MKEP4 SS11 12 Gas Transfer

Embed Size (px)

Citation preview

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    1/21

    1

    Master Course „Environmental Physics“ (MKEP4)

    http://www.iup.uni-heidelberg.de/institut/studium/lehre/MKEP4/

    12. Gas and Heat Transfer

    between Air and Water 

    Summer Term 2011

    Werner Aeschbach-Hertig

    Institut für Umweltphysik

    Lecture Program of MKEP4

    Part 1: Introduction and Fundamentals (4 sessions)1. Introduction to Environmental Physics and the Earth System

    2. Global energy balance and structure of the atmosphere

    3. Stratification and convection in air and water 

    4. Trans ort rocesses

    Part 2: Geophysical Fluid Dynamics (7 sessions)5. Introduction to Geophysical Fluid Dynamics

    6. Navier-Stokes equation and geostrophic approximation

    7. Geostrophic Flow and Vorticity

    8. Turbulence

    9. Turbulent transport and flow near boundaries10. Global circulation of the atmosphere

    11. Global circulation of the ocean

    Part 3: Other Compartments and Fields (4 sessions)12. Gas and heat transfer between air and water 

    13. Freshwater systems

    14. Soil and Groundwater 15. The cryosphere

    2

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    2/21

    2

    Contents of Today's Lecture

    Gas and heat transfer between air and water 

    • Heat exchange

    Change of ocean heat content and temperature

    • Gas solubility (Henry's law)

    • Gas exchange: Stagnant laminar film model

    Transfer velocity: Dependence on diffusion, Schmidt-no., wind

    • Evaporation

    3

    Heat and Gas Exchange (Transfer)

    Wind-wave facility at IUP

    4

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    3/21

    3

    Processes at the Air/Water Interface

    http://www.whoi.edu/ooi_cgsn/page.do?pid=532785

    Processes of Heat Transfer 

    The total heat flux Q tot [W/m2] from water (ocean, lakes, etc.) into 

    the atmosphere (upward) can be divided into 5 contributions:

    net SW LWA LWW S LQ Q Q Q Q Q

    thermal radiation

    of  the atmosphereconvection

    sensible heat

    6

    (long wave, IR)

    thermal radiation

    of  the water

    (long wave, IR)

    evaporation

    (latent heat)

    solar radiation

    (short wave, VIS)

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    4/21

    4

    0SW SW SWQ 1 Q 1 0.65B

    Radiative Heat Fluxes

    Solar radiation (short wave):

    reflectivit of clear sk cloud cover

    Parameterisations  to estimate the radiative terms:

    4LWA LW A AQ 1 T

    17

     

    water in SW

     

    radiation

     

    fraction

    Long wave atmospheric radiation:

    reflectivity of  water

    (in LW (IR), ≈0.03)

    emissivity of 

    atmosphere

    Parameterisation 

     = 5.67∙10‐8 W m‐2 K‐4

    Stefan‐Boltzmann constant

    2 A

     A  A1.24 1 0.17BT

    4WLWW WQ T Long wave water radiation:

    of  emissivity A

    :

    emissivity of  water (≈ 0.97)

    water vapour

    pressure in air

    7

    Non-Radiative Heat Fluxes

    S air p S 10 W AQ c c u T T Convection:

    latent heat of  evap

    cL, cS ≈ 0.001: 

    bulk transfer coefficients 

    for vapor and heat, 

    stabilit   ‐de endent

    specific heat of  airwind 

    velocity

    transfer 

    coefficients

    L air e L 10 s W AQ L c u q T q Evaporation:

    specific humidity of  air

    saturation specific humidity at TW

    q = ρv / ρair= e / (RvTρair)

    Estimate of  latent flux:

    w

    E P Adt

    eL e w

    L dmQ L P

     A dt

    For P = 1 m/a: Q L = 71 W/m2

    8

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    5/21

    5

    Ocean – Atmosphere Heat Fluxes

    Q LW = Q LWA + Q LWW

    Marshall and Plumb, 2008 9

    Seasonal Heat Fluxes

    in a Lake

    • Long-wave terms

    (thermal radiation of air

    and water) are largest

    Q LWA

    Q SW

    contributions, but nearly

    cancel

    • Net effect in IR is a heatloss of the water 

    • Sensible heat flux is

    u wards heat loss of

    Q S

    Q L

    Q net

    water) most of the time,

    as usually TW > T A

    • Net flux: Upwards in

    winter, downwards in

    summer 

    Q LWW

    10

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    6/21

    6

     Annual Mean Net Upward Heat Flux

    Marshall and Plumb, 2008 11

    Change of the Ocean Heat Content

    Development of  heat content of  the upper ocean

    1955 to 2003

    Heat uptake of  different compartments between

    1955 and 1998  (in 1022 J)

    from Levitus et al., 2005, Geophys. Res. Lett. 32, doi:10.1029/2004GL021592

    These data are outdated due to recent corrections to ocean temperature data series  ‐ see next slide.

    12

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    7/21

    7

    Change of the Ocean Heat Content

    upper 700 m

    old

    Levitus et al., 2009. Geophys. Res. 

    Lett. 36: L07608, 

    doi:07610.01029/02008GL037155.

    new

    upper 700 m

    upper 100 m

    Domingues et al., 2008. Nature 453: 1090‐1093.

    SST

     

    http://www.nodc.noaa.gov/

    OC5/3M_HEAT_CONTENT/

    Trend  global heat gain: 4.0∙1021 J/a = 1.3∙1014 W

    AOcean = 3.6∙1014 m2

    Imbalance: 0.35 W/m213

    Imbalance of Global Radiation Budget

    Hansen et al., 2005.

    Science 308: 1431-1435.

    Net radiative forcing in

    2003 rel. to 1880:

    Partly compensated by

    warming of ~ 0.7 °C.

    Global energy imbalance

    in the year 2003:

    + 0.85 ± 0.15 W/m2

    + 1.80 ± 0.85 W/m2

    14

    Compare global energy

    consumption in 2008:

    4.7·1020 J/a = 1.5·1013 W

    = 15 TW = 0.03 W/m2

    (AEarth = 5.1∙1014 m2)

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    8/21

    8

    Temperature Response of the Ocean

    Simple box model (strictly applicable only to mixed surface layer):

    Change of  heat content Eth (resp. temperature T) of  a well mixed 

    water body of  volume V due to a heat flux Q  through the surface A

    Q A

    th w wdE V c dT Ah c dT

    thdE QAdt

    w Ah c dT QAdt

    V Th

    w

    dT 1 Q

    dt h c

    Eth

    Example: Q net = 0.35 W/m2, h = 100 m:  dT/dt = 0.026 K/a

    (Note: cw = 4.18∙106 J m‐3 K‐1;  1 a = 3.15∙107 s) 15

    Temperature Trends in the Ocean

    IPCC, 4th Assessment Report, 2007 16

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    9/21

    9

    Gases: Air/Water Solubility Equilibrium

    Equilibrium:

    different 

    concentrations

    equal fluxes!

    17

    Gas Solubility in Water: Henry's Law

    At equilibrium, the concentration cw of  a gas in solution is propor‐

    tional to its concentration cg (partial pressure p) in the gas phase:

    KH: Henry coefficient ("constant")g H wc K c

    If  both concentrations molar (mol/L): KH dimensionless = K'HIn practice, many concentration units occur (mol/kg, mg/L, cm3STP/g, ….)

    Conversion of  units for cw in mol/L and p in atm via the ideal gas law:

    gcn atm L pRT RTc K RT RTK

    H wp cor

    w wV mol c c

    KH is the inverse of  a solubility (large KH  little gas dissolved)→ (Ostwald) solubility: L = 1/K'H   (sometimes also defined as Henry const.)

    w

    g H

    c 1L

    c K

    w

    H

    c 1

    p K or

    18

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    10/21

    10

    Dependence of Solubi lity on T and S

    KH (or L) is specific for each gas i and depends on temperature and salinity of  the water:  ,   ,H H iK K T S

    Temperature  epen ence  o ows  rom Van t Ho   equat on: 

    H2

    d lnK H

    dT RT

      H: Enthalpy change for dissolution(H = U + pV) 

    Integrated with const. H:  H H 00

    H 1 1K T K T exp

    R T T

    Salinity dependence ("salting out") described by Setschenow 

    relation: 

    k: Setschenow or salting coefficient

    kSH HK T,S K T,0 e

    19

    Temperature Dependence of Solubil ities

    0.9

    1

    0.6

    0.7

    0.8

    He NeAr Kr 

        c     i     (

         T     )     /    c     i     (     0     °     C     )

         L     i     (

         T     )     /     L

         i     (     0              °     C     )

    0.4

    .

    0 5 10 15 20 25 30

    e

     N2

    O2

    T [°C]

    20

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    11/21

    11

    Salinity Dependence of Solubi lities

    0.95

    1

    He NeAr Kr 

    0.8

    0.85

    0.9

    Xe

     N2

    O2

        c     i     (

         S     )     /    c     i     (

         0     )

         L     i     (

         T  ,     S

         )     /     L     i     (

         T  ,     0

         )

    0.75

    0 5 10 15 20 25 30 35 40

    S [g/kg]

    21

     Atmospheric Equilibrium Concentrations

    The equilibrium (or air saturation) concentration cs,i is the dissolved 

    concentration of  gas i in equilibrium with moist (saturated) air:

    c e x   i: solubility of  gas i in water, ,s a m s

    cs depends on T, S and p:

    ,i atm s ip p e x

    ,   , , ,i eq i s ic T S p T S p e T x

    Atmospheric pressure p depends on altitude z: sz z

    0p z p e

    pi ,air: par a  pressure o  gas  n mo s   a r

    p: total atmospheric pressure

    es: saturation water vapour pressure

    xi: mixing ratio of  gas i in air

    ,   . /2 2 2s O O s Oc p e x 10 6mg l

    Examples O2, N2:

    altitude z = 400 m, p = 0.95 atm 

    S = 0, T = 10°C, es = 0.012 atm

    O2 = 53.7 mg l‐1 atm‐1, xO2 = 0.209 N2 = 23.1 mg l‐1 atm‐1, xN2 = 0.781   ,   . /2 2 2s N N s Nc p e x 17 1mg l

    22

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    12/21

    12

    Solubil ity and Equilibr ium of some Gases

    Solubilities i in pure water (S = 0) for various temperatures in g l‐1

    atm

    ‐1

    :

    ,  . /

    2s COc 1 3 mg lxCO2 = 3.9∙10‐4

    ,  . /

    2s Nc 22 8 mg l

    s,i  

    p = 1 atm, T = 0°C 

    xN2 = 0.781

    ,  . /

    2s Oc 14 4 mg lxO2 = 0.209

    ,   . /s Ar c 0 89 mg lxAr = 9.3∙10‐3

    23

    Equilibrium, Saturation, Oversaturation

    Equilibrium conc.: Equilibrium at local air pressure (water surface)

    Saturation conc. (absolute): Maximum dissolved conc. at in situ 

    pressure (incl. phyd) before bubbles are formed

    i toti p pOversaturation:

      , ,i H i W ip K c

    'tot 0p p gz   z': water depth

    Henry's law relates dissolved concentrations to partial pressures.

    I  t e sum o  a   part a  pressures excee s t e externa  pressure 

    (oversaturation), bubbles are formed and gas escapes.

    Typical example: Methane bubbles rising from lake sediments.

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    13/21

    13

    Gas Contents of some Volcanic Lakes

    Lake Monoun, Cameroon Lake Kivu, Kongo/Ruanda

    80 % Sat.

    Schmid et al., 2005, G3, doi:10.1029/2004GC000892Halbwachs et al., 2004, Eos 85 (30): 281

    Lake Nyos, Cameroon: Artificial Degassing of  a Lake

    Principle

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    14/21

    14

    Lake Nyos, Cameroon: Artificial Degassing of  a Lake

    Halbwachs et al., 2004, Eos 85 (30): 281

    Gas Transfer: Molecular Boundary Layer 

    Free atmosphere or open water:  Efficient transport by turbulence

    Near the boundary: Molecular‐viscous boundary layer

    • laminar flow, no turbulence

    • Transport only by molecular diffusion: "Resistance"

    For heat and most gases, the water‐side boundary layer dominates 

    (most strongly restricts exchange): One‐layer model

    Flux of  gas i by molecular diffusion in water boundary layer:

    ii i

    dc j D

    dz   Di: molecular diffusion constant of  gas i in water

    ci: concentration of  gas i in water

    In steady state,  j must be constant, thus dc/dz = constant 

    (linear concentration profile)28

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    15/21

    15

    “ Stagnant Film” Model

    z turbulent

    cg, p

    Air

    Water

    s g Hc p c K sc

    molecular

    C

    c

    turbulent

    29

    Transfer Velocity in the Film-Model

    For gases with low solubility, the main transport resistance is on the 

    water side: 1‐Film model, water‐side control

    Flux in the laminar film is determined by molecular diffusion

    Dk 

    S Sc cdc j D D k c cdz

    Transfer coefficient:

    (D: Diffusion coefficient in water)

    2L T L

    kL T

    Dependence of  k on D: k D

    Model parameter: Film thickness , which depends on strength of  turbulence, e.g. expressed by friction velocity u* (related to u10)

    k = transfer/exchange 

    velocity, piston velocity

    30

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    16/21

    16

    Friction Velocities in Air and Water 

    Friction velocity:

    z u

    2 2

    10 D *u c u

    2

    * x zu v v Wind velocity:

    air 

    water 

    u(z)

    2xz W *w0 u

    2 2xz air D 10 air *0 c u u

    x

    Shear stress continuous at z = 0 (conservation of momentum), thus:

    31

    air *w *air  

    w

    u u

    Measure of turbulence in the water,

    dependent on wind velocity

    Wind Veloci ty and Film Thickness

    Typical exchange velocities k for some gases and correspon-

    ding film thicknesses w for different wind velocities u10.

    gas exchange velocity k (m d-1)

    Molecular diffusion coefficient D

    at 25 °C (m2

    s-1

    )

    Film thickness decreases with increasing wind speed.

    Typical values are on the order of 100 m32

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    17/21

    17

    Dependence of k on D: Schmidt Number 

    The stagnant film model is the simplest gas exchange model. More 

    complex models show different dependences of  k on D:

    n

    To compare exchange of  heat, momentum, and gases, the transfer 

    velocity is often parameterised by the so called Schmidt number:

    Schmidt number: ScD

    nk Sc with 1 2 n 1 Thus we get:

    Measurements of  k are often normalised to Sc = 600 (CO2 at 20°C) 

    33

    Transfer Velocity in Different Regimes

    nk Sc

    1 2 n 1

    smooth surface:

    n = 2/3 (or n = 1)

    rough surface:

    Liss and Merlivat, 1986

    n = 1/2

    34

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    18/21

    18

    Transfer Velocity and Wind Speed

    Dependence of 

     k on

     

    wind speed

     

    wind speed, but how 

    exactly?

    Frequently used 

    parametrisation:

    2

    10k u

    Lab measurements

    with fit curves

    normalised to Sc = 600

    35

    Transfer Velocity and Wind Speed

    Wanninkhof  and Bliven 1991

    Liss and Merlivat 1984

    36

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    19/21

    19

    Transfer Velocity and Wind Speed

    Various models

    37

    Ocean – Atmosphere CO2 Flux

    Based on 940.000 pCO2 measurements, assuming k  u2. Balance: ‐ 1.6 ± 1 GtC/a. IPCC AR4, 2007  38

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    20/21

    20

    Importance for CO2-Budget

    39

    Gas Exchange for Vapour: Evaporation

    Water vapour saturation pressure as Henry‐equilibrium:

    2H O s H wp e K c   .

    -1

    w -1

    1000 g L molc 55 55

    M 18 g mol L

    Vapour pressure p and "Henry coefficient" of water for different temperatures

    o concen ra on gra en  n wa er:  vapora on  s con ro e   y a r‐s e  m. 

    Sensible heat flux:  Also air‐side controlled, flux given by th w j k c T

    40

  • 8/18/2019 MKEP4 SS11 12 Gas Transfer

    21/21

    Evaporation and Wind Speed

    41

    Summary

    • Air/water heat transfer 

     – Radiative terms dominate, SW downward, IR terms nearly cancel

     – Latent and sensible heat flux: upward, analogous to gas transfer 

     – Eva oration: Gas exchan e for water va our air-side controlled 

    • Solubility equilibrium for gases in water 

     – Henry's Law: Concentrations in both phases proportional

     – Equilibrium concentration in water: cs(T,S,p)

    • Air/water gas exchange

     – Laminar boundary layer (usually water-side) transport resistance

     – - =  ,

     – Schmidt number parameterisation: k Sc-n, ½ < n < 1

    • Transfer velocity and wind speed

     – strong but not exactly known relationship (e.g. k u2)

     – important for correct estimation of ocean CO2 uptake

    42