34
Flight Dynamics and Control Lab. Department of Mechanical and Aerospace Engineering Seoul National University, Republic of Korea Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle SciTech 2016, Manchester Grand Hyatt, San Diego, California Yongjun Seo*, and Youdan Kim 4 January 2016

Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Embed Size (px)

DESCRIPTION

A precise modeling and an attitude controller, through control allocation with momentcancelation, of a tri-tilt ducted fan vehicle are presented in this paper. Because ducted fansare generally operated at a much higher angular velocity than typical propellers, theygenerate higher angular momentum. The attitude control system without considering themoment caused by the change of angular momentum entails the error due to oscillatorymotion called precession. The destabilization is critical especially for a tilt ducted fan vehiclebecause tilting itself causes a resisting moment to the vehicle. To deal with this problem, theprecise model of the vehicle considering the angular momentum of each rotor is obtained asmultibody dynamics. The moment cancelation based on the model is applied with controlallocation method specialized for the vehicle. A robust quaternion feedback regulator is usedfor attitude control. Simulation results demonstrate the performance of the proposedcontroller with control allocation and moment cancelation.

Citation preview

Page 1: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Flight Dynamics and Control Lab.Department of Mechanical and Aerospace Engineering

Seoul National University, Republic of Korea

Modeling and Attitude Control ofTri-Tilt Ducted Fan Vehicle

SciTech 2016, Manchester Grand Hyatt, San Diego, California

Yongjun Seo*, and Youdan Kim

4 January 2016

Page 2: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 332

Contents

1. Introduction

2. Vehicle Configuration and Dynamics

3. Control Allocation

4. Attitude Controller

6. Conclusion

5. Simulation

Page 3: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016.

Introduction

1. Introduction

Page 4: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 334

Introduction (1/2)

Tri Tilt Rotor Vehicle

Properties

Each engine rotates along the y-axis of fuselage frame.

Tilting engines to make yawing moment enables rapid response compared to the conventional quad rotor configuration.

It does not need to tilt the fuselage to advance forward or backward.

The small amount of aerial drag occurs during the cruising flight.

The additional aerodynamic apparatus such as a wing is available to the vehicle.

tilting axis

thrust and moment

center of gravity

Ducted Fan 1

Ducted Fan 2

Ducted Fan 3

rotation

Page 5: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 335

Introduction (2/2)

Several VTOL Concept vehicles

Proprotor VTOL Tri‐tilt rotor vehicles

Tri‐Fan V‐STOL Quad‐Tilt‐Wing UAV

Page 6: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016.

Vehicle Dynamics

2. Vehicle Dynamics

Page 7: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 337

Configuration

Installation of duct Location of the tilting axis Arm vector

• The relative position vector of the point which is the intersection of the plane containing and perpendicular to and the tilting axis.

Tilting axis• The rotation axis of a duct

Axis deviation• The deviation of from

/

Tb bx y z A Gr r ré ù= =ê úë ûr p

D

r

[ ]0 1 0 Td =n1=n

n

0⋅ =n a [ ] /0 Td dx z A Da a= =a p

D A

n

1A

2A

3A

G1μ

1n

1rω

1r

2n2

2r

3n

3rω

3r

bi

bj

bk

Page 8: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 338

Coordinate transform matrices

Angular Velocities

Dynamics (1/5)

/ / / /

/ / / /

d d bd i d b d b b ir r dr i r d r d d i

= +

= +

ω ω C ω

ω ω C ω

 / / / /

/ / / /

d d bd i d b d b b i

r r dr i r d r d d i

= +

= +

ω ω C ω

ω ω C ω

 

2 2 2 20 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2/ 1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 21 3 0 2 2 3 0 1 0 1 2 3

2

/ 1 1

1 1

2 22 22 2

cos 0 sin 1 0 0 cos si0 1 0 0 cos sin

sin 0 cos 0 sin cos

b i

d b

q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q

C

C2

2 2

n 0sin cos 0

0 0 1

/

1 0 00 cos sin0 sin cos

r d

C ( )0

t

rtd = ò

A

r

bibjbk

n

G

zθx

θzθ μ

Page 9: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 339

Approximation of moment of inertia

Angular momentum

Forces and moment

Fuselage Duct Rotor

Dynamics (2/5)

  00 0

0

xx zxbG yy

zx zz

J JJ

J J

é ù-ê úê ú= ê úê ú-ë û

J

  00 0

0

Dxx DzxdD Dyy

Dzx Dzz

J JJ

J J

é ù-ê úê ú= ê úê ú-ë û

J

  0 00 00 0

RarR Rr

Rr

JJ

J

é ùê úê ú= ê úê úë û

J

Rotor Duct Duct‐rotor assembly Fuselage

 /

r r rR R r i=h J ω  

/d d dD D d i=h J ω   :d d d

DR D R= +h h h  /

b b bG G b i=h J ω

Duct‐rotor assembly Fuselage

k k k kd d d dk k D km= + +åF N G T  

k k k k kd d d d dk k k k k= + ´ +åM τ a N Q

b b b bb b bm=- + +åF N G F  

( ){ }b b b b bb k k b

k

=- + ´ - +å åM τ r N M

Page 10: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3310

Dynamics (3/5)

Euler’s laws of motion

Elimination of the actions and reactions by joint

Forces

Moments

( ){ }/ jk k

k k

d d bb d u k b

k

+ =å C j D τ τ

/k

k

d b bb d k k b

k k

= =å åC N N N

k k

k

d dk u⋅ =τ j

( ){ }/ jk k

k k

d d bb d u k b

k

+ =å C j D τ τ j

1 0 00 0 00 0 1

é ùê úê ú= ê úê úë û

DA

r

G

xτtτ

xτ−

tτ−

zτ−

N

−N

A′

Duct‐rotor assembly Fuselage

/k k k k kd d d d di

D D i k k D km m= = + +åv F N G Tk k k k k k

k

d d d d d diDR k k k k k= = + ´ +åh M τ a N Q  

 /

i b b b b bb G i b b bm m= =- + +åv F N G F

( ){ }i b b b b b bG b k k b

k

= =- + ´ - +å åh M τ r N M

Page 11: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3311

Dynamics (4/5)

Several simpler model Simplification on the multibody model

• Force

• Moment

Tilting axis alignment

Single rigid body dynamics with additional angular momenta

The action-reaction parameter is not introduced in this case, and thus the load on the servo motor and the precession of the ducts with respect to the fuselage are not considered. But the gyroscopic effect caused by the rotation of the rotors are still under consideration.

Zero tilting axis deviation ( kdk =a 0  )

( )( ) ( )/ / /k

k

di b i bb D G i b i b b d k

k

m nm+ - = +åv C G F C T

 { }k k k

k k

d d diDR k u- ⋅ =h Q j ( ){ } ( ){ }/ j /

k k k k

k k k k

d d d di b i b bGA b d u DR k k b d k b

k k

é ù=- + - + ´ +ê úë ûå åh C j D h Q r C T M

( 1 0 =  and  2 0 = ) 

( kdk =a 0  )

( ), ,kk s k k cf =

Duct‐rotor assembly Fuselage

( )( ) ( )/ / /k

k

di b i bb D G i b i b b d k

k

m nm+ - = +åv C G F C T V G D R= + +h h h h     / /+ k

k k

db b bV GA b i b d DR

k

= åh J ω C h

( ){ }/ /k k

k k

d di b b bV k b d k b d k b= ´ + +åh r C T C Q M

Page 12: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3312

Dynamics (5/5)

Actuator dynamics Tilting actuator

Ducted fan

• Power model

 

∫ ∫1K

2Krμ μ

μ�

  ( )k kf f r dt T + = -

  2

2

d T f

d Q f

T C

Q C

=

=

  32

d PT dP C T=

  32PT

t k kk kd

CP P T

= =å å

tilting axis

thrust and moment

center of gravity

Ducted Fan 1

Ducted Fan 2

Ducted Fan 3

rotation

Page 13: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3313

System Description (1/2)

State space description System of minimal coordinates

The functions and are computed via MATLAB symbolic math toolbox.

( ) ( ) ( )1 , ,-=- =x E x n x u f x u

( )E x ( ),n x u

The minimal coordinate description of the dynamics of given multibody system is directly obtained bycanceling the reaction forces and moments. The result is 

( ) ( ),+ =E x x n x u 0  

or  ( ) ( ),=-E x x n x u  

where  nÎx ,  mÎu . 

The rows of  ( )E x  are linearly independent and thus it is invertible. 

Page 14: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3314

System Description (2/2)

Assignment of state and input variables States

• Duct-rotor assembly

• Quaternion

• Position in the NED coordinate system

Inputs• Rotor speed

• Tilt angles

1 1 2 2 3 31 1 2 2 3 3

T

r r r r r r é ù= ê úë ûx

[ ]0 1 2 3Tq q q q=q

[ ]/Ti

G O x y z=p

/ / /

Tb T b T T T i TG i b i G O

é ù= ê úë ûx v ω x q p

1 2 3

T

u c c c é ù= ê úë ûω

1 2 3

T

u u u u é ù= ê úë ûμ

[ ]Tu u=u ω μ

Page 15: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016.

Control Allocation

3. Control Allocation

Page 16: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3316

Control Allocation (1/4)

Control Allocation Over-actuated system The total number of force and moment components that can be generated by the configuration of actuator is 5

while the actuators have total degree of freedom of 6.

Reaction moment cancelation Fuselage moment equation

Moment to cancel

Fuselage moment equation after cancelation

  ( ){ } ( ){ }/k k

k k

d di b i b b bG b d DR k k k A

k k

=- - + ´ - +å åh C h Q r N M

  ( ){ } ( ){ }/ /k k k

k k k

d d di b i b bGA b d DR k k b d k A

k k

=- - + ´ +å åh C h Q r C T M

 /:b b b

GA GA b i=h J ω  2b b

GA G D kk

m= - åJ J R

  ( ){ }/: k k

k k

d db ic b d DR k

k

=- -åM C h Q   kdk =Q 0

( )/ / /i b b b b b b b b

GA GA b i b i GA b i= + ´ =h J ω ω J ω M

Page 17: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3317

Control Allocation (2/4)

Input vectors

The coordinate transformation of the actual input vector is required to avoid nonlinear configuration mapping.

Configuration mapping

Virtual input vector Actual input vector

  [ ]Td d d d dX Z L M N=τ  1 2 3

T

1 2 3c c cT T T é ù= ê úë ûu

  [ ]T1 1 2 2 3 3c x z x z x zT T T T T T=u  ( )arctan 2 ,kc kz kxT T =-   [ ]Tk kx kzT T=T

 [ ]

[ ] ( ){ }/

/

k

k

k

k

T dbd d d b d k

k

T db b bd d d c k b d k

k

X Y Z

L M N

= =

= - = ´

å

å

F C T

M M r C T

( )( ) ( )

( )

2 1 1 3 1 1 1 1 3 3 3

2 1 1 3 3

1 3

1 2 3 1 2 3

3 1

1 1 1 3 3 3

1

cos cos sin sin sin sincos cos

2 2

cos sin sin 1 0 cos sin sin0 cos 0 1 0 co

x x z x z z x z z x z

z z x z x

z z y

x x x z z z z x

x x y

z x z z x z

x

T T T T TT T T

T T rT T T r T T T r

T T r

é ù+ + + +ê úê ú+ +ê úê ú-= ê úê ú- + - - +ê úê ú-ê úë û

=

τ

1

13

2

2

3

3

s0 0 0 0

2 20 0 0 0

x

zx

xy y c

zz x z x z x

xy y

z

TTT

r rT

r r r r r rT

r rT

é ùé ù ê úê ú ê úê ú ê úê ú ê úê ú ê ú- =ê ú ê úê ú ê ú- - -ê ú ê úê ú ê ú-ê ú ê úë û ê úë û

Cu

Page 18: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3318

Control Allocation (3/4)

Control allocation methods• Minimizing control efforts

• Mixed optimization

• Partially constrained mixed optimization (PCMO)

  arg minc

Top c c

U VÎ Ç=

uu u Qu   { }c cU = - =u τ Cu 0   ( ){ }c cV = £u h u 0

  ( ) ( )( )arg minc

T Top c c c c

VÎ= - - +

uu τ Cu W τ Cu u Qu

  2

21 1 2

arg minc

op c cU V

kP

u

u τ C u u   { }2 2 2c cU u τ C u 0= - = 

1

2

ττ

τ

 1

2

CC

C

  1T

T TX Zτ   2T

T T TL M Nτ

 1 1 1 3 3 3

11 3

cos sin sin 1 0 cos sin sin0 cos 0 1 0 cos

z x z z x z

x x

é ùê ú= ê úë û

C

 

2

0 0 0 02 2

0 0 0 0

y y

z x z x z x

y y

r rr r r r r rr r

é ù-ê úê ú= - - -ê úê ú-ê úë û

C

Page 19: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3319

Control Allocation (4/4)

Several solutions

Rolling Pitching Yawing

Hovering phase

Forward flight phase

Page 20: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016.

Attitude Controller

4. Attitude Controller

Page 21: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3321

Attitude Controller (1/2)

Attitude Controller

Quaternion feedback regulator

Principal axis transformation

Controller design

 

QuaternionConversion

AttitudeController

VehicleDynamicscΦ

cq

q

τ u

x, x�

ControlAllocation

MomentCancelation

 0

/ / / / /eb

e b r i r b i r i b ibe

qq q q q q q

é ùê ú= = = * = *ê úë ûq

  ( )/ / /b b b b b b

b i b i b i e= ´ - -u ω J ω Dω Kq

  p T b=J Q J Q   1 T- =Q Q  / /

p T bb i b i=ω Q ω

 /

/ /

/ / /

b b bb i

p b pb i b i

p T b p p pb i b i b i

=

=

= =

h J ω

Qh J Qω

h Q J Qω J ω 

/ / / / / /pe p r i r p i r i b i p bq q q q q q q= = * = * *

  ( ){ }/ / / /b p p p p p

b p b i b i b i e= ´ - -u C ω J ω Dω Kq

  , p pk d= =K J D J  22 0

2 n nkd + + = + + =

  ( ) 1pk -

= +K J I   pd=D J 

( ){ }21

tr p pPI -æ ö÷ç= + - ÷ç ÷÷çè ø

J I J

Page 22: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3322

Attitude Controller (2/2)

Vehicle SpecificationLength 1,207mm Width 1,800mm Height 445mm

bm 7.437kg

Dm 0.87kg

bGAJ 2

0.5989 0 0.09220 0.5295 0 kg m

0.0922 0 1.0658

é ù-ê úê ú ⋅ê úê ú-ë û

dDRJ

4 8

8 2

7.965 10 7.647 10 07.647 10 0.002 0 kg m

0 0 0.002

- -

-

é ù´ - ´ê úê ú- ´ ⋅ê úê úê úë û

RaJ 4 21.245 10 kg m-´ ⋅

1br [ ]T0.240 0.345 0.060 m

1x , 2x , 2z , 3x 0

1z 2-

3z 2 0.1s

dT 0.02s

maxT 60N

max 6.16rad/s

TC 6 2 24.1614 10 N s / rad-´ ⋅

QC 2 20N m s / rad⋅ ⋅

PTC 3/22.8963W / N

Page 23: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016.

Simulation

5. Simulation

Page 24: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3324

Simulation I

Simulation I

Simulation dL ( N m⋅ ) dM ( N m⋅ ) dN ( N m⋅ ) dX ( N ) dZ ( N )

I 0 0.5 0 0 100- II 0.5 0 0 0 100-

III 0 0.5 0 ( )20sin t ( )100 20cos t- +

dLN m⋅dMN m⋅dNN m⋅dXNdZN00.500 100-0.5000 100-00.50 ( )20sin t ( )100 20cos t- +

Page 25: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3325

Simulation II

Simulation II

Simulation dL ( N m⋅ ) dM ( N m⋅ ) dN ( N m⋅ ) dX ( N ) dZ ( N )

I 0 0.5 0 0 100- II 0.5 0 0 0 100-

III 0 0.5 0 ( )20sin t ( )100 20cos t- +

Page 26: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3326

Simulation III

Simulation III

Simulation dL ( N m⋅ ) dM ( N m⋅ ) dN ( N m⋅ ) dX ( N ) dZ ( N )

I 0 0.5 0 0 100- II 0.5 0 0 0 100-

III 0 0.5 0 ( )20sin t ( )100 20cos t- +

Page 27: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3327

Simulation IV

Simulation IV

0.5814 0 00 0.5295 00 0 1.0833

é ùê úê ú= ê úê úë û

D ,

0.5673 0 00 0.5405 00 0 1.0880

é ùê úê ú= ê úê úë û

K 0.82 = , 3.2rad/sn =

  1 0 0 0 00 1 0 0 00 0 400 0 00 0 0 400 00 0 0 0 400

é ùê úê úê úê ú= ê úê úê úê úê úë û

W

  0NdX =

  200NdZ =-

Case 1Partially constrained mixed optimization(PCMO)

Case 2PCMO withoutmoment cancelation

Case 3Mixed optimization

Page 28: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3328

Simulation IV

Simulation IV

Page 29: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3329

Simulation IV

Simulation IV

Mixed optimization Partially constrained mixed optimization

Page 30: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3330

Simulation V

Simulation V  ( )100 100cos NdX t= +   ( )100 100sin NdZ t=- +

Case 1Partially constrained mixed optimization(PCMO)

Case 2PCMO withoutmoment cancelation

Case 3Mixed optimization

Page 31: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3331

Simulation V

Simulation V

PCMO without moment cancelation PCMO

Page 32: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016.

6. Conclusion

Conclusion

Page 33: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016. / 3333

Conclusion

Conclusion The precise model for the tri-tilting ducted fan vehicle considering the gyroscopic coupling by multibody

dynamics with Euler’s laws of motion was derived. The formulation enables the simplification of the original complex model to a single body system with forces

and moments as control input through control allocation. The partially constrained mixed optimization was also proposed to improve attitude stability utilizing simple

quaternion feedback regulator.

Further research Development of the landing gear suspension model and tyre friction model Aerodynamics model Consideration on the nonlinear controllers

Page 34: Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle

Yongjun Seo, et al. “Modeling and Attitude Control of Tri-Tilt Ducted Fan Vehicle,”AIAA SciTech 2016, Manchester Grand Hyatt, San Diego, California, January 2016.

Any Question will beappreciated.