21
Modeling a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

  • Upload
    lamanh

  • View
    237

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Modeling a UMS GaNtransistor (CHZ015A) with a B1505, a PNA-X and ICCAP

Benoit Mongellaz

Emmanuel Rosello

Cedric Pujol

Page 2: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Why modeling a transistor ?

“A datasheet might not be enough to design”

– Need to have more info to :

• Match the device to the other parts of the circuit (antenna, filters…)

• Linearize a power-amplifier (Linc/Doherty/Envelope tracking)

• Use the device under different operating conditions (Temperature/Bias)

• Predict other figures of merits (EVM, Spectral regrowth…)

Modeling a UMS GaN CHZ015A

transistor

2

Page 3: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

How to create a model ?

Modeling a UMS GaN CHZ015A

transistor

Efficiently measure the device

Record measurements in a portable model

Design using measurement-based models

3

Page 4: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

A glimpse at the transistor

Modeling a UMS GaN CHZ015A

transistor

4

Page 5: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Demo outline

– Baseband measurements with the B1505 (B. Mongellaz)

– RF measurements with the PNA-X (E. Rosello)

– Create a Spice model of the CHZ015A using ICCAP (C. Pujol)

– Reusing the Spice model in the ADS design framework (C. Pujol)

Modeling a UMS GaN CHZ015A

transistor

5

Page 6: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

B1505A Power Device Analyzer

Benoit Mongellaz

[email protected]

Modeling a UMS GaN CHZ015A

transistor

6

Page 7: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

B1505A’s Measurement Resources

Modeling a UMS GaN CHZ015A

transistor

7

High Voltage SMU

(B1513B HVSMU)

Up to 3000 V

High Current SMU

(B1512A HCSMU)

Up to 20 A pulse

Medium Current SMU

(B1514A MCSMU)

Up to 1 A / 30 V pulse

Multi Freq CMU

(B1520A MFCMU)

3000V biased CV

Medium Power SMU

(B1511A MPSMU)

Up to 100 V, 100 mA

10 fA resolution

High Power SMU

(B1510A HPSMU)

Up to 200 V, 1 A

10 fA resolution

Ultra High Voltage Unit

(N1268A UHV Expander

and two B1514A MCSMU

or a combination of a

B1512A HCSMU and a

B1514A MCSMU)

Up to 10 kV

High Voltage Medium

Current Unit

(N1266A HVSMU Current

Expander , B1513B

HVSMU and two units of

B1514A MCSMU/B1512A

HCSMU)

±1500 V / 2.5 A ,

±2200 V/ 1.1 A

Ultra High Current

Unit

(N1265A UHC

Expander/Fixture and

two units of

MCSMU/B1512A

HCSMU)

Up to 1500 A / 500 A

Page 8: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Improved efficiency

Modeling a UMS GaN CHZ015A

transistor

8

- Standard test fixture for safe packaged device testingThe B1505A supports two standardized test fixture.

Both test fixtures support a variety of different package types.

N1259A Test Fixture for Power Device N1265A Ultra High Current Expander / Fixture

3000 V / 40 A 10 kV / 1500 A

Compatible adapter

for curve tracer TO220/TO3P socket

Universal type moduleTeflon board module

Page 9: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Improved efficiency

Modeling a UMS GaN CHZ015A

transistor

9

-Supported and secure on-wafer testing over 400 A

Support more than 400 A and up to 10 kV on-wafer measurement

Provide accessories for sure and safe on-wafer evaluation

Control prober through EasyEXPERT

Test Automation with Module Selector/Quick Test Mode

Page 10: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

PNA-X The new VNA architecture

Emmanuel Rosello

[email protected]

Modeling a UMS GaN CHZ015A

transistor

10

Page 11: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Traditional Vector Network Analyzer

Modeling a UMS GaN CHZ015A

transistor

11

Capabilities:

• Measures Scattering

Parameters

• Reflection S11 = A/R1

• Reflection S22 = B/R2

• Forward Transmission S21 =

B/R1

• Rev Transmission S12 =

A/R2

• Vector-error correction used

to overcome hardware

limitations

Source

1

DUT

• Limitations:

• Single synthesized, sweeping source:

• Low power

• High harmonic & spurious content

• Single non-synthesized LO:

• Phase-locked to RF source

• No independently tunable receivers

• Harmonic samplers:

• High noise floor

• Fixed, narrow IF bandwidths

• No pulsed-RF capability

• Limited absolute calibration:

(power, phase)

• Only two ports typically

Page 12: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

4-Port PNA-X Innovative architecture up to 67GHz.

Modeling a UMS GaN CHZ015A

transistor

12

Single Connection Multiple Measurements concept !

Test port 3

C

R3

Test port 1

R1

Test port 4

R4

Test port 2

R2

A D B

To receivers

LO

Pulse generators

rear panel

1

2

3

4

Source 1

OUT 1 OUT 2

Pulse

modulator

Source 2

(standard)

OUT 1 OUT 2

Pulse

modulator

J9J10J11 J8 J7 J2 J1J4 J3

• Combiner.

• Switches.

• Dual high power and

pure RF sources.

• Pulse Modulators

• Dual coupler

architecture.

• Internal source

attenuators

• Solid state switch on

reference receiver.

• High accuracy

power control out.

• Very high receivers

linearity.

• Rear panel jumpers.

• 4 internals pulse

generators.

• Internal attenuator on

each measurement

receivers.

• Front panel jumpers

for complex and high

power setup.

• All hardware and

setups with Wizards!

• Unique and flexible

hardware.

• High accuracy power

control.

• Much More…

Page 13: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

One Instrument For Component Test6 channel simultaneous measurements with full calibration. No need to connect or disconnect between

measurements. S-parameters + pulsed RF + IMD + Gain Compression + Noise Figure.

Previously ATE systems took >186s with less accuracy. More Accurate and ~ 37x Faster.

Ch1: Standard s-parameters – 201 pts, 2-port Cal, 1 kHz IFBW.

Ch6: Pulsed S21, 401 pts, 2-port Cal, using internal pulse gen and mod, 5 MHz IFBW.

Ch3: Fastest & most

accurate Amplifier Gain

Compression. 101 pts,

Cal: src/rcvr/mismatch

correction. 10 kHz IFBW.

Ch2: Two Tone IMD using

internal broadband

combiner and two PNA-X

sources. 101 pts, src/rcvr

Cal, 100 Hz IFBW.

Ch4: Integrated Noise

Figure. Fastest and most

accurate amplifier noise

figure measurement.

101 pts, Source-corrected

NF Cal, 1 kHz IFBW.

Modeling a UMS GaN CHZ015A

transistor

• Classic VNA.

• 2 internals RF sources (low spurs and PN).

• Spectrum Analyzer.

• Noise Figure Analyzer.

• 4 Pulse Generators.

• Multiple accurate Power meter.

• Switches.

• Front and rear panel jumpers.

• Frequency Offset capabilities.

• External instruments control.

• Setup and calibration Wizards.

• Measurements Classes.

13

Page 14: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

High Power setup

Modeling a UMS GaN CHZ015A

transistor

14

Page 15: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Creating a model with ICCAP

Cedric Pujol

[email protected]

Modeling a UMS GaN CHZ015A

transistor

15

Page 16: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

What is a Spice model ?

Modeling a UMS GaN CHZ015A

transistor

Abstract electronics physics into a set of parameters

Angelov-GaN example

(I. Angelov, Chalmers University)

16

Page 17: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Driving measurements from a modeling point of view

Measure and collect

Fit the model parameters

Use the model for

design

Modeling a UMS GaN CHZ015A

transistor

– ICCAP embeds “toolkits” that suggest the relevant measures to achieve

17

Page 18: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Fitting the model parameters to measurements

Measure and collect

Fit the model parameters

Use the model for

design

ICCAP toolkits

embed

customizable

strategies to fit

the parameters

18Modeling a UMS GaN CHZ015A

transistor

Page 19: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Use the model inside ADS

Measure and collect

Fit the model parameters

Use the model for

design

Modeling a UMS GaN CHZ015A

transistor

19

Page 20: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Examples of model usage

Modeling a UMS GaN CHZ015A

transistor

20

Spectral regrowth EVM

Gain

Constellation and spectrum

PAE

Page 21: Modeling a UMS GaN transistor with a B1505, a PNA-X … a UMS GaN transistor (CHZ015A) with a B1505, a PNA-X and ICCAP Benoit Mongellaz Emmanuel Rosello Cedric Pujol

Page

17-Sep-14

Conclusion

Modeling a UMS GaN CHZ015A

transistor

21

Efficiently measure the device

Record measurements in a portable model

Design using measurement-based models