28
.. . 5“ ‘“ I :E f.- l., “J .“. ---- . -“A!isb%==+@ ,, ”.. i ““’F##.Fz:1935 y ‘“”” ,-.= ...... . ~. ,.. - e“.RJ[.F.~?”L . . 4== .“ : ““.:=-... .---.,..2.= m :~~j~ ~q35 *. .-. =.-. ...- -. -. .- .... ---- ----- .1—, . ._-=—- .—. - .. —.- .- ._ - .. —- .- ,. ?“--+:”!+i% ,.. —. —.. ~?O 520 .... CALCULATIONS OF T= XB’YmCT OF WING TWIST ON T“= ‘“”- - ,-. : AIR FORCES ACTING ON A MONOp~A~~E m .: By G* D&twyler California Institute of Technology Washington March 1935 -+..- * i i .- —-..

m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

Embed Size (px)

Citation preview

Page 1: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

. ..

5“‘“

I

:E f.-l., “J

.“.

---- . -“A!isb%==+@,,”.. i ““’F##.Fz:1935 y ‘“”” ,-.= ....... .~. ,...- e“.RJ[.F.~?”L . . 4== .“ : ““.:=-... .---.,..2.=m:~~j~ ~q35 *. .-. =.-. ...--.

-. .-

. ... ---- -----.1—, . ._-=—-

.—. - .. —.- .- ._

- .. —- .- ,. ?“--+:”!+i%,.. —.

—..

~?O● 520

. . ..

CALCULATIONS OF T= XB’YmCT OF WING TWIST ON T“= ‘“”- -,-.:

AIR FORCES ACTING ON A MONOp~A~~E m .:

By G* D&twylerCalifornia Institute of Technology

WashingtonMarch 1935

-+..-*i

i

.- —-..

Page 2: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

._.,..

NA!I!1ONAL ADVISORY COI!M12!TEE FOR AERONAUTICS

TECHNIC.4L NOTE NO. 520

--—.—. —

CALCULATIONS OF T!HX ZH?I’ECTOF WING TWIST ON THE

AIR FORCES ACTING ON A MONOPLANE WING*

By G. D&twyler

A method is presented for calculating the aerodynawic forces on a monoFlane wing, taking into account theelastic twisting of the wing due to these forces. Thelift distribution along. the span is calculated by the for-mulas of Amstutz as a function of the geometrical charac-

———

teristics of the wing and of the twist at stations 60 and90 percent of the semispan. The twist for a.given liftdistribution is calculated by means of influence lines.As a numerical example, tho forces on a Swiss militaryD.27 airplane are calculated. Comparisons rith tha stripmethod and with the ordinary stress-analysis method arealso givenO

INTRODUCTION

Aerodynamic calculations on airplane wings are usual-ly made by assuming that the wings are rigid bodies. Ingeneral, this method is allowable. In recently developedhigh-speed airplanes, however, with their increased wingloading, large deflecting forces act on the wing, especial-ly in diving attitudes. The deformations, as a result of ,the air forcos, influence thoso forcos retroactively tosuch a degree that they cannot bo nogloctod. Tho aoro&y-namic behavior of tho doformod wing may bo quito difforcntfrom that of the original (rigid) ono. The final deforma-tions also %ecomo difforont from thoso resulting from thoforcos acting on the rigid wing.

It is of intorost non to investigate these final def-ormations.

——— -— -— —— —-~See also the ~reliminary publication on the same subjectin the Schweiz~r Aero-Revue, Zu~ich-Oerlikon, October 15$1931, p. 264; ant?.Zeitschrift fur Tlugtechnik und M9tor=-Iuftschiffahrt, January 28, 1932; p. 58.

Page 3: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

2 ---- “.N,A, C.A. Technical ~0$0 .~~.~:5~0- . ..

1 wish to thank Dr. J. Ackeret, Institute for Aerodyn-amics at the Eidg. Technische Hochschtile, Zurich, for hisinterest in this research, shown at numerous times by hissuggestions, As a private assistant of Professor L. Karner,at the same Hochschule, I became familiar with statics asapplied to aircraft. Further, I wish to thank the Kreigs-technische Abteilung at Bern, from whom I was able to ob-tain the elastic data of the wing framework of D-27.

......-.

DEVllLOPJiENT O-l?THE PROBLiM. ~-.- -.._-r.-

T:he calculation of the ,final deformations,”” consider-ibg’the mutual relatto.n between wing, forc,es and deforma-tions,- involves two fundamental” problems:., -...-

1, Caleulatio”n of the lift distribution “along thespan of the deformed wing;

.,2,, Calcul&”tion o“f”the win’g deformations for given

lift force,so

There are different” type’s of “wing deformation. Amongthem, the wing twistin”~ is of predominating importancesince the air firces are especially sensitive to changesin angle of attack. The problem may therefore be restrict-ed to the one of elastic wing twisting,

13cr a given twist of the wing, the air forces are cal-culated, for a given angle of attack and a given dynamiopressuxo, ,Tron th,em follow certain angles of wing twist,The, fin.al twis”t depends tipon the condition that the a6-sumed twist will -lead to the same resulting twist,. .

Aerodynamic Fundamentals.. .=_The S$rnbo’lsused in the remaining sections of the pa-

per are””l.isted here for reference,,

x,

.-

b,

t.,

distan.m of any point or section along the wingspan from the center wing section (plane of sym-metry) . .-. ...... .-------

wing span. .. .

..-..... . .. —=..:-. :;:-.+ .-,=.------

r

.. ------

., ..-.— .—

?

Page 4: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A. C.A. !I!echn~cal Note ~o”. 520 .

t,

T,

w,

a,

8,””

wing chord at the distance x or E*

speed of flight...

vertical downwash’ velocity induced by the trail-ing vortices.

angle of” attack.

angle of’ twist.

.P, ““mass density of air. ,.

,..q=

“s,

L,

D,

‘P ‘

D=1’

M,

CL =

CD =

Pa’~v, dynamic pressure. ~

wing area.

lift of the wing.

drag of the wing.

profile drag of the wing.

induced drag of the wing,

moment of the wing air forces with respect to theprofile leading edge.

L.—. absolute lift coefficient.~.s~

33 absolute drag coefficient.~’

DmcDp=~? absolute profile-drag coefficient.

DiCDi=~, absolute induced-drag coefficient.

cn=~, absolute pitching-moment coefficientsqst

r, circulation as defined by

—-

—.

.

*

Page 5: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

,.. --, ..-

-.=, -. :--- “.=—

r . iif% pe”r rrre’ikr”le-;g”i~.02 span ~“.= ——— =pv .8 Vt” --..,,

All values regarding the center wihg’ section (x = E,.

= o) arc? denoted hy tho s-~%script, ZPro..,.. . . .......

In addition, there is the symbol .CL&,, ,gponmtrical.angle of attack of t-he wing measured with respect to theflight direction, The symbol .o ....uee@[email protected] .the.wingwith infinite span has no induced downwash velocities.Then th~ geometrical and the effectivg an~lesof attack arethe saue. TlraS CL is the’:lkt’t“cobf-fi.cient correspond-

Wing to the geometrical angle of attack %. The connec-

tion %et~ee~ am and CL is given by the polar of them .-..

wiilg section (wing profile) for ififlnite”wing span-..-

ITOW, as to the first fundamefit”&l”problem, i:oa, thcicalculatio~ of the air forces (lift dis~ributlon along thowing s:?an), the formulas develop~d b~ E. Amstutz (rofc!ronce1) are used. They start from.,Prandtl!.s ~ormu~a. for tholift distribution .. ’.”...:,.”--,-...

L=J-’z-jq “2- , .}l+y:”. g -F.,v’g .+ ....n

.

10 t J

Earoby additional .lift. distr~but ions.+~ro. supo~imposod upontho original olltptic distribution. Tho cocfficionts LLrv..*. give tho magnitude of their ratio.

Tollowing Amstutzr formulas, which consider only thefirst two coefficients V and V, the approximate liftdistribution-of -a given wing may be calculated, at a givenal~gle of a%iack and a given dynamic pressul’e, as a func-H-on ot; the geometrical data and the angles of twist oftwo sections along the wing span. They advantageously aroassumecL at about 60 percent and 90 pe~cent of the wingsemispan. As shown by J. Htueber of Gotttxen (reference2) , thc~ method “of Amstutz (reference 1) gives very gootlresult-E~in comparison with”’tho More aocur~to r+eihod de+el-oped by I. Mtz” (reference 3)- (If the method of” Lotz =were used, the curve showing tho wing twist .alog.gthe wingspan wculd have to bo assufiod a priori. “The “method of Am-stutz, howover, 5.smore goncral in this respect, By meansof it both the curvo of the wing twist along the wfng span .

9-

--

Page 6: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N,A. C.A. Technical Note No. 520 5

.

*

+* &::::-.<: ,“. : *-..-...”:and the values bf:the.an~~:~s’:”of’t’tiist~a~ be calculatedwithout the foregoing assumption.)

........ .-.-,.:...-.-,.Statib 3%ln~arn8ii%alZS;:-

The second fundamental, problga, $he.e:l$yl~tion o~the.wirig.ltw~st .f”oa:~.g~-v+ “,,l,~;f-tj~~di$tirititi%j~qn~.h”+-s”.baeat%d““

.—

by moans of linoso’f itifltie”nde~”f”oi“tliewing tw”fst. Theyare the results of,,an extondqd:res.qa~,,@..(iq-~,qrae,ttonb~,tweenthe :ipars due lo. th:e,ri,%s),op.{,+l~.-tiing..fj~~rnwO~%:Of O*h6h6 ‘~“:Swiss military ftgh%e+ D~2’7~“shown ‘in figure 1, and fullydescribed in reference 4. Thi q fight q,rhas an all-metalaluminum framework wing wi”th ‘t’wo’paral-lel and identicalsparss .,7,;:. ,-.~,.;.,..:: . . . .“,”

The ordinates of the lines..gf influence give the an-gles of twist along the wing %fiatifor any given ~qllvertical load of 100 kilogr~s ~mpting..at, ,~wo,points of one..”.of the spars, these-two po.ih%s being ‘8ymmetricalZy placedwith regard to the center wing,,.spctio?f For given distrib-uted loads acting on both Spar”s’at the same time, the or-

——— —

dinates of the curve showing the, differ?nc~ ~ei~ee?+ the “.,,Jload on “the”front spa~ arid’’”~~at-.b~,”thersar..+us~,,.~e,~-l%i~;plied by the ordfnatesof:t”-h~ ,Iines “of.;iV”fluence~f.-,Theg ,.:.\-.,the angles ‘of .wing”’ttii’~~””are‘~i~veQ..”’aE,.thi%zit”egralsof the -curves ohtaina”d by “the “above “’rnul~ipli.ca,tio”~,q~or. Oqual . ~ ,loads on both spars acfi’ng in:t~e;’””sarnq“dire{titi”npure-~in~”bending ,without” an’y ttiisti’ng is:”dbt,a”in’ed....... :..., “ ....

... ... .,., ----- -, -L,... —-——- -.. ...=.~. ...The. lines of inf:luen~e are’ v$ho~ri”’”in‘~fi’~’~p>: As”.ih”b’

wins. is of..tlr~~sehi ca:nt1-1ev.?”rty’pe “(h S.C&’C-ail.l~.d”“-.parasol 11;,...wing) , the limes”-of !in’fluep-,cb“~e’r,$.%cir~”er~~pe:y0’ryO”d,to .,.,. ‘!the .p~ints whbme the” S% fit a ,%re- “a-ttac~$-d,,,:~~>’~%-~i$.ca~”cula.+.j -ti~~a, however, ihe.se:’itifluehbe ‘l~hes’:must””-be ref erred %5 mecenter wing section because of t,he re,qy$rprn-ent.s of. the.,aero-

‘ dynami 0,.calcuiat .ioti*-i~~‘“That chapg&, iti.jr”et+ren~e.yas:accorn- ~plished by: stihti~aating the:j,ordiriat.es.”,of.the:jipflqp~.ce linebelonging to thd”:ddd%er Wing’”s6ciiofi “fr~m the correspond-ing ordinates of the influence lin~s..belonging to the oth-er sections. In that way ‘the an”g”le’”of ‘twist at the centerwing section always becomes equal to ,~.er-o.,and the wingseems to be a rc$al cantilever ~ne~ The .liqe o-f influenceof the section where the strut s are’‘“atthch’ed now is thesame as the earlier line of influence of the center wing,section, exce~t that the sign is changqd: . ‘

,.. . .- —-,“.” ..., ..-. . . .— .:.. -— .-.:

.. . . . . . :.,+. . :-..-...,. . :,.-.,.., .,:;, .. .

Page 7: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

. . .=-

6

. .-., , - “.:

THE CALCULATIONS

..-.-

---—.

.—.. =..——

-.

-- .-...- . ..- .: —..- -—.

The general ideas havi”ag now been gitien, the calcula-tions using the D,.27 as an example, foll,ow.

The w-ing ~plah’form ~s ‘changed slight Iy int”o an ellip-tical,’one with nearly the .~hme -arg@ (.~fig..3) ‘

. . -- .

““s = 17*8 rn2’’ .””””” . ..-,,. . . . . . ,and exactly the same,”span - ~. .

-b = 10.3 m.-

,,as that of the D.27 , the mean chord %eing

,’to~” 2.’20 m

., ,’

Further, a“plan~ ’ring is “assumed without any “originaltwist , having the saue ~ro,file along the enti”re span; pre-serving this profile’ for “any wing deforma”t”i”ons~ Thus apure elliptical lift, djst~i’bution is obt~iqes Q.A &lLe.planewing. The wing plan” f.,ormi-splaced in such a way thqt thedistance s Of ~~.?”:”centjqrline between th~ iwo- ~~ars f~om”the le@7iing” edge”’of ‘tho ‘wirighas the co~stant” value of

.—.-

3’i’-l.5”:yercent’Of the ,wing ,chord, This is done in qrder tosimpli:fy the calculations. “As tho static wing-”cell struc-ture is symmetrical, the center line is the so-called‘lel.asttcwing axisYn,- “Any load acting along that axis pro- ,ducos :pure wing bonding @s both the spars bend +dont;cally.,

,, ....-.

*-

;

T,he”prof,ilo “G~ttingen 398 (see reference 6) is as-syuede ‘Figurg 4 “Shows this pro?ilo tog~!~aqr w~!.~ L!S P!2-lar”fo:r”lnfinitO spa-n. We-obtain the equation

,..- .

CL = 5a2042”(ctB + 0.i149~ ‘“”’” “’ ‘-” “’ ‘-”--

where -~ is the angle of attack with respect to theprofile chord, measured in radians-

dCLThe slope ~ = 5.2042 = k..-

l?urther cm = 1;2615 (cxB+ 0.18569)

cm = 0.2424CL + 0.08982. .-.. -

..- .=-u

>..1 . . .:-r—

Page 8: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A. C.A. Technical Note No. 520 ?

.

Values of CD = f(CL&) for large angles of. attack mayP

be found in reference ?3.

The Calculation of the Angles of Twist

BY means of the lines of influence, their ordinatesbeing T, the general e~ression for the angles of wingtwist .

h/2 ~ -. 8 =J T Q dx

o

is obtained, Ap being the difference between the loadper unit length of the front spar pf and the load forunit length of the rear spar Pti, ime., Ap = pV - PH.

The vertical wing load is approximately equal to the winglift per unit length of span (assuning the cosine of theangle of attack equal to unity),

P.&=rpv

the resultant of p ‘“having its point of Replication a% anapproximate distance

from the leading edge of the wing.

The wing lift is now distributed between both thespars ● Therefore (see fig. 5)

d.Lpv+pH=~=rP~”

Each element of the wing contributes to the momentM with

dJJ”= PVd~v+. pEdxhor

d.M—=pvV+pHh.ax

On the other side

.—

—.

Page 9: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

, --- ... ...

-.

-. .. -1-

. . . .—.

. .

%-.,0. 5208

anddl.1 = CmqtdS=Cmqt2dx

_- —--------- -.

...=-

,.uhfxii=cmqt2.

cm q ta =pVv+pEh

v =h-d -

,.-.

,.

Hence.

.—

— ..

.: ,... -...:.t.J%t t ing . .

results in

PH”= J’pv ‘“ ,,.... .

..,. ,, .“k I’-p’y-cm q“*%—-..—.. .. d ““’ “’

. .,’

the

. .

..”. .. . . . . . ., . .., .“,

,,.In ,,

—:m q t2 -“’vl?pv ‘“dPH ‘

q =

;.. . .. .

.: 2 ‘.’ ‘./ )...-. .... ..... .. ..with —

9

v+h= 2s IJ . . - .-

07~v - ??H ‘A P:= ~ -(r’2s -—

ta )—

.-..-——

Now ._r

CL

. . = ~–vt

... . ... .. . .,

., \

.. . ‘ 4..—

—. .

.= —cm = 0,2424 CT + 0008922 I

—.

—2s = 0.743, t

{O 2582Ap=q$- ..

\0,1796}

___...—.... --. ..—by Amstutz ,

P).:-. ...” . ... . ._. _ —. :. Q- .-and

,.

.,

Page 10: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

By putting, , .tz .=-*02.,{,1.- gz.} - . , ;, “ -—... —-....—.-

,,. ,

Ken ce.

#.+P f.”+ u t4).0s,2582.;,CLto2” “. .,, ‘:,.

‘Ap ? q~(l- ~z){ .. —-- -. ~. -,. k ,to.,; _*+ [,+ - ;]”

. . )- 0-1796 ., .. . : ~ ‘“”-””L“ —...“, . ..,

From this is obtained the even powq~ s~ries _

the coeff i cients X*; L* -. :.....“containing all the termsindependent of ~ . Eeace, —

—.

Replacing k agax by ~ and considering that the ordinates

T are based on 100 kg as a unit; and with~

. 7.- --,.. ,‘b”””b

‘* ZOT ‘= L* 566= “L

there is obtained

—. .—

The curves [T ~2~ are shown in fi.nre 2. By graphical

integration

6= = 0.12447 K + 0c0644’7 L + 0.03903 M - 0-02555 N

85 = 0.28850 E + 0,16620 L + 0,10370 M - 0s07184 N

Page 11: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

-.10 .i7.A. C.A, Technical Note No. 520

.,

Replacing K, L, M, and N %y their exprossl.ons.

CL [0.5149 + 0.2183 ~ + 0.1157u]

63 “ & {-–q~—- ~ ~ —

[ 1

- 0.3582&-v }-——-

1+4b01-2~

CL C1.0495 + 0.5363 ~ + 0.2734 V]” ““”” ““ “““–

tic “ &{ ‘0kto-

1 1

‘— - 0.’7302}

l+–K 1-;-;.:=3-.

%he coefficients y and vues ~~a and &

for gonorally glvon val-must be calculated. Amstutz devolope~

tho linear equations

r

- ..... ... ,-E

.

. . -

% J % , and C2 are deduced by replacing CL , tz, andml

S.7 ...—

the equations become

A= - PJBy -V(!==oA= -wB5 -V C5=0 -*

...- ..._-.. -L

Page 12: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A. C.A.. T9chnical Note No.. “520 11

l?he values CL and. CL contained in the terms A, B,co= as

and C are given by the values :CL of the center wingau

section and the angles of twist & and 8=, i.e.,,

Cj ‘, CL ‘+k ~=,“.. aY3 :. coo.

. ,. >

CL = (gL “+k &.~s.. -~”o ”..” .,,.. .,,

The expressions A, B, and ““6 are calculated first,tgen the coefficients v and u as fupctions of 63 and

85, and of CL ● Then inserting the values forCvo

v and

v into the equations for 83 and 85, there is obtained,after extended transformations

& =+6{ 0.Q229 tj= + 0s0083 tj~1- Q.4029 CL - 0.3582‘o }

. . ,.8= = ‘<0.0557 53 + 0.0190 ~~ + 0.8213 C&100 \ T

- 0.730”2“o

The solutions are

4871.621C%{q )

- 0.1067’ - 4331*227 + 0,0949q83 = –—~——-———— — -–—

1209043 507.169—“— - 0.003002

qz ~

. . (1473.349 ~ o.0655 _ &~09~g24 - 0.0583C&lq

85 ‘ ––A} ~————— .-

179401.i- 75.255 —————— - –—— - 0.000445

.

~2 ~

Neglecting the small values in numerator and denomina-tor, tho simple formulas aro dcrivod

..’ 9’”23ag”%.. - 8“2134 ‘83 = —.

2351.09 ~————— .~

:+,” -.. . . .

. ..-..

Page 13: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

,....,-

12 N,A. C.A. Technical -Note. No. 520#

19,9.663 CL - 17.’750

~s = —--2~~~:;+-—---. —-- . .1

q“”

#—

,.,

!These angles are given in degrees, an&-s inco’it” itiassumed that Ap > 0 tihon pV > PH~ they kavo tho samo

sign as that of the anglo of ‘attack.

lloth the angles depend linearly ,on” c~o , i.e., on

the Soomotrlcal angle of attack C&O,,..

at the center wing..

soctic}n. (Seal figsj 6“and: ?:;)‘ j?ufiher”~or~, a% any dynam-ic.pressure q, they become equal to Zero when,.-,, .....

‘c&o =.“.-

0:.889.,,““-f.e., o& = 3.22°. At this angle” of attack the.. 0. .. ..wing preserves its original u~t.wisted iha”pec A% ~= ‘

2851-09 kg/m2g i.e., at a speed of about 700 km/h atsea level, the angles of wing .lnv.istevidently become i.n-finito for all bngles of ‘att”ack’of” th’e tienter”%ing sGc-ti.on. This value of dynamic pressure represents the lim- #it of._the static to.rsio~al stability .of the wiW.h.(Seoalso :?eforences”i! ahd “8,) .,, “v”

.

The ratio of magnitudo between 8= and .85 is. con-stant--and has the value

.“..8 =’2 -161” ‘“’ ‘s.Y ●

-p3

Eence it is deduced that the curve showingof tho angles of wing twist along the w$ngbe this samc$, : . ‘“ ...,.....

-.-- ..

.——..-.

tho distributionspan will always

—.—

As an example

for = 0.2; q =‘L. ,

625 kg/m2, i.e., v = 360 km/h at

.——- —.—--—— ———-——.—.1

.—

Tho author wishes to acknowledge t-ho kind~ess of Dr. C.?dinelli for the interqst.he showed in the research by fur-nishing several Italian papers,

...

.-_.. .-_.===

----- -. -------

Page 14: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

sec. lemii. ‘ ““As’ &ill be noted “(fig. 8) , ‘the a~gle of t“wist,a% the jving tips bbcomes~ 20” peticent “larg-~r“tha”n 86. ” ‘

T!hGr”efo&o,~the “king tt~s tiay”easily” fall into negativestalled flight, Since the flow detaches itself fr”o’mthelover side of the wi~g tips at this noment, there will bo“A considerable change” in air forties, which tiay g“t-veanimpulse to wing oscillations. This .expl,anatiog is- sug-gested by somo researches recently made by J. Ackeret andII. L. Studer (refercmice S). ‘ ,.. ,, .

.,.,.

,. ,,,

Zhe Polar of the Elastic ,W.in.g. .

. . .

.’,Th”e’knowledge of t’hq”value~s &,a~d’ & “ eriab~~s. ‘“~th-e calculation of ,the ;vaIues U,,anti v.. “Tho li$:i dis=””tri~u~ions may”therefore be calculated along “the wingspa’a as a function of .i.o.”,’”’.of.czmo,C“ko’$ .,,,. . . and of tho ..,. .. ,.dynamic pressure q. . The q.ngles of wing @YiS~,.dO.ng “tie. ..”.

wing “span la az’so obtained as was previou.aly shown, %y ‘.thein.togral .. .- ,- . .> .- . _ ,:, --.........

,, ,, ,, .,,,.,,.-- “b;z ,.. .—

i;”= i ,&- T“~’,iX ., ; —.o. ., .’. -,.., :.

introducing now. the different lines, .of influence “wtt”htheirordinates Tn. “These’ integrals “are evaluated to find thevalues (sge fig, 8.). ,, ,.,..,.

8A ““ “ 8= = 02028, ...-.-:’ -. :,,’G-= 000586 85 “ —

“63.,’. ,t3’z-= ‘“4628 c= ‘“7390

The lift distribution along the wing span being kaownfor any condition of flight, all t’~e“local aerodynamicvalues (CL, Cn, cm) along the- ti”ingspan ma;r %0 calculat-

ed.. Hence the lift of the entire wing with its ahsolut.e _

coefficient 6;, and the profile drag represented hy the

coefficient ~D~ “is obtained, %oth as a+e~ag”o values of.

all tho local values CL and GDP ● Pinally the induced

drag of tho wing is ropr”osontod by the coefficient CDi6

(See formulas dovolopoa %y Amstutz. ) All thoso values on-

Page 15: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

14 N.”A.C..A.-Tqchni,ca I,Notq No.. 520

abl,e.the pl,o.tt.ing!of the ,palars:.of the elastic w@g~ (Seefigs. 9,and. 10,). The “iqducad polams. in figure lQ areshown .-@ydashes. ~ The. pQ1.ars ..tha? Include tho profile dragare.:sali.d. ,.,, .-

....,-..-,., . ,: ..,>.::. -.“.”.- “...=.All .@he .pola,rs”go ,th~ough the point .“= = 0.696, cor-

respumding to the “value ‘% ,“=~~~83 ,“

“““where the wing;-.-.:-......,:- ..’ . 0 “’ -’”’’.’.’”

,.

preserves its original untwisted ‘shtipe. (See ioferonco U3.i)Evider.tly tho wing twist is-appreciable only at small an-gles of attack, i.e. ,“at.:.small’‘values of” c{, correspond-

ing ef.t-herto level fli,ght wi~h ,ifull speed or especiallyto ,~ivi~g. It may_also. “be meqtieahcd that for the elastic .Wing, ~,he value ..~L = 0’.does no~t correspond to the c.on-....,dition ‘“inwhich the local ‘values uf the lift coefficientare equal to zero, as was the, cause with the original (riG-id) Win~’O Ihit now the cent’e’rwing “portiion produces “a pos-itive lift that is compensated fo~ by “negative lift at thewing tips. Therefore, the semicantilovor wiag may bostressed by additional banding to such a dogroa that 1%may even become dangerous. On t-ho Other hand, the bond-ing stress may bocomo s--tial:l”otiin bho- caso for which alllocal values of CL aro oithor pooitivo or nogativo~

This is,,~specially truo fo,r the fyl,l cnnti,lovcr wirg,. asthe wQg ,load,is conce;nirated. at ~:he center wing section;

----- :;..... - , , . .. 7“:.. ... .

The polars also include the g curves of tho elas-tic wing. These coefficiea.ts of pitching nonont resultfrom the integral .

b/2.--cm=—-~-=~ J Qm q t dS

q 5 *,O q .s to -~/2.

from which .. ,... ., .,.-

;j”crn (1 “ g2) ~g, .. ~~

~,= 4. 1

bY a C;2”d’Sid&ratiOri“of ““ -

..-,

.. . .. . . .. . .-. . . . . . ..—

‘S=~biod S=tdx’t =to&-~2

● ✎

dx = $ d, _lf= .=.2 J=. ;. ,.0.,‘. .’ . .,.’” .-. . ...

-—.—

-.

.- . .

—.

-..

,..

. ..+

.

Page 16: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N. A, C.A. !lochnical Note No+. 5.20. 15

v

.

The numerical calculations show that for:- ~ = constant,

there is almost no change in ~~ for different values ofthe dy,pamic pressure q, which indfcates that the wingmoment M for ~= constant is very slightly influenced

by the wing twist; (Seo also rcforencos IQ. and 12 andbibliography of reference 11.) The relation

-—cm= 0.2058 ~+ 0a0762–

wh~ch was used at first only for tho rigid wing may alsobo used for th,e elastic wing.

The Angles of Wing Twist When No Changes

in Downmash Velocities arc Considered (Strip 2!othod)

It may be interesting to givo tho results of tho ap-proximate calculation of wing twist by tho strip method-

In this case tho lift distribution is given by thegeometrical angles of attack as shown in the polar of therigid wing with the given aspect ratio

Al R. = 5*96

These angles of wing t’tiistdiffer from the former ac-curate values by about -5 percent to 15 percent. The outeline of their curve along the wing span is given in thefollowing:

The criticalwhich occurs

6A 82

&- = 0“0721 ~’ 0“1996=

&-= ‘“449dynamic pressure becomes 2,025.70 kg/m2,at about 650 km/h at sea level-

.

.

Page 17: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

,.

16 N.A. C.A. T&c”~:’iic&l”Not6 3Tos. -. .‘L=

520-1

,.., 4 . . . . . .

co~@AkI’soN’ ws~~’ Tgg @AL ST?LES”S,CALCULAT ION”.=

,, ,.,<“. . . ------ . . . .:..

.,,In tho usual: stre.ss calculatioti th~ afigltisof ‘wi~g”t~ist aro also gtvon by the int~gral j“”

.—But il.p*,now has to bo calcul,atod by. introducing thoforcos “acting on the rigid wingj, as no iafluonce of thewin~ ~wist upon tho air forces is considorod~

.,,.~phe re8Ult S are

..

.,.,’

6A* 82*— = 0-0676 = 0.2Q96~~*., ..,:.;~

The o-~tline of this curve i.spractically the same as the.

one w:hich was obtained by the accurate method, Hencethe outline of the curve showing the wing twist along tho .span in. the. example. “is,the se,ma, whether or not the in-tqrac.iion. bqtween wing twist and air fo”rces is considered-

rhe relation %etween these values and the accurateones is given by the fact that these approximate valuesrepresent the tangents on the curves of tho accurate val-ues at q = O. If ~ be t-he crit-ical valu”e”of””tlm Kj-namic prossuro of the static torsional stability, thereis obtainod the relation

6 = 8*

~{ ._ 1.2.”

l-$&--:. .. .. .—....-.---7 ‘-- .”-.. .. ”;,’ -=—..- -;. -. .?-,. ...

The value in the parenthesis gi>es the increase “of””the” an: ‘.” “’—gl.es of wing twist due to the mutual interference between

-.

deformations and air forces.

The results presented are those of the present re-search. They require further checking to show how validthey may be for cases more general than that of the exam-

.

pie.

.

Page 18: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

I?.A..C.A. Technical Note No. 520 1’7

REl?EREX CES

*

b

D

9

la Amstutz, E.: Calculation of Tapered Monoplane lVings.TaMa ~fO* 578S lToAaC.A., 1930a

2. Eueber, J,: Die aerodynaui~chen Eigenschaften von dop-”peltrapezf~rnigen Tragflugeln. Z.F.M., Hay 13, 1933,

3?P“ 249-251; and l.fay29, 1933, pp. 269-272,

3. Lotz, I.: Berefihnung der Auftriebsverteilung beliebiggeformter Flugel. Z.F.M., April 14, 1931, pp. 189-195.

4. Earner, L.: Das Schweiz. Devoitine Jagdflugzeug IID.2711.Schweizerische Bauzettung, vol. 96, 1930, p, 29.

5. University of G~ttingen: ,,The G~ttingen 398 Airfoil.Ergb. Aero. Vers. zu Gottingen.pp. 92 and 106;

I Lieferung, 1921,and 111 Lieforung, 1927, p, 28.

6. Sieforthd R.: Hessung eines Profils %ei Anstellwinkelhvon O bis 360°. profilmessungea bei,lnegativen An-stellwinkelno Ergb. Aero. Vers. zu Gott’ingon.III Lioferung, 1927, pp. 78-820

7. Reissner, H.:” Neuore Probleme aus dor Flugzeugstatik.Z.Y.Il., April 14, 192’7, pp. 154-169.

8. Minelli, Carlo: Sulla stabilitii statica torsionaldolltala a sbalzo a duo longaroni. Notiziario Toc-nico di Aoronautica, vol-~ IX, no. 11, itovmn%or 1930,pp. 112-140.

9. Ackeret, J., and Studor, E- L-: Bomorkuugon &ber Trag-flugel-schwingungen. Eelvetica Physics Acts, vol.VII, Hay 7, 1934, pp. 501-504.

10t Jarry, J.: CalcuZ des efforts supmortds par un avlonclans diff~rents cas de vol et &.-ltatterrissage.E. Chiron, Paris, 1929, ppo 111-117-

11. Miaelli, C.: Sulltequilibrio longitudinal del veli-volo ad ala d.eformabile. LtAerotecnica, vol. XI,no. 5, May 1931, pp. 507-532.

12. Pugsley, A. G,: Influence*of Wing Elasticity upon theLongitudinal Stability of an Aeroplane. R. & M.Fp. 1548, British A.R.C., 1933.

Page 19: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

WIN

o

Figure 1,- Wing framework of the Swiss

military fighte~ airplane D2?

Page 20: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A.C.A. Technical Note Eo. 520

.

.

I I ! II

-—I

I

/~1 ‘“ ~ I I

~o 3 4...—.74 I T2J,---- . .—

00 ==-~– ~=~ I :.A--===. . ,---.— , .——+ — .— —-

1-20 —.-.— .——

~–’

..._—I

-.— . ;.. —.——— .__. .-40—. .—. .= I_ -—.—-.—

I ~- &720. ~“ —- —— —.- - —.-73___ !.—

00 “—~3 C4:

;.T__

+ .. :-,7Z:; ..? ~---- ,_y—-- = .-,-=-_ -—-------- --

-——-–~~ ‘“—– —

.-=

-2° —— +—- .—— -,—. — 2 ~-=---‘-:20--.—---- -– I 7%

1LE- :-i-

@* -- – .-.=–

—-. — .—-— 5I

-20 ——–- “—“ 1

1—— -—. -...—.. .-—.— .--—.--—

_40

:+ ‘

.—— I

z :4

J-__._i_.--z-.z

.—. -. --——–rt~

40 —–. -, ——- — ——

\. .,.—- _ .—— —-- -—- .—--- .. ..—..— .-—. , . ——

_80 -—. —. ...-.— --+—.— -. ---.-.—

.’

b/2

--l

—— I

==1

+————

Fi~re 2.- Iincs of infIuence of VAC wing twist fron D.27 airplane

Page 21: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A.C.A. Technical Note No. 523”

m

-Y~..-—-------—--- -Y

l+.A.,A

:—. .~—.—.

.&-L1

~--

Figure 3.-Elliptical wing with approximately the same area as the standard;7ing of the D.2’7air-plane. .-— ——

Page 22: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A.C.A. Technical Note No.520

1.4

1.2

1.0

.8

.6

CLm*cm .4

10%

.2

0

-. 2

-.4

II IIII ~---I ‘ -“1

—. ./.””I /

II ——

FL /03

;f /

\

/ ‘ /

-.

—.- .-

,—— .—. -. — -.

_120 _l~o -fjO 40 -40 -20 0 20 40 60 80 100

%

I’igum 4.-The profile and polar of the G6ttingen 398 airfoil.

.

Page 23: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

.

~.A.C.A.

0

-20

.

0

-#

830

-50

*

-80

.

Technical lToteKo. 520

k-??~$ P---––+--’! . Zigurc Flastic axis and

r+sr location ofwing of D.27airpla~e.

I

i-- v+=–+’ -~lastic axis

-. 2 c’ .2 .4 .6 .8 1.0

Page 24: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A.C.A. Technical Note 110. 520‘?

4

2

0

fj50-

.2

. -4

.

-~

-8

-10

-12-. 2

l’igure

P

.

0

‘7. -

.2 .4 .6~jjmo

of 55 with CLmo and q.

(Figure continued

Zig. 7

.8 1.0. .

.—

on next page)

Page 25: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

.

%“

N.A.C.A. Technical Neto ITo.520

4

2

c

-2

-4

.

-6

-8

-lC

-120

Fig. 7 (cont. )

\’\\ \l 1 I \l I I

mo

dm

‘c●

KX)G lmo

.

Continuation of Pig. 7

.

Page 26: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

.

.

N.A.C.A. Technical lToteNo. 520 Zig. 8

A– I I I=.6

I I

&5

.8

1.0

X.2’0

Tigure 8,-

A 2 3 4 5 b/2

Variation of 6~65 with distance fromtho wing root,

.

Page 27: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

s

l?.A.C.A. Technical Note No. 5Z13

1.2-

1.C-

.8

.6 “

~L

.4

.2I-

u

E’?‘ .~ --%’@ I$5°

2 —-.

.889

-.4-.2 0 .2 .4 .6 .8 1.0 1.2

Figure 9.-

%movariatiOII Of EL (ShSOkt~ lift COeffiCi=t Of entirO

wing) with C~o

Page 28: m:~~j~ ‘“ -+:”!+i% I - Digital Library/67531/metadc56540/m...It is of intorost non to investigate these final def-ormations. ——— -— -— —— —-~See also the ~reliminary

N.A.C.A. Technical Hotc IITo.520

.9——

‘~i’

600

\?=@

@ 1

riguro lC .-

2

Variationof entire

/—,696

— —---

2

3 ~ 5 610C TD; 1~~~

-.

of Cj (absolute lift coefficient

wing) witln~D and–~.

.