28
MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himan shu Khurana Department of Computer Science University of Illinois at Urbana‐Champaign IEEE INFOCOM 2010

MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

  • View
    230

  • Download
    2

Embed Size (px)

Citation preview

Page 1: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

 MIS: Malicious Nodes Identification SchemeNetwork-Coding-Based Peer-to-Peer Streaming

Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana

Department of Computer ScienceUniversity of Illinois at Urbana Champaign‐

IEEE INFOCOM 2010

Page 2: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Outlines

• Introduction

• MIS: Malicious Node Identification Scheme

• Simulation Results

• Conclusion

Page 3: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Network Coding

•  New paradigm of routing: –  Packet mixing at intermediate nodes

•  Benefits: –  Maximum throughput, robustness to link failure, energy efficiency …

•  Applications:–  Multicast/broadcast, wireless unicast, P2P streaming, P2P file distributing …

2

A A= f( ,       ,      )

Traditional routing : store-and-forward Network coding

Page 4: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

E

A

F

B

C

D

H

G

Segment [b1, b2, … , bm]

3

… …

Video stream    S

Network Coding in P2P Streaming Networks3

•   Benefits of network coding in P2P streaming:––––

Higher playback qualityShorter buffering delaysMinimal bandwidthBetter resilience to peer dynamics

Page 5: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

SE

A

F

B

C

D

G

H

Pollution rapidly spreads over the network!

Failure to decode the original blocks!

4

Pollution Attacks in Network Coding4

• Malicious nodes inject corrupted blocks.

Segment [b1, b2, … , bm]

Video stream

Page 6: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

6

The Pollution Attack

• Attacker joins an ongoing video channel • Attacker advertises it has a large

number of chunks • When neighbors request chunks,

attacker sends bogus chunks• Receiver plays back bogus chunks • Each receiver may further forward the

polluted chunksP. Dhungel, X. Hei, K. W. Ross, N. Saxena, “The Pollution Attack in P2P Live Video Streaming: Measurement Results and Defenses,” Sigcomm P2P-TV Workshop, Kyoto, 2007.

Page 7: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

7

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Polluter

request

request

reques

t

Page 8: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

5

SE

A

F

B

C

D

G

H

Drop corrupted blocks at the runtime

Existing Defense Strategy:5

• Checking corrupted blocks at the runtime–  Too computationally costly for real time streaming‐

Segment [b1, b2, … , bm]

Video stream

Page 9: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

9

Pollution Defense Strategy

• Blacklist

• Traffic Encryption

• Chunk Signing– Use PKI

– Every video source has public-private key pair

– Source uses private key to sign the chunks

– Receiver uses public key of source to verify integrity of chunk

P. Dhungel, X. Hei, K. W. Ross, N. Saxena, “The Pollution Attack in P2P Live Video Streaming: Measurement Results and Defenses,” Sigcomm P2P-TV Workshop, Kyoto, 2007.

Page 10: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

6

The Idea of MIS (Malicious Identification Scheme)

• Optimal online efficiency:– We don’t check corrupted blocks at the runtime (before decoding).

• Fundamental limit on pollution attacks: – Instead, we identify malicious nodes whenever pollution attacks take place.

– We “permanently” remove the identified malicious nodes from the overlay, so that the system is free from pollution attacks in the future.

Page 11: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

7

MIS (Malicious node Identification Scheme)

B

C

D

E

F

G

H

I

J

K

A

M

LS server‐

Page 12: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

8

MIS (Malicious node Identification Scheme)

•  Infected nodes: I, J, K, M, L

B

C

D

E

F

G

H

I

J

K

A

M

LS server‐

Page 13: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

9

B

C

D

E

F

G

H

I

J

K

A

M

LS server‐

MIS (Malicious node Identification Scheme)

•  Detect the existence of pollution attacks based on the content of decoded original blocks.

Alert (with the sequence number of the segment,

a time stamp, the reporting node’s ID)

Page 14: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

10

MIS (Malicious node Identification Scheme)

•  S server generates a ‐ random checksum for the polluted segment.

•  S server disseminates ‐ the checksum to the overlay.

B

C

D

E

F

G

H

I

J

K

A

M

LS server‐

Checksum

Page 15: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

11

MIS (Malicious node Identification Scheme)

•  The checksum can help the infected node (K, or I) to find out which neighbor (J, or F) has sent him a corrupted block.

B

C

D

E

F

G

H

I

J

K

A

M

LS server‐

Checksum

Page 16: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

MIS (Malicious node Identification Scheme)•   The Infected node (K, or I) reports the discovered suspicious 

neighbors (J, or F) to the M server‐ , and forwards the checksum to the reported suspicious neighbors (J, or F).

A

B

C

D

E

F

G

H

I

J

K

M

LS server‐

F is suspicious

JF

Suspicious node list (SNL)

12

M server‐

J is suspicious

Page 17: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

MIS (Malicious node Identification Scheme)

•   With the received checksum, an innocent suspicious node (J) can find another suspicious node (F), but the malicious node (F) cannot.

A

B

C

D

E

F

G

H

I

J

K

M

LS server‐ J

FSuspicious node list (SNL)

13

M server‐

F is suspicious

Page 18: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

MIS – Security Guarantees

• Correctness– A malicious node cannot deny having sent a corrupted

block or disparage any innocent node.• Guarantee

– When a suspicious node is reported, an evidence is shown to the M-server to demonstrate that this reported node has indeed sent out a corrupted block.

• Approaches– Public-key signature scheme

• Let each node sign the block it sends out using a public-key signature scheme, and the signature associated with the block can be used as the evidence.

• This approach requires applying public key signature on each transmitted block, introducing substantial computational delays due to the expensive signature generation and verification.

– Non-repudiation transmission protocol

Page 19: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Fig. 2: An example to illustrate network coding in P2P streaming. Each segment consists of m = 2 blocks, and each block has d = 3 codewords. Peer X receives two coded blocks e1,i, e2,i in Si from the S-server, and produces a new coded block e3,i for peer Y .

Page 20: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department
Page 21: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Non-Repudiation Transmission Protocol

λ=6 δ=3

Upstream neighbor

Downstream neighbor

X: the suspicious nodeY: the reporting node

e

Verify evidence with γ2 , γ4, γ5

Page 22: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Non-Repudiation Transmission Protocol

• Table I lists the probabilities that a malicious party succeeds in our protocol under several sample parameter selections.

• Prob X (or Prob Y) – the probability that a malicious X (or Y ) succeeds. The space overhead includes Φ(e) and Seq(e) (one byte for Seq(e)).

0 ≤ θ ≤ λ- δ

Page 23: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Evaluation

• Simulation based on real PPLive overlays obtained in our previous work  [TOMCCAP’09]– The overlay contains 1600, or 4000 nodes– Malicious nodes are picked at random– Each segment consists of 32 blocks, and each block has 256 c

odewords in GF(256)– Time taken to identify malicious nodes is less than 6 seconds

[TOMCCAP’09] L. Vu, I. Gupta, K. Nahrstedt, and J. Liang “Understanding the Overlay Characteristics of a Large scale Peer to Peer IPTV system”,  ACM TOMCCAP, 2009.‐ ‐ ‐

Page 24: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department
Page 25: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

17

Comparison

•   Online computational times: MIS (5 10us)‐ , Null key (1 2us), ‐ ‐MAC based (2ms), Homomorphic signatures or hashes (> 1s).‐•   Per block communication overhead: ‐ MIS (22B),Homomorphic signatures or hashes (128 256B), Null key and ‐ ‐MAC based (>256B).‐

Page 26: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Conclusions

• We propose a novel scheme (MIS) to limit network-coding pollution attacks by identifying malicious nodes.

• MIS can fully satisfy the requirements of P2P live streaming systems.

• MIS has high computational efficiency, small space overhead, and the capability of handling a large number of corrupted blocks and malicious nodes.

Page 27: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

References

• [5] M. Krohn, M. Freeman, and D. Mazieres, “On-the-fly Verification of Rateless Erase Codes for Efficient Content Distribution”, in Proc. IEEE Symp. on Security and Privacy (Oakland), 2004.

• [6] C. Gkantsidis, and P. R. Rodriguez, “Cooperative Security for Network Coding File Distribution”, in Proc. of IEEE INFOCOM, 2005.

• [7] Q. Li, D.-M. Chiu, and J. C. S. Lui, “On the Practical and Security Issues of Batch Content Distribution Via Network Coding”, in Proc. of IEEE International Conference on Network Protocols (ICNP’06), 2006.

• [9] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An Efficient Signature-based Scheme for Securing Network Coding against Pollution Attacks”, in Proc. IEEE INFOCOM, 2008.

• [10] E. Kehdi, and B. Li, “Null Keys: Limiting Malicious Attacks Via Null Space Properties of Network Coding”, in Proc. of IEEE INFOCOM, 2009.

• [11] Z. Yu, Y. Wei, B. Ramkumar, Y. Guan, “An Efficient Scheme for Securing XOR Network Coding against Pollution Attacks”, IEEE INFOCOM, 2009.

• [16] L. Vu, I. Gupta, K. Nahrstedt, and J. Liang, “Understanding the Overlay Characteristics of a Large-scale Peer-to-Peer IPTV System”, ACM Transactions on Multimedia Computing, Communications and Applications (TOMCCAP), 2009.

Page 28: MIS: Malicious Nodes Identification Scheme Network-Coding-Based Peer-to-Peer Streaming Qiyan Wang, Long Vu, Klara Nahrstedt, Himanshu Khurana Department

Related Works

• Homomorphic signatures or hashes [Krohn04, Gkantsidis05, Li06, Charles06, Yu08, Boneh09]– It’s computationally expensive to verify/generate the signature f

or each packet at each hop.• Null‐key based on the property of null space [Kehdi09]

– Verification key needs to be repeatedly distributed.• MAC‐based scheme [Yu09]

– Substantial communication overheads are introduced.• Error‐correction codes [Jaggi07, Kotter07]

– Achievable throughput is determined by the power of the adversary

• Combining homomorphic MAC and TESLA [Dong09]– It introduces authentication delay and is suspicious to DoS atta

cks.