MIT6_012F09_lec05

Embed Size (px)

Citation preview

  • 8/16/2019 MIT6_012F09_lec05

    1/29

     

    6.012 - Electronic Devices and Circuits

    Lecture 5 - p-n Junction Injection and Flow - Outline 

    • ReviewDepletion approximation for an abrupt p-n junctionDepletion charge storage and depletion capacitance (Rec. Fri.)

    qDP(v AB) = – AqN Apxp = – A[2!q("b-v AB){N ApNDn/(N Ap+NDn)}]1/2

    Cdp(V AB) #!qDP/!v AB|V AB = A[!q{N ApNDn/(N Ap+NDn)}/2("b-V AB)]1/2

    • Biased p-n DiodesDepletion regions change (Lecture 4)Currents flow: two components

     – flow issues in quasi-neutral regions (Today) – boundary conditions on p' and n' at -xp and xn (Lecture 6)

    • Minority carrier flow in quasi-neutral regions

    The importance of minor ity carrier diffusionBoundary conditionsMinority carrier profiles and currents in QNRs

     – Short base situations – Long base situations – Intermediate situations

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 1

  • 8/16/2019 MIT6_012F09_lec05

    2/29

     

    x-x p

    xn

    -x p

    -qNAp

    qNDn

    The Depletion Approximation: an informed first estimate of ! (x)

     Assume full depletion for -xp < x < xn, where xp and xn aretwo unknowns yet to be determined. This leads to:

    " ( x) =

    0

    #qN  ApqN  Dn

    0

      for

      for

      for

      for

     x < # x p# x p <  x < 0

    0 <  x <  xn

     xn <  x

    & & 

    & & 

    %(x)

    Integrating the charge once gives the electric field 

     

     E ( x) =

    0 for  x < " x p

    "

    qN  Ap

    # Si x+

     x p( )  for " x p<

     x<

    0

    qN  Dn

    # Si

     x " xn( )  for 0

  • 8/16/2019 MIT6_012F09_lec05

    3/29

     

    The Depletion Approximation, cont.: 

    Integrating again gives the electrostatic potential:

    "(x)

    "n

    -x px

    xn

    " p

    equation relating our unknowns, xn and xp: -x p$(x)

    x

     N  Ap x p = N  Dn xn

    xn

    1E(0) = -qNApx p/!Si

     = -qNDnxn/!Si

    Requir ing that the potential be continuous at x = 0 givesus our second relationship between xn and xp:

    " ( x) =

    "  p   for  x < # x p

    "  p +qN  Ap

    2$ Si x + x p( )

    2

      for - x p

  • 8/16/2019 MIT6_012F09_lec05

    4/29

     

    Comparing the depletion approximation

    with a full solution:

    Example:  An unbiased abrupt p-n junction with N Ap= 10

    17 cm-3, NDn= 5 x 1016 cm-3 

    Charge

    E-field

    Potential

    nie ±q "(x)/kT po(x), no(x)

    Clif Fonstad, 9/24 /09 Lecture 5 - Slide 4 

    Courtesy of Prof. Peter Hagelstein. Used with permission.

  • 8/16/2019 MIT6_012F09_lec05

    5/29

     

    Depletion approximation: Appl ied bias

    Forward bias, v AB > 0:

    vAB-w p

    wn-x p 0 xn

    ( b-vAB) x

    No dropin wire

    No dropat contact No drop

    in QNR

    No dropin QNR

    No dropat contact

    No dropin wire

    In a well built diode, all the appliedvoltage appears as a change in thethe voltage step crossing the SCL

    -w p xwn-x p 0 xn

    vAB

    ( b-vAB)

    Reverse bias, v AB < 0:

    Note: With applied bias we are no longer in thermal equilibrium so

    it is no longer true that n(x) = ni eq (x)/kT and p(x) = n i e

    -q (x)/kT.

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 5

  • 8/16/2019 MIT6_012F09_lec05

    6/29

     

    The Depletion Approximation: Appl ied bias, cont. 

     Adding v AB to our earlier sketches: assume reverse bias, v AB < 0 

    %(x)

     xn

    -x p

    -qNAp

    qNDn

    w

    xnx p

    $(x)

    x

    x

    w =2" Si   # b  $ v AB( )

    q

     N  Ap + N  Dn( ) N  Ap N  Dn

     

     x p = N  Dnw

     N  Ap +  N  Dn( ),   xn =

     N  Apw

     N  Ap +  N  Dn( )

    xn

    -x p

    |E pk |

    "# = # b  $ v AB

      and # b =kT 

    qln N  Dn N  Ap

    ni2

     

     E  pk  =2q   " b  # v AB( )

    $ Si

     N  Ap N 

     Dn

     N  Ap + N  Dn( )"(x)

     xn

    -x p

    (" b-vAB)

    x

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 6

  • 8/16/2019 MIT6_012F09_lec05

    7/29

     

    The Depletion Approximation: comparison cont.

    Example:  Same sample, reverse 

    biased -2.4 V 

    Charge

    E-field

    Potential

    nie ±q "(x)/kT p (x)

    n (x)

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 7 

    Courtesy of Prof. Peter Hagelstein. Used with permission.

  • 8/16/2019 MIT6_012F09_lec05

    8/29

     

    The Depletion Approximation: comparison cont.

    Example:  Same sample, forward 

    biased 0.6 V 

    Charge

    E-field

    Potential

    nie ±q "(x)/kT p (x)

    n (x)

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 8Courtesy of Prof. Peter Hagelstein. Used with permission.

  • 8/16/2019 MIT6_012F09_lec05

    9/29

     

    The value of the depletion approximation

    The plots look good, but equally important is that1.

     

    It gives an excellent model for making hand calculationsand gives us good values for quantities we care about:

    •  Depletion region width

    •  Peak electric field

    • 

    Potential step

    2. 

    It gives us the proper dependences of these quantities onthe doping levels (relative and absolute) and the bias voltage.

     Apply bias; what happens?

    Two things happen

    1. The depletion width changes•

    ( b - v AB) replaces b in the Depletion Approximation Eqs.

    2. Currents flow

    • This is the main topic of today’s lecture

    Clif Fonstad, 9/24/09  Lecture 5 - Slide 9

  • 8/16/2019 MIT6_012F09_lec05

    10/29

  • 8/16/2019 MIT6_012F09_lec05

    11/29

     

    Bias applied, cont.: With v AB 0, it is not true that n(x) = n i eq (x)/kT

    and p(x) = ni e-q (x)/kT because we are no longer in TE. However,

    outside of the depletion region things are in quasi-equil ibrium, and

    we can define local electrostatic potentials for which the equil ibriumrelationships hold for the majori ty carriers, assuming LLI.

    Forward bias, v AB > 0:

    In this region n(x) !ni eq QNRn /kT

    Reverse bias, v AB < 0:

    -w p x

    wn-x p 0 xn

    vAB

    QNRn

    ( b-vAB)

    QNRp

    vAB

    vAB

    vAB

    x

    -w p

    wn0 xn

    vAB

    QNRn

    ( b-vAB)

    QNRp

    vAB

    vAB

    -x p vAB

    In this region p(x) !ni e-q QNRp /kT

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 11

  • 8/16/2019 MIT6_012F09_lec05

    12/29

     

    Current Flow q 

    Unbiased

     junctionPopulation in

    equilibrium withbarrier

    Forward bias 

    on junction 

    Barrier lowered so carriers to left can  

    cross over it. 

    Reverse bias 

    on junction Barrier raised so the

     

    few carriers on top spill back down it. 

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 12

    x

    x

    x

  • 8/16/2019 MIT6_012F09_lec05

    13/29

     

    Current flow: finding the relationship between iD and v ABThere are two pieces to the problem:

    • 

    Minority carrier flow in the QNRs is what limits the current.• 

    Carrier equilibrium across the SCR determines n'(-xp) and p'(xn),the boundary conditions of the QNR minority carrier flow problems.

    Ohmic  Uniform p-type Uniform n-type

    -wp 

    -xp 0 xn wnx

    p n

    Ohmiccontact

    contact

     A BiD

    + -v AB

    Quasineutral Space charge Quasineutralregion I region region II

    Minority carrier flowhere determines the

    electron current- Today's Lecture -

    The values of n' at-xp and p' at xn areestablished here.

    Minority carrier flowhere determines the

    hole current- Today's Lecture -

    Clif Fonstad, 9/24/09 - Lecture 6 -  Lecture 5 - Slide 13

  • 8/16/2019 MIT6_012F09_lec05

    14/29

     

    Solving the five equations: special cases we can handle

    , po):

    Lecture 1 

    1. Uniform doping, thermal equilibr ium (nopo product, no

     

    "  x= 0,

      " 

    " t = 0,   g

     L ( x, t ) = 0,   J 

    e= J 

    h= 0

    2. Uniform doping and E-field (drift conduction, Ohms law): 

    Lecture 1" 

    "  x= 0,

      " 

    " t = 0,   g

     L( x,t ) = 0,   E 

     x constant

    3. Uniform doping and uniform low level optical injection (

     

    "  x= 0,   g L (t ),   n'

  • 8/16/2019 MIT6_012F09_lec05

    15/29

     

    QNR Flow: Uniform doping, non-uniform LL injection

    What we have:

    Five things we care about (i.e. want to know):

    Hole and electron concentrations:

    Hole and electron currents:

    Electric field:

     p( x, t ) and n( x, t )

     J hx ( x, t ) and  J ex( x, t )

     E  x ( x, t )

     And, five equations relating them: 

    Hole continuity: 

    Electron continuity: 

    Hole current density:

    Electron current density: 

    Charge conservation: 

     

    "  p( x, t )

    " t +

    1

    q

    "  J h ( x,t )

    "  x=   G # R   $   Gext ( x,t ) #   n( x,t ) p( x, t )# ni

    2[ ]r (t )

    " n( x, t )

    " t # 1

    q

    "  J e ( x,t )

    "  x=   G # R   $   Gext ( x, t )#   n( x,t ) p( x,t ) # ni

    2[ ]r (t )

     J h ( x,t ) =   qµh p( x,t ) E ( x,t )# qDh"  p( x,t )

    "  x

     J e ( x,t ) =   qµe n( x, t ) E ( x,t ) + qDe" n( x,t )

    "  x

    % ( x, t ) =" & ( x) E  x ( x,t )[ ]

    "  x$   q p( x,t ) # n( x,t )+ N d  ( x)# N a ( x)[ ]

    We can get approximate analytical solutions if 5 conditions are met!Clif Fonstad, 9/24/09 Lecture 5 - Slide 15

  • 8/16/2019 MIT6_012F09_lec05

    16/29

     

    QNR Flow, cont.: Uniform doping, non-uniform LL injection

    Five unknowns, five equations, five flow problem conditions:1. Uniform doping dno

    dx=

    dpo

    dx= 0   "

      # n

    #  x=

    # n'

    #  x,

      #  p

    #  x=

    #  p'

    #  x

     

     po " no + N d  " N a = 0   #   $ = q p " n + N d   " N a( ) = q p'"n'( )

    2. Low level injection(in p-type, for example)

    3. Quasineutrality holds 

     

    n'"   p',  # n'

    #  x" #  p'

    #  x

     

    n'

  • 8/16/2019 MIT6_012F09_lec05

    17/29

     

    QNR Flow, cont.: Uniform doping, non-uniform LL injection

    With these first four conditions our five equations become:

    (assuming for purposes of discussion that we have a p-type sample)

    In preparation for continuing to our fifth condi tion, we notethat combining Equations 1 and 3 yields one equation inn'(x,t):

    1,2:"  p'( x, t )

    " t +

    1

    q

    "  J h ( x, t )

    "  x=

    " n'( x,t )

    " t #

    1

    q

    "  J e ( x, t )

    "  x=   g L ( x, t )#

     n'( x, t )

    $ e

     3 :  J e( x, t )  % +qDe" n'( x,t )

    "  x

     4 :  J h ( x, t ) = qµh p( x, t ) E ( x, t ) + qDh"  p'( x,t )

    "  x

     5 :"  E ( x, t )

    "  x=q

    &  p'( x, t ) # n'( x, t )[ ]

     

    " n'( x, t )

    " t # De

    " 2n'( x, t )

    "  x2

    =   g L ( x, t ) # n'( x, t )

    $ e

    ! The time dependent diffusion equation

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 17

  • 8/16/2019 MIT6_012F09_lec05

    18/29

     

    QNR Flow, cont.: Uniform doping, non-uniform LL injection

    The time dependent d iffusion equation, which is repeatedbelow, is in general still very diff icul t to solve

    " n'( x, t )

    " t # De

    " 2n'( x,t )

    "  x2

    =   g L ( x,t ) # n'( x, t )

    $ e

    but things get much easier if we impose a fifth constraint:

    5. Quasi-static excitation  

     

    g L ( x, t ) such that all

    " t  # 0

    With this constraint the above equation becomes a second 

     

    " Ded 

    2n'( x)

    dx 2=   g L ( x)"

     n'( x)

    e

    order linear di fferential equation:

    which in turn becomes, after rearranging the terms : 

    ! The steady state diffusion equation

    d 2n'( x)

    dx2

      "  n'( x)

     De# e=   "

      1

     Deg L ( x)

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 18

  • 8/16/2019 MIT6_012F09_lec05

    19/29

     

    QNR Flow, cont.: Solving the steady state diffusion equation 

    The steady state diffusion equation in p-type material is:

    d 2n'( x)

    dx2

      "  n'( x)

     Le2

    =   "  1

     Deg L ( x)

    and for n-type material it is:  

     

    d 2 p'( x)

    dx2

      "  p'( x)

     Lh2

    =   "  1

     Dhg L ( x)

    In wri ting these expressions we have introduced Le and Lh,

    the minority carrier diffusion lengths for holes and

    electrons, as: L

    e "   D

    e# 

    e

     

     Lh "   D

    h# h

    We'll see that the minority carrier diffusion length tells us howfar the average minority carrier diffuses before it recombines.

    In a basic p-n diode, we have gL = 0 which means we only need

    the homogenous solutions, i.e. expressions that satisfy:

    d 2 p'( x)

    dx2

      "  p'( x)

     Lh2

    =   0  d 

    2n'( x)

    dx2

      "  n'( x)

     Le

    2=   0

    n-side: p-side:

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 19

  • 8/16/2019 MIT6_012F09_lec05

    20/29

  • 8/16/2019 MIT6_012F09_lec05

    21/29

  • 8/16/2019 MIT6_012F09_lec05

    22/29

  • 8/16/2019 MIT6_012F09_lec05

    23/29

     

    QNR Flow, cont.: Uniform doping, non-uniform LL injection

    Sketching and comparing the limit ing cases: wn>>Lh, wn Ln (the situation in LEDs)

    p' (x) [cm-3] Jh(x) [A/cm2]

    x [cm-3]wn

    qDhp'n(xn) Lhe-x/Lh

    0 xn xn+Lhwn0 xn xn+Lh

    n

    x [cm-3]

    p'n(x

    n)

    e-x/Lh

    Case II - Short base: w

  • 8/16/2019 MIT6_012F09_lec05

    24/29

     

    QNR Flow, cont.: Uniform doping, non-uniform LL injection

    The four other unknowns

    )

    Solving the steady state diffusion equation gives n’ .) Knowing n'..... we can easily get p’, Je, Jh, and Ex:

    First find Je:

    Then find Jh:

    Next find Ex:

    Then find p’ : 

     

     E  x ( x)   "  1

    qµh po J h ( x)   #

     Dh

     De J e ( x)

    % & 

    ( ) 

     p'( x)   " n '( x) +# 

    qdE  x

    ( x

    )

    dx

     

     J e ( x)   "   qDedn'(t )

    dx

     

     J h ( x)=

      J Tot    "   J e ( x)

    Finally, go back and check that all of the five condit ions are

    met by the solution.

    ! Once we solve the diffusion equation to get

    the minority excess, n', we know everything.Clif Fonstad, 9/24/09 Lecture 5 - Slide 24

  • 8/16/2019 MIT6_012F09_lec05

    25/29

     

    Current flow: finding the relationship between iD and v ABThere are two pieces to the problem:

    • 

    Minority carrier flow in the QNRs is what limits the current.• 

    Carrier equilibrium across the SCR determines n'(-xp) and p'(xn),the boundary conditions of the QNR minority carrier flow problems.

    Ohmic  Uniform p-type Uniform n-type

    -wp 

    -xp 0 xn wnx

    p n

    Ohmiccontact

    contact

     A BiD

    + -v AB

    Quasineutral Space charge Quasineutralregion I region region II

    Minority carrier flowhere determines the

    electron currentThe values of n' at-xp and p' at xn areestablished here.

    Minority carrier flowhere determines the

    hole current

    Clif Fonstad, 9/24/09 - Lecture 6 next Tuesday -  Lecture 5 - Slide 25

  • 8/16/2019 MIT6_012F09_lec05

    26/29

     

    The p-n Junct ion Diode: the game plan for getting iD(v AB)

    We have two QNR's and a flow problem in each:

    Quasineutral QuasineutralOhmic

    n

    Ohmiccontact

    B-

    region II

     p

    contact

    AiD

    +vAB

    region I

    xx-w p -x p 0 0 xn wn

     p'(xn) = ?

     p'(wn) = 0

    n'(-x p) = ? n' p  p'n

    n'(-w p) = 0

    -w p -x p 0 0 xn wn 

    If we knew n'(-xp) and p'(xn), we could solve the flow problems

    and we could get n'(x) for -wp

  • 8/16/2019 MIT6_012F09_lec05

    27/29

  • 8/16/2019 MIT6_012F09_lec05

    28/29

     

    6.012 - Electronic Devices and Circuits

    Lecture 5 - p-n Junction Injection and Flow - Summary 

    • Biased p-n DiodesDepletion regions change (Lecture 4)Currents flow: two components

     – flow issues in quasi-neutral regions – boundary conditions on p' and n' at -xp and xn

    • Minority carrier flow in quasi-neutral regionsThe importance of minor ity carrier diffusion

     – minority carrier drift is negligible

    Boundary conditions Minority carrier profiles and currents in QNRs 

     – Short base situations – Long base situations

    • Carrier populations across the depletion region (Lecture 6)Potential barriers and carrier populationsRelating minority populations at -xp and xn to v ABExcess minori ty carriers at -xp and xn

    Clif Fonstad, 9/24/09 Lecture 5 - Slide 28

  • 8/16/2019 MIT6_012F09_lec05

    29/29

     

    MIT OpenCourseWarehttp://ocw.mit.edu

    6.012 Microelectronic Devices and Circuits

    Fall 2009

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/