22
MODEL PREDIKSI RADIASI MATAHARI WILAYAH INDONESIA DENGAN MENGGUNAKAN MODEL ANFIS DAN APLIKASINYA TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung Oleh YUSUF SURYO UTOMO NIM : 22406001 Program Studi Sains Kebumian INSTITUT TEKNOLOGI BANDUNG 2009

MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

Embed Size (px)

Citation preview

Page 1: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

MODEL PREDIKSI RADIASI MATAHARI WILAYAH

INDONESIA DENGAN MENGGUNAKAN MODEL ANFIS

DAN APLIKASINYA

TESIS Karya tulis sebagai salah satu syarat

untuk memperoleh gelar Magister dari Institut Teknologi Bandung

Oleh

YUSUF SURYO UTOMO

NIM : 22406001

Program Studi Sains Kebumian

INSTITUT TEKNOLOGI BANDUNG

2009

Page 2: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

MODEL PREDIKSI RADIASI MATAHARI WILAYAH

INDONESIA DENGAN MENGGUNAKAN MODEL ANFIS

DAN APLIKASINYA

Oleh

YUSUF SURYO UTOMO

NIM : 22406001

Program Studi Sains Kebumian

Institut Teknologi Bandung

Menyetujui

Tanggal 3 Maret 2009

Pembimbing I Pembimbing II

Prof. Dr. Bayong Tjasyono H.K., DEA Prof. The Houw Liong, Ph.D

Page 3: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

i

ABSTRAK

MODEL PREDIKSI RADIASI MATAHARI WILAYAH INDONESIA DENGAN MENGGUNAKAN MODEL ANFIS

DAN APLIKASINYA

Oleh

Yusuf Suryo Utomo

NIM : 22406001

Analisis korelasi menunjukkan bahwa terdapat korelasi yang kuat antara konstanta matahari dengan aktivitas matahari dan fluks sinar kosmik. Terdapat korelasi yang lebih tinggi (tetapi dengan tanda yang berlawanan) antara variasi konstanta matahari dan variasi bilangan sunspot daripada variasi konstanta matahari dan variasi fluks sinar kosmik. Terjadi korelasi positif antara konstanta matahari dan bilangan sunspot, dengan koefisien korelasi 0,89 dan 0,96 masing-masing untuk data bulanan dan tahunan. Sebaliknya terjadi korelasi negatif antara konstanta matahari dan fluks sinar kosmik, yaitu –0,65 (bulanan) dan –0,69 (tahunan). Korelasi negatif terjadi pula antara aktivitas matahari dan fluks sinar kosmik, yaitu –0,73 (bulanan) dan –0,77 (tahunan). Saat aktivitas matahari mengalami penurunan hingga kondisi minima terjadi peningkatan liputan awan akibat meningkatnya ion-ion sekunder yang dihasilkan oleh sinar kosmik. Meningkatnya liputan awan tersebut mengakibatkan menurunnya nilai konstanta matahari dan jumlah radiasi matahari yang mencapai permukaan bumi. Prediksi radiasi matahari bulanan dilakukan pada 14 lokasi di Indonesia dengan menggunakan model Adaptive Neuro-Fuzzy Inferrence System (ANFIS). Data pengukuran lama penyinaran matahari dan radiasi matahari bulanan periode tahun 1994 - 2003 digunakan sebagai input data. Secara umum, prediksi dengan model ANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata Root Mean Square Error (RMSE) relatif rendah. Panjang waktu prediksi bervariasi antara 3 hingga 9 bulan bergantung pada karakteristik dan panjang data dengan kesalahan hasil prediksi kurang dari 10%. Hasil prediksi kemudian divalidasi mengunakan data lapangan dan data satelit dari situs NASA SSE dengan kesalahan hasil validasi kurang dari 10%. Selanjutnya untuk tujuan aplikasi, keluaran ANFIS digunakan dalam perancangan sistem pemompaan air dengan photovoltaic (PV) menggunakan metode Lost of Energy Probability (LOEP). Metode tersebut dapat menghitung ukuran sistem berupa luas dan jumlah modul PV serta kapasitas baterai yang diperlukan oleh sistem. Ditemukan 4 lokasi yang cocok untuk sistem tersebut yaitu, Makassar, Pontianak, Padang dan Bengkulu karena komponen radiasi langsungnya lebih tinggi daripada komponen radiasi baur. Kata kunci : bilangan sunspot, ANFIS, lama penyinaran matahari, radiasi

matahari, sinar kosmik, LOEP.

Page 4: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

ii

ABSTRACT

SOLAR RADIATION PREDICTION MODEL FOR

INDONESIA REGION USING ANFIS MODEL AND ITS

APPLICATION

Yusuf Suryo Utomo

NIM : 22406001

Correlation analysis shows a strong correlation between solar activity and cosmic ray flux and solar constant. A higher correlations (but with opposite sign) are found between solar constant variations and sunspot number variations than between variations in cosmic ray flux and solar constant. It was found a positive correlation between solar constant and sunspot number, with correlation coefficient about 0.89 and 0.96 for monthly and yearly data, respectively. In other hand, a negative correlation between solar constant and cosmic ray flux, i.e. –0.65 and –0.69. It was found a negative correlation also between solar activity and cosmic rays flux, i.e. –0.73 (monthly) and –0.77 (yearly). When solar activities decrease until minima condition, the cloud cover rate increase due to secondary ions produced by cosmic rays. The increasing of the cloud cover rate cause the decreasing of solar constant value and solar radiation on the earth surface. Monthly solar radiation prediction for 14 locations in Indonesian region using Adaptive Neuro-Fuzzy Inferrence System (ANFIS) model has been done. Sunshine duration and solar radiation measurement of period 1994 – 2003 are used as input data. Generally, prediction using ANFIS method give a good result with low Root Mean Square Error (RMSE) relatively. Prediction time-length varies of 3 to 9 months with error prediction less than 10%, depends on characteristic and data length. In addition, prediction result has been validated using ground data and satelite data from NASA SSE website with error validation less than 10%. In addition, the ANFIS outputs were used for designing a solar water pumping system by using Lost of Energy Probability (LOEP) method for application purpose. Using this method size of the system, i.e. area and number of PV module and battery capacity can be calculated. It was found 4 match locations for this system, i.e. Makassar, Pontianak, Padang and Bengkulu because of their higher dirrect radiation than diffuse radiation component. Keywords: sunspot number, ANFIS, sunshine duration, solar radiation, cosmic

ray, LOEP.

Page 5: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

iii

PEDOMAN PENGGUNAAN TESIS

Tesis S2 yang tidak dipublikasikan terdaftar dan tersedia di Perpustakaan Institut

Teknologi Bandung, dan terbuka untuk umum dengan ketentuan bahwa hak cipta

ada pada pengarang dengan mengikuti aturan HaKI yang berlaku di Institut

Teknologi Bandung. Referensi kepustakaan diperkenankan dicatat, tetapi

pengutipan atau peringkasan hanya dapat dilakukan seizin pengarang dan harus

disertai dengan kebiasaan ilmiah untuk menyebutkan sumbernya.

Memperbanyak atau menerbitkan sebagian atau seluruh tesis haruslah seizin

Direktur Program Pascasarjana, Institut Teknologi Bandung.

Tesis ini dapat dikutip sebagai :

Utomo, Y.S., 2009, Model Prediksi Radiasi Matahari Wilayah Indonesia dengan menggunakan Model ANFIS dan Aplikasinya, Tesis Magister, Program Studi Sains Kebumian, Fakultas Ilmu dan Teknologi Kebumian, Institut Teknologi Bandung.

Page 6: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

iv

Puji syukur kepada-Mu ya Allah

Atas ijin dan perkenan-Mu, segala sesuatu dapat terjadi

Kupersembahkan kepada :

Yang tersayang Dik Rus, Adhie dan Silvina

Bapak & Ibuku Karsono & Padmotiyoso

Bangsa dan Almamaterku

And to whom it may concern

Page 7: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

v

KATA PENGANTAR

Penulis panjatkan puji syukur kehadirat Allah SWT yang telah memberikan ijin-

Nya sehingga penulis dapat menyelesaikan pendidikan tahap Magister ini.

Tesis ini disusun dalam rangka memenuhi salah satu syarat kelulusan memperoleh

gelar Magister Sains Bidang Khusus Sains Atmosfer pada Program Studi Sains

Kebumian, Sekolah Pascasarjana, Institut Teknologi Bandung. Ide awal dan

pembahasan dalam tesis ini merupakan akumulasi dari seluruh proses kegiatan

perkuliahan di bangku kuliah dan didukung oleh akumulasi keterlibatan penulis

dalam kegiatan penelitian. Data yang digunakan dalam tesis ini sebagian besar

merupakan data lapangan hasil akuisisi para peneliti pada Pusat Penelitian Fisika

LIPI, Bandung. Harapan penulis, semoga tulisan ini bermanfaat bagi

perkembangan ilmu pengetahuan khususnya bidang radiasi matahari (solar

radiation).

Dalam menyelesaikan tesis ini penulis mendapat bantuan, masukan dan saran dari

berbagai pihak, untuk itu penulis menyampaikan ucapan terima kasih secara

khusus dan penghargaan yang tinggi kepada:

1. Prof. Dr. Bayong Tjasyono Hanggoro Kasih, DEA selaku Dosen Wali,

pembimbing I sekaligus Dosen Penguji dan Prof. The Houw Liong, Ph.D

selaku pembimbing II dan Dosen Penguji, atas segala saran, bimbingan

dan nasehatnya dalam penulisan tesis ini.

2. Seluruh Staf Pengajar S2 Program Studi Sains Kebumian FITB atas

bimbingan selama kuliah, juga kepada seluruh karyawan Program

Magister dan Doktor Sains Kebumian FITB yang senantiasa memberikan

pelayanan administrasi yang sangat baik kepada penulis.

3. Lembaga Ilmu Pengetahuan Indonesia yang telah memberikan kesempatan

dan dukungan finasial selama menempuh pendidikan S2 melalui Program

beasiswa pendidikan pascasarjana dalam negeri.

4. Kepala Pusat Penelitian Fisika, Kepala Bidang Fisika Industri dan

Lingkungan atas dukungan fasilitas penelitian dan seluruh karyawan PPF

LIPI atas kerjasama yang baik dan dukungan moralnya.

5. Pak Has atas saran dan diskusi yang sangat bermanfaat.

Page 8: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

vi

6. Rekan-rekan S2 Sains Kebumian khususnya Angkatan 2006 atas bantuan

moril dan diskusi-diskusinya selama menempuh pendidikan S2.

7. Dik Rus, Adhie, Silvina, Bapak Karsono dan Ibu Padmo atas segala jerih

payah, pengorbanan, kesabaran, dan ketulusannya serta membuat

segalanya menjadi mungkin.

Penulis berharap tesis ini dapat memberi manfaat dan dapat dijadikan sebagai

bahan masukan bagi siapa saja yang membacanya.

Bandung, 2 Maret 2009.

Penulis

Page 9: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

vii

DAFTAR ISI

ABSTRAK ..................................................................................................................... i

ABSTRACT .................................................................................................................. ii

PEDOMAN PENGGUNAAN TESIS ......................................................................... iii

KATA PENGANTAR .................................................................................................. v

DAFTAR ISI ............................................................................................................... vii

DAFTAR LAMPIRAN................................................................................................ ix

DAFTAR GAMBAR DAN ILUSTRASI .................................................................. xvi

DAFTAR TABEL .................................................................................................... xviii

DAFTAR SINGKATAN DAN LAMBANG ............................................................ xix

Bab I Pendahuluan .................................................................................................... 1

I.1 Latar Belakang ........................................................................................... 1

I.2 Maksud dan Tujuan Penelitian................................................................... 4

I.3 Ruang Lingkup dan Batasan Masalah........................................................ 5

I.4 Hipotesis ..................................................................................................... 5

I.5 Sistematika Pembahasan ............................................................................ 6

Bab II Tinjauan Pustaka ............................................................................................ 7

II.1 Aktivitas Matahari...................................................................................... 7

II.2 Konstanta Matahari .................................................................................... 8

II.3 Sinar Kosmik............................................................................................ 14

II.4 Korelasi Konstanta Matahari, Aktivitas Matahari dan Sinar Kosmik...... 15

II.5 Radiasi Matahari ...................................................................................... 16

II.6 Model Estimasi Radiasi Matahari ............................................................ 21

II.7 Photovoltaic (PV) .............................................. sebagai Sumber Energi 29

Bab III Data dan Metodologi .................................................................................. 32

III.1 Data .......................................................................................................... 32

III.2 Metodologi ............................................................................................... 35

Bab IV Hasil dan Analisis ....................................................................................... 48

IV.1 Analisis Variabilitas ................................................................................. 48

IV.2 Analisis Korelasi ...................................................................................... 49

IV.3 ................................ Hasil Pemodelan Radiasi Matahari dengan ANFIS . 61

Page 10: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

viii

IV.4 ............................ Hasil Prediksi Radiasi Matahari di Wilayah Indonesia 63

IV.5 ............................................ Aplikasi Hasil Pemodelan Radiasi Matahari 68

IV.6 ............................................................. Analisis Potensi Energi Matahari 70

Bab V Kesimpulan dan Saran ................................................................................. 73

V.1 Kesimpulan .............................................................................................. 73

V.2 Saran......................................................................................................... 74

DAFTAR PUSTAKA ................................................................................................ . 75

Page 11: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

ix

DAFTAR LAMPIRAN

Lampiran A Data LPM (Lama Penyinaran Matahari) dan radiasi matahari

bulanan…………………………………………………………. A-1

A.1. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Sampali-Medan tahun 1999 – 2002…………………………………….………... A-2

A.2. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Sicincin – Padang Pariaman tahun 1991 – 1998…………………………….. A-2

A.3. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Kenten – Palembang tahun 1995 – 1999………………..……………………… A-2

A.4. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Pulau Baai-Bengkulu tahun 1994 – 2002……………………………………….. A-2

A.5. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Darmaga – Bogor tahun 1993 – 2002………………………………..……… A-3

A.6. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Bandung tahun 1994 – 2002…..A-3

A.7. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Siliwangi – Semarang tahun 1994 – 2002……………………………………….. A-3

A.8. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Karangploso – Malang tahun 1994 – 2002……………………………………….. A-3

A.9. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Banjarbaru tahun 1995 – 2002……………………………………………… A-4

A.10. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Siantan – Pontianak tahun 1992 – 2001……………………………………….. A-4

A.11. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Kayuwatu – Manado tahun 1994 –1999…………………………………..……. A-4

A.12. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Panakkukang-Makassar tahun 1994 – 1997……………………………………….. A-4

A.13. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Selaparang – Mataram tahun 2001 – 2003……………………………………….. A-5

A.14. Data lama penyinaran matahari bulanan (kiri) dan radiasi matahari bulanan (kanan) Stasiun Lasiana – Kupang tahun 1994 – 2000……………………………..…..…….. A-5

Page 12: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

x

Lampiran B Grafik pembelajaran, hasil cek data dan prediksi radiasi matahari

bulanan dengan MODEL ANFIS beserta validasinya…….……..B-1

B.1.a. Data pembelajaran radiasi matahari Stasiun Sampali-Medan tahun 1999-2002……………..………………………........B-2

B.1.b. Hasil cek data radiasi matahari Stasiun Sampali-Medan.....B-2 B.1.c. Data pembelajaran radiasi matahari Stasiun Sampali-Medan

tahun 1999-2002 dan prediksi 9 bulan ke depan (atas), serta error/kesalahannya (bawah)……………………..……...…B-3

B.1.d. Hasil prediksi 9 bulan ke depan radiasi matahari Sampali- Medan (atas) dan error/kesalahannya (bawah)…………...B-3

B.1.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Sampali-Medan (atas) dan error/kesalahannya (bawah)…………………………………………………....B-4

B.1.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)…………….B-4

B.2.a. Data pembelajaran radiasi matahari Stasiun Sicincin – Padang Pariaman tahun 1991 – 1998………………………...…....B-5

B.2.b. Hasil cek data radiasi matahari Stasiun Sicincin - Padang Pariaman……………………………………………..…....B-5

B.2.c. Data pembelajaran radiasi matahari Stasiun Sicincin – Padang Pariaman tahun 1991 – 1998 dan prediksi 6 bulan ke depan (atas), serta error/kesalahannya (bawah)……………….....B-6

B.2.d. Hasil prediksi 6 bulan ke depan radiasi matahari Sicincin – Padang Pariaman (atas) dan error/kesalahannya (bawah)..B-6

B.2.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Sicincin – Padang Pariaman (atas) dan error/ kesalahannya (bawah)……………………………….….....B-7

B.2.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)……………..B-7

B.3.a. Data pembelajaran radiasi matahari Stasiun Kenten – Palembang tahun 1991 – 1998………………………….....B-8

B.3.b. Hasil cek data radiasi matahari Stasiun Kenten-Palembang …………………………………………………………..... B-8

B.3.c. Data pembelajaran radiasi matahari Stasiun Kenten – Palembang tahun 1991 – 1998 dan prediksi 6 bulan ke depan (atas), serta error/kesalahannya (bawah)………………..... B-9

B.3.d. Hasil prediksi 6 bulan ke depan radiasi matahari Kenten – Palembang (atas) dan error/kesalahannya (bawah)…........ B-9

B.3.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Kenten – Palembang (atas) dan error/kesalahannya (bawah)………………………………B-10

B.3.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)……..…...... B-10

B.4.a. Data pembelajaran radiasi matahari Stasiun Pulau Baai – Bengkulu tahun 1994 – 2002……………………………. B-11

B.4.b. Hasil cek data radiasi matahari Stasiun Pulau Baai – Bengkulu…………………………………..…………….. B-11

Page 13: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xi

B.4.c. Data pembelajaran radiasi matahari Stasiun Pulau Baai – Bengkulu tahun 1994 – 2002 dan prediksi 9 bulan ke depan (atas), serta error/kesalahannya (bawah)………………….. B-12

B.4.d. Hasil prediksi 9 bulan ke depan radiasi matahari Pulau Baai – Bengkulu (atas) dan error/kesalahannya (bawah)…..…..... B-12

B.4.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Pulau Baai – Bengkulu (atas) dan kesalahannya (bawah)………………………………………….…............ B-13

B.4.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)…….............. B-13

B.5.a. Data pembelajaran radiasi matahari Stasiun Darmaga – Bogor tahun 1993 – 2001………………………………….……... B-14

B.5.b. Hasil cek data radiasi matahari Stasiun Darmaga – Bogor.. B-14 B.5.c. Data pembelajaran radiasi matahari Stasiun Darmaga – Bogor

tahun 1993 – 2001 dan prediksi 7 bulan ke depan (atas), serta error/kesalahannya (bawah)………………………..…….... B-15

B.5.d. Hasil prediksi 7 bulan ke depan radiasi matahari Darmaga – Bogor (atas) dan error/kesalahannya (bawah)…………...... B-15

B.5.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Darmaga – Bogor (atas) dan error/kesalahannya (bawah)…………………………………………………….. B-16

B.5.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)…………….... B-16

B.6.a. Data pembelajaran radiasi matahari Bandung tahun 1994-2002………………………………………….............. B-17

B.6.b. Hasil cek data radiasi matahari Bandung………………...... B-17 B.6.c. Data pembelajaran radiasi matahari Bandung tahun 1994-2002

dan prediksi 6 bulan ke depan (atas), serta error/kesalahannya (bawah)…………………………………………………….. B-18

B.6.d. Hasil prediksi 6 bulan ke depan radiasi matahari Bandung (atas) dan error/kesalahannya (bawah)…………………….. B-18

B.6.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Bandung (atas) dan error/kesalahannya (bawah)………….. B-19

B.6.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)……………... B-19

B.7.a. Data pembelajaran radiasi matahari Stasiun Siliwangi – Semarang tahun 1994 – 2000…………………………….... B-20

B.7.b. Hasil cek data radiasi matahari Stasiun Siliwangi – Semarang……………………………………………........... B-20

B.7.c. Data pembelajaran radiasi matahari Stasiun Siliwangi – Semarang tahun 1994 – 2000 dan prediksi 4 bulan ke depan (atas), serta error/kesalahannya (bawah)…………..………. B-21

B.7.d. Hasil prediksi 4 bulan ke depan radiasi matahari Siliwangi – Semarang (atas) dan error/kesalahannya (bawah)…............ B-21

B.7.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Siliwangi – Semarang (atas) dan kesalahannya (bawah)…………………………………………..……….... B-22

Page 14: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xii

B.7.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)……..………. B-22

B.8.a. Data pembelajaran radiasi matahari Stasiun Karangploso – Malang tahun 1994 – 2002……………………………...… B-23

B.8.b. Hasil cek data radiasi matahari Stasiun Karangploso- Malang…………………………………………………..… B-23

B.8.c. Data pembelajaran radiasi matahari Stasiun Karangploso – Malang tahun 1994 – 2002 dan prediksi 6 bulan ke depan (atas), serta error/kesalahannya (bawah)…………..………. B-24

B.8.d. Hasil prediksi 6 bulan ke depan radiasi matahari Karangploso – Malang (atas) dan error/kesalahannya (bawah)…………... B-24

B.8.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Karangploso – Malang (atas) dan kesalahannya (bawah)……………………………………………...…….. B-25

B.8.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)……………... B-25

B.9.a. Data pembelajaran radiasi matahari Stasiun Banjarbaru tahun 1995 – 2002…………………………………………........... B-26

B.9.b. Hasil cek data radiasi matahari Banjarbaru………...…….... B-26 B.9.c. Data pembelajaran radiasi matahari Stasiun Banjarbaru

tahun 1995 – 2002 dan prediksi 4 bulan ke depan (atas), serta error/kesalahannya (bawah)………………..……….... B-27

B.9.d. Hasil prediksi 4 bulan ke depan radiasi matahari Banjarbaru (atas) dan error/kesalahannya (bawah)…………………….. B-27

B.9.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Banjarbaru (atas) dan error/kesalahannya (bawah).. B-28

B.9.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)………........... B-28

B.10.a. Data pembelajaran radiasi matahari Stasiun Siantan – Pontianak tahun 1992 – 2001…………………………..... B-29

B.10.b. Hasil cek data radiasi matahari Stasiun Siantan – Pontianak………………………………………………… B-29

B.10.c. Data pembelajaran radiasi matahari Stasiun Siantan – Pontianak tahun 1992 – 2001 dan prediksi 6 bulan ke depan (atas), serta error/kesalahannya (bawah)………….. B-30

B.10.d. Hasil prediksi 6 bulan ke depan radiasi matahari Pontianak (atas) dan error/kesalahannya (bawah)……….. B-30

B.10.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Siantan - Pontianak (atas) dan error/kesalahannya (bawah)……….……………….......................................... B-31

B.10.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)................… B-31

B.11.a. Data pembelajaran radiasi matahari Stasiun Kayuwatu – Manado tahun 1994 – 2000……………………………… B-32

B.11.b. Hasil cek data radiasi matahari Stasiun Kayuwatu- Manado………………………………………………...… B-32

Page 15: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xiii

B.11.c. Data pembelajaran radiasi matahari Stasiun Kayuwatu – Manado tahun 1994 – 2000 dan prediksi 9 bulan ke depan (atas), serta error/kesalahannya (bawah)…………………. B-33

B.11.d. Hasil prediksi 9 bulan ke depan radiasi matahari Kayuwatu – Manado (atas) dan error/kesalahannya (bawah)………..... B-33

B.11.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Kayuwatu-Manado (atas) dan error/kesalahannya (bawah)………………………............................................ B-34

B.11.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)……….…… B-34

B.12.a. Data pembelajaran radiasi matahari Stasiun Panakkukang – Makassar tahun 1991 – 1997……………………………... B-35

B.12.b. Hasil cek data radiasi matahari Stasiun Panakkukang – Makassar………………………………………………..… B-35

B.12.c. Data pembelajaran radiasi matahari Stasiun Panakkukang – Makassar tahun 1991 – 1997 dan prediksi 7 bulan ke depan (atas), serta error/kesalahannya (bawah)………….……… B-36

B.12.d. Hasil prediksi 7 bulan ke depan radiasi matahari Panakkukang – Makassar (atas) dan error/kesalahannya (bawah)………... B-36

B.12.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Panakkukang-Makassar (atas) dan kesalahannya (bawah)…………………………....…………………….... B-37

B.12.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)…..………… B-37

B.13.a. Data pembelajaran radiasi matahari Stasiun Selaparang – Mataram tahun 2001 – 2003………………………............ B-38

B.13.b. Hasil cek data radiasi matahari Stasiun Selaparang-Mataram…………………………………………………... B-38

B.13.c. Data pembelajaran radiasi matahari Stasiun Selaparang – Mataram tahun 2001 – 2003 dan prediksi 8 bulan ke depan (atas), serta error/kesalahannya (bawah)………….…….… B-39

B.13.d. Hasil prediksi 8 bulan ke depan radiasi matahari Selaparang – Mataram (atas) dan error/kesalahannya (bawah)…………. B-39

B.13.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Selaparang – Mataram (atas) dan kesalahannya (bawah)................................................................................. B-40

B.13.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan kesalahannya (bawah)............................... B-40

B.14.a. Data pembelajaran radiasi matahari Stasiun Lasiana – Kupang tahun 1994 – 2001……………………………………….... B-41

B.14.b. Hasil cek data radiasi matahari Stasiun Lasiana – Kupang.. B-41 B.14.c. Data pembelajaran radiasi matahari Stasiun Lasiana-Kupang

tahun 1994 – 2001 dan prediksi 3 bulan ke depan (atas), serta error/kesalahannya (bawah)………………..………... B-42

B.14.d. Hasil prediksi 3 bulan ke depan radiasi matahari Lasiana – Kupang (atas) dan error/kesalahannya (bawah)………….. B-42

Page 16: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xiv

B.14.e. Validasi hasil prediksi ANFIS menggunakan data pengukuran Stasiun Lasiana – Kupang (atas) dan error/kesalahannya (bawah)……………………………………………………. B-43

B.14.f. Validasi hasil prediksi ANFIS menggunakan data pengukuran satelit (atas) dan error/kesalahannya (bawah)………...…… B-43

Lampiran C Aplikasi model untuk perancangan solar water pumping menggunakan

metode LOEP (Lost of Energy Probability)……………………........ C-1

C.1.a Data Input perancangan solar water pumping untuk Sampali-Medan…………………………………………….... C-2

C.1.b Hasil perancangan solar water pumping untuk Sampali-Medan……………………………………..……….. C-2

C.2.a Data Input perancangan solar water pumping untuk Sicincin-Padang………………………………...…………… C-3

C.2.b Hasil perancangan solar water pumping untuk Sicincin-Padang……………………………………..………. C-3

C.3.a Data Input perancangan solar water pumping untuk Kenten-Palembang……………………..…..……..…………. C-4

C.3.b Hasil perancangan solar water pumping untuk Kenten- Palembang………………………………………..………...... C-4

C.4.a Data Input perancangan solar water pumping untuk Pulau Baai-Bengkulu………………….…………………….. C-5

C.4.b Hasil perancangan solar water pumping untuk Pulau Baai-Bengkulu……………………….…..…………... C-5

C.5.a Data Input perancangan solar water pumping untuk Darmaga-Bogor……………………………………………... C-6

C.5.b Hasil perancangan solar water pumping untuk Darmaga-Bogor....................................................................................... C-6

C.6.a Data Input perancangan solar water pumping untuk Bandung…………………………………………….............. C-7

C.6.b Hasil perancangan solar water pumping untuk Bandung.................................................................................. C-7

C.7.a Data Input perancangan solar water pumping untuk Semarang…………………………………………................. C-8

C.7.b Hasil perancangan solar water pumping untuk Semarang……………………………………………............. C-8

C.8.a Data Input perancangan solar water pumping untuk Karangploso-Malang…………………………...………....… C-9

C.8.b Hasil perancangan solar water pumping untuk Karangploso-Malang ……………………………..……....… C-9

C.9.a Data Input perancangan solar water pumping untuk Banjarbaru………………………………….……………… C-10

C.9.b Hasil perancangan solar water pumping untuk Banjarbaru…………………………………………..……... C-10

C.10.a Data Input perancangan solar water pumping untuk Siantan-Pontianak…………………………………............. C-11

Page 17: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xv

C.10.b Hasil perancangan solar water pumping untuk Siantan-Pontianak……………………………..………….. C-11

C.11.a Data Input perancangan solar water pumping untuk Kayuwatu-Manado……………………………….….......... C-12

C.11.b Hasil perancangan solar water pumping untuk Kayuwatu-Manado………………………..…………….... C-12

C.12.a Data Input perancangan solar water pumping untuk Makassar……………………………………………........... C-13

C.12.b Hasil perancangan solar water pumping untuk Makassar.............................................................................. C-13

C.13.a Data Input perancangan solar water pumping untuk Mataram……………………………………………..……. C-14

C.13.b Hasil perancangan solar water pumping untuk Mataram.............................................................................. C-14

C.14.a Data Input perancangan solar water pumping untuk Kupang…………………………………………..……...... C-15

C.14.b Hasil perancangan solar water pumping untuk Kupang………………………………………………….... C-15

Page 18: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xvi

DAFTAR GAMBAR DAN ILUSTRASI

Gambar II.1 Skema geometris hubungan matahari-bumi (sumber : Bayong, 2004) ... 9

Gambar II.2 Kurva distribusi spektral irradiasi matahari di luar atmosfer (m = 0)

dan radiasi di permukaan laut (m = 1) ), m adalah optical air mass

yang menggambarkan jumlah penyerapan radiasi matahari.

Penyerapan radiasi matahari di atmosfer didominasi oleh uap air,

karbon dioksida dan ozon (sumber : Robinson, 1966) .......................... 17

Gambar II.3 Spektrum gelombang elektromagnet: gelombang pendek (0,15 – 3,0)

µm terbagi menjadi 3 kelompok berdasarkan panjang gelombang,

yaitu: gelombang ultraviolet (< 0,4 µm), gelombang tampak (0,4 –

0,7) µm dan gelombang inframerah (> 0,7 µm)

(sumber : Lutgens dan Tarbuck, 1998) ................................................. 19

Gambar II.4 Sistem inferensi fuzzy model Sugeno orde satu dengan dua input

(sumber : Jang, 1997) ............................................................................ 24

Gambar II.5 Skema arsitektur ANFIS Sugeno orde satu dengan dua input

(sumber : Jang, 1997) ............................................................................ 26

Gambar II.6 Sistem inferensi fuzzy (sumber : Jang, 1993) ........................................ 28

Gambar III.1 Skema diagram alir penelitian………………………….……………...37

Gambar III.2 Skema diagram alir sistem inferensi fuzzy (ANFIS) ............................ 38

Gambar III.3 Arsitektur ANFIS Sugeno dengan 2 input (sumber : Jang, 1997) ....... 39

Gambar III.4 Skema diagram alir proses perancangan Solar Water Pumping

menggunakan metode LOEP…………………………….………….... 45

Gambar IV.1 Rata-rata bulanan konstanta matahari dan bilangan sunspot periode

tahun 1979 – 2003 ................................................................................. 51

Gambar IV.2 Rata-rata tahunan konstanta matahari dan bilangan sunspot periode

tahun 1979 – 2003 ................................................................................. 52

Gambar IV.3 Korelasi data rata-rata tahunan bilangan sunspot dan konstanta

matahari periode tahun 1979 – 2003 .................................................... 54

Gambar IV.4 Rata-rata bulanan konstanta matahari dan sinar kosmik periode

tahun 1979 – 2003 ................................................................................. 55

Page 19: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xvii

Gambar IV.5 Rata-rata tahunan konstanta matahari dan sinar kosmik periode

tahun1979 – 2003 ................................................................................ 57

Gambar IV.6 Korelasi data rata-rata tahunan konstanta matahari dan sinar

kosmik periode tahun1979 – 2003 ..................................................... 57

Gambar IV.7 Rata-rata bulanan bilangan sunspot dan sinar kosmik periode

tahun 1979 – 2003 .............................................................................. 58

Gambar IV.8 Rata-rata tahunan bilangan sunspot dan sinar kosmik periode

tahun 1979 – 2003 .............................................................................. 60

Gambar IV.9 Korelasi data rata-rata tahunan bilangan sunspot dan sinar kosmik

periode tahun 1979 – 2003 ................................................................. 61

Gambar IV.10 Panjang waktu hasil prediksi radiasi matahari dengan ANFIS ……...66

Gambar IV.11 Jumlah dan luas modul PV yang diperlukan sistem SWP untuk

masing-masing lokasi diurutkan berdasarkan kebutuhan modul PV

terkecil hingga terbesar………...…………….…...…….………...….70

Gambar IV.12 Evaluasi komponen radiasi baur (diffuse radiation) dan langsung

(direct radiation) di 14 lokasi yang ditinjau…………….…….....…...71

Page 20: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xviii

DAFTAR TABEL

Tabel II.1 Variasi konstanta matahari sepanjang tahun (Hoesin, 1980) .................... 11

Tabel II.2 Variasi konstanta matahari terhadap tempat pengukuran (Robinson,

1966) ......................................................................................................... 11

Tabel II.3 Hasil-hasil pengukuran konstanta matahari setelah diekstrapolasi

tahun 1923-1968 (Lake dan Drummond, 1968) ....................................... 12

Tabel II.4 Penentuan konstanta matahari menggunakan Eppley JPL tahun

1966-1968 (Lake dan Drummond, 1968) ………………………………..13

Tabel II.5 Hasil pengukuran konstanta matahari beberapa peneliti terdahulu

(Lake dan Drummond, 1968) ................................................................... 13

Tabel II.6 Nilai rata-rata, standar deviasi, nilai maksimum dan nilai minimum

konstanta matahari selama 71 hari pengamatan yang bersamaan

menggunakan empat satelit berbeda periode 1985 – 1989

(Sumber: Mecherikunnel, 1990) .............................................................. 14

Tabel II.7 Efisiensi sel surya berdasarkan bahan pembentuknya (Gray, 1996) ........ 30

Tabel III.1 Stasiun-stasiun BMKG yang melakukan pengukuran radiasi matahari

dan LPM secara simultan ......................................................................... 34

Tabel IV.1 Koefisien keragaman Cv

...................................................................................................

dan nilai rata-rata bulanan LPM dan radiasi

matahari 46

Tabel IV.2 Koefisien korelasi antara konstanta matahari dengan sinar kosmik dan

bilangan sunspot ....................................................................................... 48

Tabel IV.3 Rata-rata tahunan konstanta matahari dan bilangan sunspot ................... 53

Tabel IV.4 Hubungan RMSE hasil pembelajaran dan panjang data

pembelajaran….……………………………………………..........……..62

Tabel IV.5 Nilai rata-rata RMSE hasil cek data radiasi matahari ………….…….…63

Tabel IV.6 Nilai rata-rata RMSE hasil prediksi dengan ANFIS di 14 lokasi ……....64

Tabel IV.7 Panjang waktu hasil prediksi dengan model ANFIS untuk 14 lokasi…...65

Tabel IV.8 Kesalahan (error) hasil validasi data prediksi ANFIS terhadap data

lapangan dan satelit …………………………………….………..…...…67

Tabel IV.9 Hasil perancangan SWP untuk LOEP 10% di 14 lokasi yang ditinjau…69

Page 21: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xix

DAFTAR SINGKATAN DAN LAMBANG

SINGKATAN Kepanjangan dari Pemakaian pertama kali pada halaman ACRIM Active Cavity Radiometer Irradiance Monitor 14

ANFIS Adaptive Neuro-Fuzzy Inference Systems 3

FIS Fuzzy Inference Systems 28

BBU Belahan Bumi Utara 20

BBS Belahan Bumi Selatan 20

BMKG Badan Meteorologi, Klimatologi dan Geofisika 2

BT Bujur Timur 5

CME Coronal Mass Ejection 8

DOD Depth of Discharge 44

ERBS Earth Radiation Budget Satellite 14

IPS International Pyrheliometric Scale 10

IRC The International Radiation Commission 10

ISES International Solar Energy Society Conference 11

GCR Galactic Cosmic Rays 14

GSFC Goddard Space Flight Center 12

LOEP Lost of Energy Probability 41

LHS Lama Hari Siang 21

LPM Lama Penyinaran Matahari 5

LS Lintang Selatan 5

LU Lintang Utara 5

LWC Lama Waktu Cerah 20

MLPN Multi-Layer Percepton Network 3

NASA National Aeronautics and Space Administration 10

NOAA National Oceanic and Atmospheric Administration 14

PV Photovoltaic 2

RBFN Radial Basis Function Network 3

RMSE Root Mean Square Error 5

Page 22: MODEL PREDIKSI RADIASI MATAHARI WILAYAH · PDF fileANFIS memberikan hasil prediksi yang cukup baik dengan nilai rata-rata . Root ... berupa luas dan jumlah modul serta kapasitas baterai

xx

RNN Recurrent Neural Network 3

SMM Solar Maximum Mission 14

Stageof Stasiun Geofisika 34

Staklim Stasiun Klimatologi 34

Stamet Stasiun Meteorologi 34

SWP Solar Water Pumping 42

UV Ultraviolet 7

LAMBANG Nama Pemakaian pertama kali pada halaman

α Sudut ketinggian matahari

φ Lintang lokasi 22

22

δ Sudut deklinasi 22

µ Fungsi keanggotaan (membership function) 26

ω Sudut jam matahari 22

Cv Koefisien keragaman 35

Hg Intensitas radiasi matahari global 23

Ho Intensitas radiasi ekstraterrestrial 23

Io Intensitas radiasi yang dipancarkan sepanjang tahun 22

Isc Konstanta matahari (solar constant) 22

kT

Rasio intensitas radiasi matahari global terhadap

radiasi ekstraterrestrial 23

m Julian day 22

n Lama Penyinaran Matahari (sunshine duration) 23

N Panjang hari 23

r Koefisien korelasi 36