailed

    information is obtained from themodel. Besides, it can also be observed that time step

    length increaseswhen steady stateconditionsare reachedand thatmeans lessCPU time

    consumption.

    Sincethesystemreachessteadystateconditionsat 1 0 0 , fromthenonthe timesteplength is 30s. That could have provoked the lost of much of the information about the

    abruptchangeconsequencesthatoccursat 5 0 0 .Toavoidthis,themodelisforcedto,first, reach exactly

    5 0 0 and then, in the next calculation use the time step with

    minimum length.Thiswayofsolving thisproblematic iscalledeventhandlingandsome

    programslikeordinaryequationssolversinMATLABusethesameprocedure.

  • 7/28/2019 Modelling of Multistream LNG Heat

    50/67

    41

    Naturalgasmassflowrateduringthesimulatedtimeisshowninthefollowingfigure:

    Figure30 Naturalgasmassflowrateduringtime

    In figure30 itcanbeobservedagainthedynamicbehaviourofthesystem,here,NGmass

    flowrateduringthesimulatedtime. It is interestingtofocus inthedecreasethatthemass

    flowratesufferswhentheMR inlettemperaturechanges increasesabruptly.Thecauseof

    thatphenomenon

    is

    that

    natural

    gas

    outlet

    phase

    changes

    from

    liquid

    to

    vapour.

    When

    the

    coldstream increases itstemperaturemoreandmorenaturalgas invapourstateemerges

    fromthetubeoutlet,consideringthatpressuredropisconstantfrom 6 0 ,thisincreaseinthevapourfractionprovokesareductioninthemassflowrate.

    MRmassflowratedecreasesasaconsequenceofthesamephenomenon.MRinletvapour

    fractionincreaseswiththeinlettemperature.Consequently,massflowrateisreducedwith

    inlettemperatureincreasing.

    4.2.1 ThermaldynamicsduringthestartupOneofthemostappreciatedqualitiesofthismodelwillbeitscapabilityofsimulatingstarts

    upandshutdowns.Therefore,detailedthermalresultsofthestartupinthissimulationare

    givenbelow.

  • 7/28/2019 Modelling of Multistream LNG Heat

    51/67

    42

    Figure31 Naturalgascellstemperaturesduringt

  • 7/28/2019 Modelling of Multistream LNG Heat

    52/67

    43

    Figure33 Temperaturesandvapoursfractionsatt=20sandatt=40s

    Figure33showsNG,wallandMR temperaturesalongthe lengthoftheheatexchanger in

    twodifferenttimesteps,at

    2 0 andat

    4 0 . Italsoshowsvapour fractionofeach

    streamat

    the

    specified

    time

    steps.

    Figure33clearly illustratesthe influenceofthephasechange inthewalltemperature. It is

    reminded that NG, wall and MR starting temperature were 298K, 297K and 296K,

    respectively,so,bothstreamsstartingconditionsweresuperheatedvapour.However,both

    frames show that wall temperature reduces considerably its difference with MR

    temperature when two phaseMR flows through the shell side. The cause of that is the

    increasingoftheheattransfercoefficientvalue;atwoheattransfercoefficientvalueismuch

    higherthanthesinglephaseone.

  • 7/28/2019 Modelling of Multistream LNG Heat

    53/67

    44

    Figure34 Temperaturesandvapoursfractionsatt=44sandatt=100s

    Figure34showsagaintwoframesofthestartup.Theseonesbelongtothesystemstateat 4 4 andat 1 0 0 (steadystate).First feature that has to be highlighted is the rapid NG phase change. As it has been

    explainedinchapter7.1,NGphasechangeathighpressuresisaabruptphenomenon.Here,

    itcan

    be

    noticed

    how

    it

    became

    all

    liquid

    in

    just

    4s

    (comparing

    with

    figure

    33

    at

    4 0 ).Second feature that should be commented about the first frame is that this liquid NGachieveshigherheattransfervaluesandthattightsthewalltemperaturetohighervalues.

    Thiseffectisillustratedintherisingofthelastcellstemperature.

    Third and last important displayed characteristic that should be discussed refers to the

    steadystateconditionsat 1 0 0 .ItcanbeobservedthatwalltemperatureisonlyclosertoNGtemperaturewherethephasechangeoccurs.Inthepreviousmeterswalltemperature

    is almost the same asMR temperature.After the phase change,wall temperature drops

    againto

    amiddle

    value

    within

    both

    streams

    temperatures.

    This

    feature

    is,

    again,

    consequenceoftheheattransfercoefficientvaluedependingphasearea.

    Moredetailedframesaboutthestartuparedisplayedintheappendix.

    4.2.2 ThermaldynamicsduringanabruptchangeintheshellinlettemperatureThesesecondresultsshowthethermaldynamicbehaviouroftheheatexchangermodel

    whenjustoneinletparameterismodified.

  • 7/28/2019 Modelling of Multistream LNG Heat

    54/67

    45

    Asexplainedinchapter6.1anddisplayedinfigure27,shellinlettemperaturesuffersarapid

    change between 500s and 560s. This change in the inlet conditions has an effect in the

    wholeheatexchangerthatisinterestingtostudy.

    Figure35 Naturalgascellstemperaturesduring 500s

  • 7/28/2019 Modelling of Multistream LNG Heat

    55/67

    46

    achievesastablestateduringthistimewhiletherestofthesystemisinconstantlychange

    duringit.

    Figure35showshowtheeffectsofthisabruptlychangearerapidlydampedinthetubeside.

    Noticethat,

    since

    the

    model

    takes

    into

    account

    the

    fluid

    movement,

    there

    is

    adelay

    betweentheincreasingoftheMRinletandoutlettemperatures.

    Aninterestingfigurethatshowstheconsequencesoftakingintoaccountthisfluid

    movementisdisplayedbelow:

    Figure37 NG,wallandMRtemperaturesandNGandMRvapourfractionsatt=516sandatt=520s.Crosstemperatures

    phenomenoncanbeobservedatt=520sframe

    Figure37showsstreamandwallstatesat 5 1 6 andat 5 2 0 .Thealreadyexplainedeffectsofthephasechangeonthetemperaturescanbeobservedagain.However,sincethe

    model takes into account fluidmovement, some interesting features canbeextractedof

    them.First,itcanbeseeninbothframesthatthereisaminimumat

    9 inthevapour

    fractionthatcanonlybenoticedbecausefluidmovementeffectisnotneglected.

    Notice that at 5 2 0 MR temperature at shell inlet rises above NG and walltemperatures. That means that there cold and warm streams swapped locally. That is a

    consequence of taking into account the fluid movement. Since it is a counter flow heat

    exchanger,NGisfacingMRoutlettemperatureatitsinletandthatprovokesthatNGoutlet

    temperaturecanbe lower thanMR temperaturewhenMR inlet temperature is increased

    rapidlyenough.

    However,the

    model

    does

    not

    take

    into

    account

    this

    cold

    and

    warm

    streams

    swapping

    when

    calculatingheattransfercoefficientvalue.ThismeansthatMRtwophaseheattransfervalue

  • 7/28/2019 Modelling of Multistream LNG Heat

    56/67

    47

    when itislocallywarmerisstillcalculatedthroughanevaporationcorrelation,whichisnot

    correct.However,ithastobeconsideredthatchangingheattransfercoefficientcorrelation

    followingheatflowdirectionwouldprovokeadiscontinuityintheheattransferfunctionthat

    wouldtriggerasevereinstability.

    More frames about walls and streams states during this period are displayed in the

    appendix.

  • 7/28/2019 Modelling of Multistream LNG Heat

    57/67

    48

    5 Conclusionsandrecommendationsforfurtherwork5.1 ConclusionsDuringthedevelopmentofthisthesissomeinterestingnumericalbehavioursrelatedtoheat

    exchangerwhere

    phase

    change

    occurs

    have

    been

    observed.

    It

    has

    been

    proved

    that

    if

    the

    pressureatwhichthephasechangetakesplaceishighenough,itcancreateadiscontinuity

    in the vapour fraction dependence on enthalpy. This discontinuity affects severely the

    numeric behaviour of themodel, it provokes discontinuities on other functions like heat

    transfercoefficientone,andthatobviouslyleadstoanumericalinstability.

    A second observation noticed when simulating in this thesis is the importance of the

    correlations selection.Whetheroneorother correlation is chosenhas an impactonCPU

    timeconsumption.Forthesameinputsimulationparameters,ithasbeenprovedthatDittus

    andBoelter

    single

    phase

    heat

    transfer

    correlation

    leads

    to

    ahigher

    number

    of

    necessary

    iterationstoachieveconvergencethanGnielinskis.

    Anotherrelevantoutputofthisthesisisthedevelopmentofasimplefunctionthatvariesthe

    weightingcoefficientvaluewhenrelaxingthesolution.Thisfunctionhasbeentestedagainst

    acoefficientwithafixedvalueandithasprovedtoproduceafastersolution.

    Ithasalsobeennoticedthattimesteplengthandcellsizehaveanimpactonthenumerical

    instabilityofthemodel.

    Ithas

    been

    shown

    that

    the

    model

    results

    provide

    detailed

    information

    of

    the

    heat

    exchanger

    dynamics.Timestepcontrolcanbeanappreciated featureof themodel.Also,accounting

    fluidmovementhasshownsome interestingresultsthatwouldhavebeenskipped if ithad

    beenneglected.

    Theobjectiveof this thesiswas to findout if it ispossible todevelopanumericallystable

    multistreamheatexchangermodelwherethermaldynamicscouldbesimulatedandstudied.

    Pursuingananswer to thisobjectiveastablecounterflowheatexchangermodelhasbeen

    satisfactorilydeveloped.Thismodelaimstobeasuitablebasetocontinue inthedesignof

    the

    MSHE

    model.

  • 7/28/2019 Modelling of Multistream LNG Heat

    58/67

    49

    5.2 RecommendationsforfurtherworkRecommendationsforfurtherworkcanbeclassifiedintothethreefollowinggoals:

    1. Optimisationofthenumericalpartofthemodel.2. Researchofthesuitableheattransferandpressurecorrelations.3. Introductionofthedevelopedtoolintopracticaluse.

    The model developed in this thesis has still to overcome some numerical challenges till

    presentingthesuitablecharacteristicstobeusedasaheatexchangerdesigntool.Stabilityof

    thesimulationsmustbeguaranteed,hence,furtherstudyonthetimestep lengthandgrid

    meshingshouldbeconsidered. It isthewriteropinionthat improvedrelaxingsolutionand

    time step functions could give much more robustness to the model. Besides, the

    improvementofthesefunctionscouldalsomeanareductionintheCPUtimeconsumption,

    whichisthenumericalchallengethatshouldbefacedoncestabilityisguaranteed.

    Furtherresearchshouldbedoneinthecorrelationsfield.Findingthecorrelationsthatbetter

    correspond to theexperimentalresultshasnotbeen thegoalof this thesis.Therefore,an

    evaluation of the different available correlations and its accuracy should be carried out.

    However,italsohastobetakenintoaccountthenumericconsequencesthatthiscorrelation

    maybring.Itisremindedthatithasbeenshowninthisthesisthatcorrelationselectionhas

    aneffectonthemodelnumericalresponse.

    Finally,oncetheseand futurechallengeshavebeenconquered,themodelshouldbeused

    forthe

    real

    design

    of

    aheat

    exchanger.

    Model

    flexibility

    during

    the

    design

    process

    and

    the

    accuracyoftheresultsmaybethemainappreciatedfeatures.

  • 7/28/2019 Modelling of Multistream LNG Heat

    59/67

    50

    6 Bibliography1. Adrian J. Finn, G.L.J., Terry R. Tomlinson, LNGtechnologyforOffshoreandmid-scaleplants.

    2000.2. Julio Cesar Paco, C.A.D.,Areviewonheatexchangerthermalhydraulic

    modelsfor

    cryogenic

    applications. 2011.3. Fredheim AO, H.R., Possibilitiesofcostreductionsinbase-load.EUROGAS96. Proceedings from the European applied researchconference on natural gas, 1996: p. 10114.4. Kanoglu M, D.I., Rosen MA, Performanceanalysisofgasliquefaction

    cycles. Int. J. Energy Res, 2008.5. RF, B., Cryogenictechnology. Ullman's encyclopedia of industrialchemistry. WileyVCH Verlag GmbH and Co, KGaA, 2000.6. Warren M. Rohsenow, J.P.H., Young I. Cho, ed.

    Handbookofheat

    transfer. 1998.7. F. W. Dittus, B., Heattransferinturbulentpipeandchannelflow. 1930.8. Gnielinski, V., Newequationsforheattransferinturbulentpipeandchannelflow. Int. Chem. Eng, 1976: p. 359368.9. Stefan S. Bertsch, E.A.G., Suresh V. Garimella,Acompositeheattransfercorrelationforsaturatedflowboilinginsmallchannels. Int. J. HeatMass Transfer, 2009. 52: p. 21102118.

    10. Z. Liu, W.,Ageneralcorrelationforsaturatedandsubcooledflow

    boilingintubesandannuli,basedonanucleatepoolboilingequation.

    1991.11. Shah, M.M.,Ageneralcorrelationforheattransferduringfilmcondensationinsidepipes. 1978.12. Issam Mudawar, J.L., Two-phaseflowinhigh-heat-fluxmicro-channelheatsinkforrefrigerationcoolingapplications:PartIpressuredrop

    characteristics. 2004.13. W. Qu, I.M., Measurementandpredictionofpressuredropintwophasemicro-channelsheatsinks.

    Int. J. Heat Mass Transfer, 2003.46

    : p.27372753.14. Zivi, S.M., Estimationofsteady-statevoid-fractionbymeansoftheprincipleofminimumentropyproduction. ASME J. Heat Transfer 1964.86: p. 247252.15. J.G. Collier, J.R.T., Convectiveboilingandcondensation. third ed.,Oxford University Press, 1994.16. F. P. Incropera, D.P.D., FundamentalsofHeatandMassTransfer,fifthed. 2002.17. R. K. Shah, A.L.L., LaminarFlowForcedConvectioninDucts:ASourceBookofCompactHeatExchangerAnalyticalData.

    1978.

  • 7/28/2019 Modelling of Multistream LNG Heat

    60/67

    51

    7 AppendixDetailedresultframesduringsimulationsstartupperiod:

    Temperaturesandvapourfractionsatt=8sandatt=16s

    Temperaturesandvapourfractionsatt=8sandatt=16s

  • 7/28/2019 Modelling of Multistream LNG Heat

    61/67

    52

    Temperaturesandvapourfractionsatt=40sandatt=48s

    Temperaturesandvapourfractionsatt=56sandatt=64s

  • 7/28/2019 Modelling of Multistream LNG Heat

    62/67

    53

    Temperaturesandvapourfractionsatt=72sandatt=80s

    Temperaturesandvapourfractionsatt=90sandatt=100s

  • 7/28/2019 Modelling of Multistream LNG Heat

    63/67

    54

    SomeframesduringtheabruptchangeoftheMRinlettemperatureare:

    Temperaturesandvapourfractionsatt=500sandatt=504s

    Temperaturesandvapourfractionsatt=508sandatt=512s

  • 7/28/2019 Modelling of Multistream LNG Heat

    64/67

    55

    Temperaturesandvapourfractionsatt=516sandatt=520s

    Temperaturesandvapourfractionsatt=524sandatt=528s

  • 7/28/2019 Modelling of Multistream LNG Heat

    65/67

    56

    Temperaturesandvapourfractionsatt=532sandatt=536s

    Temperaturesandvapourfractionsatt=540sandatt=544s

  • 7/28/2019 Modelling of Multistream LNG Heat

    66/67

    57

    Temperaturesandvapourfractionsatt=548sandatt=552s

    Temperaturesandvapourfractionsatt=556sandatt=560s

  • 7/28/2019 Modelling of Multistream LNG Heat

    67/67

    Temperaturesandvapourfractionsatt=570sandatt=580s

    Temperaturesandvapourfractionsatt=590sandatt=600s