22
Modelação Numérica 2017 Aula 4, 22/Fev Álgebra complexa Circuito RLC Filtros h7p://modnum.ucs.ciencias.ulisboa.pt

Modelação Numérica 2017 Aula 4, 22/Fev · Generalização a qualquer função (não senos) • Qualquer função periódica pode ser representada como uma série de Fourier, i.e.:

  • Upload
    vokhue

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Modelação Numérica 2017

Aula 4, 22/Fev

•  Álgebracomplexa

•  CircuitoRLC

•  Filtros

h7p://modnum.ucs.ciencias.ulisboa.pt

Transformada de Fourier

h7ps://en.wikipedia.org/wiki/File:Fourier_transform_Ame_and_frequency_domains_(small).gif

Generalização a qualquer função (não senos)

•  QualquerfunçãoperiódicapodeserrepresentadacomoumasériedeFourier,i.e.:

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

1

Aulapassada

Série de Fourier

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(1)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(2)

1

Primeiraharmónica:

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(1)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(2)

a1 cos2⇡t

T+ b1 sin

2⇡t

T= A cos

✓2⇡t

T+ �

1

•  Φ:Faseinicial

•  A:Amplitude

•  T:Período;Frequênciaf=1/T;Frequênciaangular:ω=2πf=2π/T

Aulapassada

Série de Fourier

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(1)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(2)

1

Primeiraharmónica:

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(1)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(2)

a1 cos2⇡t

T+ b1 sin

2⇡t

T= A cos

✓2⇡t

T+ �

1

Aulapassada

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(1)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(2)

a1 cos2⇡t

T+ b1 sin

2⇡t

T= A cos

✓2⇡t

T+ �

ei✓ = cos ✓ + i sin ✓

cos

2⇡kt

T=

ei2⇡kt/T + e�i2⇡kt/T

2

sin

2⇡kt

T=

ei2⇡kt/T + e�i2⇡kt/T

2i

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

1X

k=1

ak � ibk2

ei2⇡kt/T +

1X

k=1

ak + ibk2

ei2⇡kt/T =

=

1X

k=�1cke

i2⇡kt/T

(3)

1

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(1)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(2)

a1 cos2⇡t

T+ b1 sin

2⇡t

T= A cos

✓2⇡t

T+ �

ei✓ = cos ✓ + i sin ✓

cos

2⇡kt

T=

ei2⇡kt/T + e�i2⇡kt/T

2

sin

2⇡kt

T=

ei2⇡kt/T + e�i2⇡kt/T

2i

f(t) =a02

+

1X

k=1

ak � ibk2

ei2⇡kt/T +

1X

k=1

ak + ibk2

ei2⇡kt/T =

=

1X

k=�1cke

i2⇡kt/T

(3)

1

•  Directa:

•  Inversa:

Transformada Discreta de Fourier

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

2

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

2

F=F(f)f=F-1(F)=F-1(F(f))

Aulapassada

Aulapassada

Interpretação do espectro: Frequência

Coseno,10ciclosexactos,T=10s,f=0.1Hz

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

2

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

3

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(1)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

✓a1 cos

2⇡t

T+ b1 sin

2⇡t

T

◆+

✓a2 cos

2⇡t

T/2+ b2 sin

2⇡t

T/2

◆+ ...

(2)

a1 cos2⇡t

T+ b1 sin

2⇡t

T= A cos

✓2⇡t

T+ �

ei✓ = cos ✓ + i sin ✓

cos ✓ =

ei✓ + e�i✓

2

sin ✓ =

ei✓ � e�i✓

2i

cos

2⇡kt

T=

ei2⇡kt/T + e�i2⇡kt/T

2

sin

2⇡kt

T=

ei2⇡kt/T � e�i2⇡kt/T

2i(

cos

2⇡ktT =

ei2⇡kt/T+e�i2⇡kt/T

2

sin

2⇡ktT =

ei2⇡kt/T�e�i2⇡kt/T

2i

(3)

f(t) =a02

+

1X

k=1

✓ak cos

2⇡kt

T+ bk sin

2⇡kt

T

◆=

=

a02

+

1X

k=1

ak � ibk2

ei2⇡kt/T +

1X

k=1

ak + ibk2

e�i2⇡kt/T=

=

1X

k=�1cke

i2⇡kt/T

(4)

c0 =a02

, cn =

an � ibn2

, c�n =

an + ibn2

ck =

1

2⇡

Z T/2

�T/2f(t)e�i2⇡kt/T , k = 0,±1,±2

1

Interpretação do espectro: Frequência

Coseno,10ciclosexactos,T=10s,f=0.1Hz# -*- coding: utf-8 -*-"""Created on Sat Feb 18 02:10:48 2017

@author: susana"""

N=100.; T=10.; dt=1.t=np.arange(0.,N,dt)f=np.cos(2*pi * t/T)

tf=TFD(f)

plt.close(); plt.subplot(3,1,1); plt.plot(t, f)plt.title('Function f'); plt.grid();

plt.subplot(3,1,2); plt.plot(np.arange(0,N), np.real(tf))plt.title('Real(TFD)'); plt.grid();

plt.subplot(3,1,3); plt.plot(np.arange(0,N), np.imag(tf))plt.title('Imag(TFD)'); plt.grid();

1

fout=np.concatenate([tf[N/2:], tf[:N/2]])fNyq=1/(2*dt); df=1/(N*dt); freq=np.arange(-fNyq, fNyq,df)

plt.close(); plt.subplot(3,1,1); plt.plot(t, f)plt.title('Function f'); plt.grid();

plt.subplot(3,1,2); plt.plot(freq,np.real(fout))plt.title('Real(TFD)'); plt.grid();

plt.subplot(3,1,3); plt.plot(freq,np.imag(fout))plt.title('Imag(TFD)'); plt.grid();

1

Re-ordenando,obtém-seoespectrousual

Aulapassada

Filtro Digital

Input(sinaloriginal)

Output(sinalprocessado)Filtro

•  Filtrosanalógicos:ex:circuitoRLC.•  Filtroslinearesdigitais:•  Não recursivos: o output em cada instante é uma

combinaçãolineardoinputeminstantesanteriores(fácildeanalisarcomanálisedeFourier).

•  Recursivos:ooutputéumacombinaçãolineardoinputedooutputeminstantesanteriores.

Circuito RLC (Projecto 0)

Fontedetensão

Resistência

Bobina

Condensador

Circuito RLC

Resistência:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

2

VeIemfase,respostadependedeR.

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Componentes:

•  Correntealterna:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

2

Circuito RLC

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Componentes:

•  Correntealterna:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

2

Condensador:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

2

VeIdesfasados,VatrasadoemrelaçãoaI,respostadependedafrequência(1/ω,passa-alto).

Circuito RLC

Bobina:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

2

VeIdesfasados,VadiantadoemrelaçãoaI,respostadependedafrequência(ω,passa-baixo).

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Componentes:

•  Correntealterna:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

2

LeideKirchoffdasmalhas+tensãosinusoidal:Comotodososcomponentestêmumcomportamentolinear:

Circuito RLC — Em conjunto...

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Componenteslineares:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

V = VL + VC + VR

V = VL + VC + VR = V0 cos(!t)

IL = IC = IR = I

2

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

V = VL + VC + VR

V = VL + VC + VR = V0 cos(!t)

IL = IC = IR = I

I = I0 cos(!t+ �)

2

Circuito RLC — UVlizando a álgebra complexa

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Componenteslineares:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

V = VL + VC + VR

V = VL + VC + VR = V0 cos(!t)

IL = IC = IR = I

I = I0 cos(!t+ �)

⇢V = V0 cos(!t) = Re(V0ei!t)I = I0 cos(!t+ �) = Re(I0ei(!t+�)

)

(9)

2

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

VR = RI = RI0ei(!t+�)

VC =

1

C

ZIdt =

1

C

ZI0e

i(!t+�)dt =I0C

1

i!ei(!t+�)

= � i

!CI0e

i(!t+�)

VL = LdI

dt= L

d

dt(I0e

i(!t+�)) = Li!I0e

i(!t+�))

8<

:

VR = RI = RI0ei(!t+�)

VC =

1C

RIdt = 1

C

RI0ei(!t+�)dt = I0

C1i!e

i(!t+�)= � i

!C I0ei(!t+�)

VL = LdIdt = L d

dt(I0ei(!t+�)

) = Li!I0ei(!t+�))

(10)

3

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

DiferenciaçãonodomíniodotempocorrespondeamulAplicar

porωnodomínioespectral

Circuito RLC — UVlizando a álgebra complexa

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Componenteslineares:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

V = VL + VC + VR

V = VL + VC + VR = V0 cos(!t)

IL = IC = IR = I

I = I0 cos(!t+ �)

⇢V = V0 cos(!t) = Re(V0ei!t)I = I0 cos(!t+ �) = Re(I0ei(!t+�)

)

(9)

2

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

VR = RI = RI0ei(!t+�)

VC =

1

C

ZIdt =

1

C

ZI0e

i(!t+�)dt =I0C

1

i!ei(!t+�)

= � i

!CI0e

i(!t+�)

VL = LdI

dt= L

d

dt(I0e

i(!t+�)) = Li!I0e

i(!t+�))

8<

:

VR = RI = RI0ei(!t+�)

VC =

1C

RIdt = 1

C

RI0ei(!t+�)dt = I0

C1i!e

i(!t+�)= � i

!C I0ei(!t+�)

VL = LdIdt = L d

dt(I0ei(!t+�)

) = Li!I0ei(!t+�))

(10)

3

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

Integraçãonodomíniodotempocorrespondeadividirporωno

domínioespectral

Circuito RLC — UVlizando a álgebra complexa

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Componenteslineares:

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

V = VL + VC + VR

V = VL + VC + VR = V0 cos(!t)

IL = IC = IR = I

I = I0 cos(!t+ �)

⇢V = V0 cos(!t) = Re(V0ei!t)I = I0 cos(!t+ �) = Re(I0ei(!t+�)

)

(9)

2

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

VR = RI = RI0ei(!t+�)

VC =

1

C

ZIdt =

1

C

ZI0e

i(!t+�)dt =I0C

1

i!ei(!t+�)

= � i

!CI0e

i(!t+�)

VL = LdI

dt= L

d

dt(I0e

i(!t+�)) = Li!I0e

i(!t+�))

8<

:

VR = RI = RI0ei(!t+�)

VC =

1C

RIdt = 1

C

RI0ei(!t+�)dt = I0

C1i!e

i(!t+�)= � i

!C I0ei(!t+�)

VL = LdIdt = L d

dt(I0ei(!t+�)

) = Li!I0ei(!t+�))

(10)

3

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

•  Linearidadeinput-output•  Desfasamento•  Respostadependedafrequência

Circuito RLC — Em conjunto...

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

V = VL + VC + VR

V = VL + VC + VR = V0 cos(!t)

IL = IC = IR = I

2

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

VR = RI = RI0ei(!t+�)

VC =

1

C

ZIdt =

1

C

ZI0e

i(!t+�)dt =I0C

1

i!ei(!t+�)

= � i

!CI0e

i(!t+�)

VL = LdI

dt= L

d

dt(I0e

i(!t+�)) = Li!I0e

i(!t+�))

8<

:

VR = RI = RI0ei(!t+�)

VC =

1C

RIdt = 1

C

RI0ei(!t+�)dt = I0

C1i!e

i(!t+�)= � i

!C I0ei(!t+�)

VL = LdIdt = L d

dt(I0ei(!t+�)

) = Li!I0ei(!t+�))

(10)

V = V0ei!t

=

R� i

!C+ i!L

�I0e

i(!t+�)

3

ImpedânciacomplexaZ(respostaemamplitudeefase)

Circuito RLC — Em conjunto...

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

V = V0 cos(!t)

I = I0 sin(!t)

VR = RI

= RI0 sin(!t)(6)

VC =

1

C

ZIdt

=

1

C

ZI0 sin(!t)dt

=

1

C

I0!(� cos(!t))

(7)

VL = LdI

dt

= Ld

dtI0 sin(!t)

= LI0! cos(!t)

(8)

V = VL + VC + VR

V = VL + VC + VR = V0 cos(!t)

IL = IC = IR = I

2

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

VR = RI = RI0ei(!t+�)

VC =

1

C

ZIdt =

1

C

ZI0e

i(!t+�)dt =I0C

1

i!ei(!t+�)

= � i

!CI0e

i(!t+�)

VL = LdI

dt= L

d

dt(I0e

i(!t+�)) = Li!I0e

i(!t+�))

8<

:

VR = RI = RI0ei(!t+�)

VC =

1C

RIdt = 1

C

RI0ei(!t+�)dt = I0

C1i!e

i(!t+�)= � i

!C I0ei(!t+�)

VL = LdIdt = L d

dt(I0ei(!t+�)

) = Li!I0ei(!t+�))

(10)

V = V0ei!t

=

R� i

!C+ i!L

�I0e

i(!t+�)

3

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

VR = RI = RI0ei(!t+�)

VC =

1

C

ZIdt =

1

C

ZI0e

i(!t+�)dt =I0C

1

i!ei(!t+�)

= � i

!CI0e

i(!t+�)

VL = LdI

dt= L

d

dt(I0e

i(!t+�)) = Li!I0e

i(!t+�))

8<

:

VR = RI = RI0ei(!t+�)

VC =

1C

RIdt = 1

C

RI0ei(!t+�)dt = I0

C1i!e

i(!t+�)= � i

!C I0ei(!t+�)

VL = LdIdt = L d

dt(I0ei(!t+�)

) = Li!I0ei(!t+�))

(10)

V = V0ei!t

=

R� i

!C+ i!L

�I0e

i(!t+�)

V0 =

R� i

!C+ i!L

�I0e

i� , V0

R� i!C + i!L

= I0ei�

3

f(t) =1X

k=�1cke

i2⇡kt/T

fNyquist =1

2�t

ck =

N�1X

t=0

f(tn)e�i2⇡tnk/N

f(tn) =1

N

N�1X

k=0

ckei2⇡tnk/N

ck = c⇤�k

8<

:

VR = RIVC =

1C

RIdt

VL = LdIdt

(5)

2

Aequaçãodiferencialpoderesolver-secomo(maissimples)umaequaçãoaritméAca

Circuito RLC — Exemplo

F (f) =

Z 1

�1f(t)e�i2⇡ftdt

f(t) =

Z 1

�1F (f)ei2⇡ftdf

VR = RI = RI0ei(!t+�)

VC =

1

C

ZIdt =

1

C

ZI0e

i(!t+�)dt =I0C

1

i!ei(!t+�)

= � i

!CI0e

i(!t+�)

VL = LdI

dt= L

d

dt(I0e

i(!t+�)) = Li!I0e

i(!t+�))

8<

:

VR = RI = RI0ei(!t+�)

VC =

1C

RIdt = 1

C

RI0ei(!t+�)dt = I0

C1i!e

i(!t+�)= � i

!C I0ei(!t+�)

VL = LdIdt = L d

dt(I0ei(!t+�)

) = Li!I0ei(!t+�))

(10)

V = V0ei!t

=

R� i

!C+ i!L

�I0e

i(!t+�)

V0 =

R� i

!C+ i!L

�I0e

i� , V0

R� i!C + i!L

= I0ei�

3

# -*- coding: utf-8 -*-"""Created on Thu Feb 3 15:58:50 2017

@author: susana"""

############ Módulos e definições

from __future__ import print_function # Facilita a função print: print("Hello")import numpy as np # Importar NumPy - funções numéricasimport matplotlib.pyplot as plt # Importar MatplotLib - gráficosfrom numpy import pi as pi

plt.rcParams['figure.figsize'] = 6, 8

#%% Circuito RLC# Cálculo da relação Tensão-Corrente (amplitude e fase)

# Parâmetros:R=1000. # Resistência, ohmL=1.0e-2 # Impedância da Bobine, HC=1.0e-6 # Capacidade do condensador, FV0=1.0 # Amplitude do potencial aplicado, V

#%% Cálculo:

omega = 2*pi* np.arange(10., 1.e6, 10.) # Vector de frequências angulares

Z = R - 1j/(omega*C) + 1j*omega*L ; # Impedância do circuito

I=V0/Z # Corrente

phi=np.angle(I) # Diferença de faseI0=np.abs(I)

# Gráficos:plt.subplot(2,1,1)plt.semilogx(omega,I0)plt.title('Circuito RLC')plt.ylabel('Amplitude (I0)')plt.autoscale(enable=True, axis='x', tight=True)plt.grid()

plt.subplot(2,1,2)plt.semilogx(omega,phi/pi)plt.xlabel('Frequencia Angular (omega)')plt.ylabel('Fase (phi/pi)')

1

Atenuação

Desfasamento

Circuito RLC — Exemplo

Input

Output

•  Linearidadeinput-output:Inputeoutputsãosenosdeiguaisfrequências.•  Desfasamento:Ooutputestáligeiramenteatrasadoemrelaçãoaoinput.•  Atenuação:Ooutputtemmenoramplitudequeoinput.

Circuito RLC — Variando L e C

Filtropassa-bandaFiltropassa-baixo Filtropassa-alto