25
Model reduction of large- scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue University, Rice University, Florida State University, Université catholique de Louvain NSF ITR: Model Reduction of Dynamical Systems for Real Time Control June 7, 2004 ICCS’2004, Krakow, Poland

Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Embed Size (px)

Citation preview

Page 1: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Model reduction of large-scaledynamical (mechanical) systems

A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh

Purdue University, Rice University, Florida State University, Université catholique de Louvain

NSF ITR: Model Reduction of Dynamical Systems for Real Time Control

June 7, 2004ICCS’2004, Krakow, Poland

Page 2: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Research goals or wishful thinking ?

Modeling of mechanical structures

Identification/calibration (cheap sensors)

Simulation/validation (prognosis)

Model reduction

Control (earthquakes, car industry, large flexible structures)

Page 3: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Passive / Semi-Active Fluid Dampers

Passive fluid dampers contain bearings and oil absorbing seismic energy. Semi-active dampers work with variable orifice damping.

(Picture courtesy Steven Williams)

Page 4: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Active Mass Damper

Active Mass Damping via control of displacement, velocity or acceleration of a mass (here by a turn-screw actuator).

Eigenvalue analysis showed dominant transversal mode (0.97 Hz) and torsional mode (1.13Hz). A two-mass active damper damps these modes.

(Picture courtesy Bologna Fiere)

Page 5: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

The Future: Fine-Grained Semi-Active Control.

Dampers are based on Magneto-Rheological fluids with viscosity that changes in milliseconds, when exposed to a magnetic field.

New sensing and networking technology allows to do fine-grained real-time control of structures subjected to winds, earthquakes or hazards.

(Pictures courtesy Lord Corp.)

Page 6: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

This technology starts to be applied…

Dongting Lake Bridge has now MR dampers to control wind-induced vibration

(Pictures courtesy of Prof. Y. L. Xu, Hong Kong Poly.)

Page 7: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Second order system models

Page 8: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Reduced order model

Page 9: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Start by simplifying the model …

Simplify by

keeping only concrete

substructure

Page 10: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

and then reduce the state dimension …

i.e. reduce the number of equations describing the “state” of the system

26400 2nd order eqs

20 2nd order eqs

Page 11: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

State space model reduction

Page 12: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Gramians yield good approximation

Page 13: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Interpolate with rational Krylov spaces

Page 14: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Apply this to 2nd order

Page 15: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Single clamped beam example

Page 16: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Interpolation of large scale systems

Page 17: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Error depends on neglected eigenvalues

Hankel singular values dropquickly by a factor >1000 :

Frequency response errorshows same error order

Page 18: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Structural simulation: case study

Simulate the effects of crashing fluid into reinforced concrete

Model the columns to reproduce the behavior of spirally reinforced columns including the difference in material response of the concrete within and outside the spiral reinforcement.

Fluid modeled by filling of elements in a (moving) grid

IBM Regatta Power4 platform with 8 processors

Model size: 1.2M elements

Run time: 20 hours

Page 19: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Column Model

Page 20: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue
Page 21: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue
Page 22: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Control = interconnected systems

Page 23: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Control = interconnected systems

Page 24: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Interconnected systems ~ 2nd order systems

Page 25: Model reduction of large-scale dynamical (mechanical) systems A. Antoulas, D. Sorensen, K. Gallivan, P. Van Dooren, A. Grama, C. Hoffmann, A. Sameh Purdue

Conclusions

Work progress on several fronts

Acquisition of high-rise structural models (Purdue)

Developing novel model reduction techniques and application on the above acquired full models (RICE, FSU, UCL)

Development of sparse matrix parallel algorithms needed for model reduction and simulation (Purdue)

Control via interconnected systems (RICE, FSU, UCL)

Time-varying MOR for calibration/adaptation (RICE, FSU, UCL)