Mine Road Workshop by Roger Thompson

Embed Size (px)

DESCRIPTION

Haul road construction, maintenance and repair guide.

Citation preview

  • www.mining.curtin.edu.au

    GSFMGSFM AnIntegratedApproachtoAnIntegratedApproachto MineHaulRoadDesignMineHaulRoadDesign

    RogerThompsonRogerThompson

    WesternAustralianSchoolofMinesWesternAustralianSchoolofMinesCurtinUniversityCurtinUniversity

  • www.mining.curtin.edu.au

    AimofPresentationAimofPresentation

    GSFM fourcomponentsof mineroaddesign

    GSFMandrollingresistance interactions

    Whatdoesroaddesignand constructioninvolve? Geometric Structural Functional Maintenance.Design

    components

  • www.mining.curtin.edu.au

    IntroductionIntroduction

    Poorroaddesignimpacts safety,trafficmanagement,& costpertonne hauled.

    Ideally,SHMS/SOP specificationsshouldincludea formalapproachtoroaddesign.

    Butwhatshoulddesign considerand;

    Howisitspecified? Howisconformance

    monitored?

    Engineering &Mining Journal, vol 210,n5 June 2009. Mining Media Ltd.

  • www.mining.curtin.edu.au

    RollingResistanceRollingResistance

    Primarymeasureofmineroadperformance isoftenbasedonrollingresistance Frequentlythebasisofa

    costbenefitevaluation,but

    whatisrollingresistanceandhowisitgenerated?

  • www.mining.curtin.edu.au

    RollingResistanceRollingResistance

    Rollingresistanceisthe resistancetotruckmotion duemostlyto: Roaddeformationunder

    thetyre,

    Tyre penetrationintothe road,

    Tyre deformationeffects ontheroadsurface.

  • www.mining.curtin.edu.au

    Roaddeformationundertyre pressure

    Tyre penetrationintotheroadsurface

    Tyre deformationeffectsontheroadsurface

  • www.mining.curtin.edu.au

    RollingResistanceRollingResistance

    RR%

    RR%

    GR% (+ve against the load)(-ve with the load)

    Totalresistance%=RR% GR%

  • www.mining.curtin.edu.au

    PracticalApplicationPracticalApplication

    Ramps 1%RR 10%KPH

    Surfaceroads 1%RR 26%KPH

  • www.mining.curtin.edu.au

    PracticalApplicationPracticalApplication

    Ramps 1%RR 10%KPH

    Surfaceroads 1%RR 26%KPH

    0 1 2 3 4 5 6 7 8 9 10 11 12

    0

    5

    10

    15

    20

    25

    P

    e

    r

    c

    e

    n

    t

    r

    e

    d

    u

    c

    t

    i

    o

    n

    i

    n

    s

    p

    e

    e

    d

    p

    e

    r

    1

    %

    R

    R

    i

    n

    c

    r

    e

    a

    s

    e

    (

    %

    )

    Grade (%) of road

    Effect of rolling resistance on truck speed Base case rolling resistance (RR) = 2%

    2% to 3% RR3% to 4% RR4% to 5% RR

    Rear dump truck (electric drive) with 4,27kW/t GVM

    RR%

    GR%

    RR%

    GR%

    Performance Chart Liebherr T282B 4.32kW(net)/tonne GVM50/80R63 Tyres and 37.33:1 Drive ratio

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    0 10 20 30 40 50 60 70 80 90

    Speed (km/h)

    R

    i

    m

    p

    u

    l

    l

    (

    k

    N

    )

    PropulsionRetardPropulsion (trolley)

    Full truck(GVM = 592 tonnes)

    Empty truck(EVM = 229 tonnes)

    E

    f

    f

    e

    c

    t

    i

    v

    e

    G

    r

    a

    d

    e

    (

    %

    )

    20 18 16 14 12 10 8 6 4 2 1

    Effective grade (UPHILL) % = Grade % + rolling resistance%Effective grade (DOWNHILL)% = Grade % rolling resistance%

  • www.mining.curtin.edu.au

    HaulRoadDesignHaulRoadDesign

    Howdowedeveloparoad designwhich; Maximises safety Maximises utilityof

    environment(materialsand equipment),and

    Minimises rollingresistance andtotalroaduserscosts?

  • www.mining.curtin.edu.au

    HaulRoadDesignHaulRoadDesign

    Fromasafetyperspective; Geometricdesign

    Excessiveshearforcesand truckinstability.

    StructuralDesign Damage totyre andchassis,truck instability,missalignment.

    FunctionalDesign wet slipperiness,tractionand skidresistance,dust.

    MaintenanceDesign runningsurface.

  • www.mining.curtin.edu.au

    HaulRoadDesignHaulRoadDesign

    Fromarollingresistance perspective,minimise; deformationundertyre

    StructuralDesign

    penetrationandtyre deformation Functional Design

    roaddeteriorationrate MaintenanceDesign

  • www.mining.curtin.edu.au

    ImprovingMineHaulRoadsImprovingMineHaulRoads

    Unsprung mass acceleration due to two 100mm road defects374t GVM RDT

    -15

    -10

    -5

    0

    5

    10

    15

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Arbitrary time (s)

    A

    c

    c

    e

    l

    e

    r

    a

    t

    i

    o

    n

    (

    m

    /

    s

    2

    )

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Measured truck response Actual road defect

    R

    o

    a

    d

    d

    e

    f

    e

    c

    t

    h

    e

    i

    g

    h

    t

    (

    m

    )

    Unsprung mass acceleration due to two 100mm road defects374t GVM RDT

    -15

    -10

    -5

    0

    5

    10

    15

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Arbitrary time (s)

    A

    c

    c

    e

    l

    e

    r

    a

    t

    i

    o

    n

    (

    m

    /

    s

    2

    )

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Measured truck response Actual road defect

    R

    o

    a

    d

    d

    e

    f

    e

    c

    t

    h

    e

    i

    g

    h

    t

    (

    m

    )

  • www.mining.curtin.edu.au

    ImprovingMineHaulRoadsImprovingMineHaulRoads

    First,youneedtoknowwhat iswrongbeforeyoucan decidedtofixit.

    Realtimemonitoringcanbe usedtorecordthetruckand tyreresponsetotheroad, andwhenlinkedwithGPS, givesthefirstindicationof WHEREandWHATthehaul roadproblemsare.

    2 6 1 8 0 0 0 .0 0

    2 6 1 9 0 0 0 .0 0

    2 6 2 0 0 0 0 .0 0

    Truck path

    start

    Defect 0.05 to 0.10m

    Defect 0.11 to 0.20m

    Defect 0.21 to 0.30m

    Defect 0.31 to 0.40mDefect 0.41 to 0.50m

  • www.mining.curtin.edu.au

    ImprovingMineHaulRoadsImprovingMineHaulRoads

    Thecureisnotnecessarily justmorefrequent maintenance.

    Noamountofmaintenance willfixapoorlydesigned road.Eachcomponentofthe roadinfrastructuremustbe correctlyaddressedatthe designstage.

  • www.mining.curtin.edu.au

    ImprovingMineHaulRoadsImprovingMineHaulRoads

    Investigatetherootcauseof theunder performance before decidingona remediationstrategy.

    Followanintegrated approachtoroaddesign, examineeachdesign component.

  • www.mining.curtin.edu.au

    BASIC HAUL ROAD DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

  • www.mining.curtin.edu.au

    IntegratedRoadHaulDesignIntegratedRoadHaulDesignBASIC HAUL ROAD

    DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

    M

    O

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    GEOMETRIC DESIGN GUIDELINES

  • www.mining.curtin.edu.au

    GeometricDesignGeometricDesign

    X

  • www.mining.curtin.edu.au

    IntegratedHaulRoadDesignIntegratedHaulRoadDesignBASIC HAUL ROAD

    DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

    M

    O

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    STRUCTURAL DESIGN GUIDELINES

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign

  • www.mining.curtin.edu.au

    IntegratedRoadHaulDesignIntegratedRoadHaulDesignBASIC HAUL ROAD

    DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

    M

    O

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    LFUNCTIONAL DESIGN GUIDELINES

  • www.mining.curtin.edu.au

    FunctionalDesignFunctionalDesign

  • www.mining.curtin.edu.au

    IntegratedHaulRoadDesignIntegratedHaulRoadDesignBASIC HAUL ROAD

    DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    G

  • www.mining.curtin.edu.au

    Maintenance frequency

    Rolling resistance

    Max

    Min

    Minimum totalcost solution

    Max

    Min

    Costs

  • www.mining.curtin.edu.au

    GeometricDesignGeometricDesign

    Geometricdesign; Determinestheroadlayout

    oralignment,both horizontallyandvertically.

    Practically,weoftenneed tocompromisebetweenan ideallayoutandwhatmine geometryandhauling economicswillallow.

  • www.mining.curtin.edu.au

    Establish start and end Establish start and end points of road.points of road. Feasible (mine plan) and Feasible (mine plan) and

    economic route (topography) economic route (topography) selection.selection.

    Optimise truck performance Optimise truck performance against route grades and against route grades and speeds and construction speeds and construction costs.costs.

    Design horizontal and Design horizontal and vertical alignments. Check vertical alignments. Check sight distances throughout.sight distances throughout.

    Check additional road Check additional road geometric requirements geometric requirements against ALL roadagainst ALL road--user user vehicles.vehicles.

    Survey and peg the route Survey and peg the route centre lines. Test soil centre lines. Test soil properties for Structural properties for Structural Design phaseDesign phase

    Check drainage requirements Check drainage requirements with topographic contours in with topographic contours in vicinity of route.vicinity of route.

    Assess junction and Assess junction and intersection layouts and intersection layouts and associated safety associated safety components.components.

  • www.mining.curtin.edu.au

    GeometricDesignVerticalGeometricDesignVerticalAlignmentAlignment

    Alignmentoftheroadin; Thevertical plane here

    wedesignforsafeandefficient; Stoppingandsight

    distances(howreliablycanwedeterminethesevalues??),

    Optimumrampgradientsandverticalcurvetransitions.

  • www.mining.curtin.edu.au

    GeometricDesignVerticalGeometricDesignVerticalAlignmentAlignment

    Stoppingdistances; Truckmanufacturersand

    sitetestingshouldconfirmthedistancesrequiredtobringatrucktoastopundervariousconditionsofload(NBempty),speed,gradeandtraction wet,dry,wearingcourse(s).

  • www.mining.curtin.edu.au

    GeometricDesignVerticalGeometricDesignVertical AlignmentAlignment

    Sightdistances;precautions shouldbeappliedwhensight distancefallsbelowstopping distance; Benchedgeobstructionsrequire

    laybacksorbatter,

    Verticalcurves crestsoften requireflatteningtoimprove sightdistances,

    Useaminimumverticalcurve lengthof150mandradiusof 1500mfordesignwork.

    Applyspeedlimits.

  • www.mining.curtin.edu.au

    GeometricDesignVerticalGeometricDesignVertical AlignmentAlignment

    Sightdistancesandmachine factors;

    Inadditiontosightdistances alsoconsiderdriverblind spots wherethedriverhas limitedornosightofpartsof theroad.

    Final Report Blind Area Study Large Mining Equipment, Contract Report 200-2005-M-12695, CDC/NIOSH, USA, 2006.

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalGeometricDesignHorizontal AlignmentAlignment

    Alignmentoftheroadinthe horizontalplane herewe designforsafeandefficient; Roadwidth, Curvatureandsuper

    elevations,

    Crownorcrossfall.

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalAlignmentGeometricDesignHorizontalAlignment

    Ramp W3Ramp W3

    Ramp W5Ramp W5

    Ramp W4Ramp W4

    Ramp W3Ramp W3

    Ramp W5Ramp W5

    Ramp W4Ramp W4

    50m

    50m

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalAlignmentGeometricDesignHorizontalAlignment

    Main haul roadMain haul road

    Ramp W1 (E)Ramp W1 (E)Ramp W1 (W)Ramp W1 (W)

    Main haul roadMain haul road

    Ramp W1 (E)Ramp W1 (E)Ramp W1 (W)Ramp W1 (W)

    50m

    50m

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalGeometricDesignHorizontal AlignmentAlignment

    Widthofroad; Sufficientfortherequired

    numberoflanes (pavementwidth),and shoulders(carriageway width)andallthe associatedsafetyand drainagefeatures (formationwidth).

    3.5W why?Effectof largervehicles.

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalAlignmentGeometricDesignHorizontalAlignment

    Thewidestvehicles proposeddeterminethe pavementwidth.

    TheTablesummarizesthese designroadwaywidths.

    Truck images courtesy Caterpillar Inc

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalGeometricDesignHorizontalAlignmentAlignment

    Curvesandswitchbacks; Designedwiththe

    maximumradiuspossibleandbekeptsmoothandconsistent.

    Changesincurveradii(compoundcurves)shouldbeavoided.Alargercurveradiusallowsahighersaferoadspeedandincreasedtruckstability >200mminimumradiusideal.

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalAlignmentGeometricDesignHorizontalAlignment

    Superelevation; Bankingappliedonthe

    outsideofacurvetoallow thetrucktomaintain stabilityinthecurveat speed.

    Shouldnotexceed5%7%, unlesshighspeedhaulageis maintainedandthe possibilityofsliding minimizedbyusingmedian berms tosplitsuper elevations.ReferTable.

    XX

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalGeometricDesignHorizontal AlignmentAlignment

    Crossfall(usewithextreme caution),crownorcamber; Critical tothedesignand

    successfuloperationof mineroads.

    Ensureswaterdoesnot gatheronandpenetrate intotheroadsurface.

  • www.mining.curtin.edu.au

    GeometricDesignHorizontalGeometricDesignHorizontal AlignmentAlignment

    Crossslopeshouldbeused withcaution,possibilityof collisionincreasesorrunoff benchedge.

    Largedeflectionberms shouldbeplacedattheroad centerandedge.

    Crossslopeeasierto maintain.

    Center-line

    Drain

    2-3% 2-3%

    2-3%

    Camber (crown) example

    Cross-slope example

    DrainDrain

    DrainDrain

  • www.mining.curtin.edu.au

    GeometricDesignGeometricDesign

    Safetyberms; A'crest'orroadedgeberm

    willnoteffectivelystop trucks(especiallyhigh speedladenorunladen trucks)fromleavingthe road.

    Atbest,theywillprovide limiteddeflectionand warningtothedriverthat thetruckpathneeds correcting.

  • www.mining.curtin.edu.au

    GeometricDesignGeometricDesign

    Berm slopeshouldbeassteep aspossible(1.5V:1Hideally), butensurestabilityand maintenanceofheight.

    Forlargehaultrucks,theberm heightshouldbeatleast50% 66%ofthetruckwheel diameter.

    Steepberm sideaidsdeflection. Flatterberms allowthetruckto climb andoverturn.

    Medianberms considertraffic managementimplications.

    Outslope

    Bench face

    Height

    Conventional berm

    Median berm

    Section A-A

    Section on A-A

    Downgrade unladenMedian berm Conventional berm

    Outslope

  • www.mining.curtin.edu.au

    GeometricDesignGeometricDesign

    Alsoincludedinthe geometricdesignisdrainage; Nomatterhowgoodthe

    design,waterwillalways damageamineroad. Keep waterOFFtheroads orat theveryleastleadwater offtheroadassoonas possible.

    Investigategeometry AND localtopographicdrainage patterns.

  • www.mining.curtin.edu.au

    IntegratedHaulRoadDesignIntegratedHaulRoadDesignBASIC HAUL ROAD

    DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

    M

    O

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    STRUCTURAL DESIGN GUIDELINES

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign

    Structuraldesignreferstotheloadcarryingcapacityoftheroad;

    Betterpavementresponsetoappliedloads,

    Reduceddeflectiononsurface,betterwearingcourseperformance

    Eliminatedeformationinsubgradeorinsitu.

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign

    Twoapproaches; Mechanisticdesign

    approachusingpavementlayerlimitingverticalstraincriteria&

    CBRcovercurveapproachusingpavementlayerCBRvalues.

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign MechanisticMechanistic

    Mechanisticdesignapproachusingpavementlayerlimitingverticalstraincriteria; Limitingstraincriteria

    tailoredtotrafficvolumes,typeandlifeofmineroad(ramp,pitormainhaul).

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign MechanisticMechanistic

    Wearing course

    Selected blasted waste rock

    (structural) layer

    In-situ

    The strains resulting from the truck wheel loads decrease with depth

    except where these strain fields overlap. Here, higher

    strains are found and if more than 2000 microstrains the in-situ material is liable

    to collapse leading to structural failure.

    Wearing course

    Selected blasted waste rock

    (structural) layer

    In-situ

    The strains resulting from the truck wheel loads decrease with depth

    except where these strain fields overlap. Here, higher

    strains are found and if more than 2000 microstrains the in-situ material is liable

    to collapse leading to structural failure.

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign MechanisticMechanisticHaul Road Category

    Maximum permissible vertical strains can also be determined from (kt/day x performance index).

    Where performance index is defined as;1 Adequate but fairly maintenance intensive,2 Good with normal maintenance interventions,3 Outstanding with low maintenance requirements .

    CategoryI

    Permanentlifeofmine highvolumemainhauling roadsandrampsin and expit.Operatinglife>20 years

    CategoryII

    Semipermanenthigh volumeramproadsinpit. Operatinglife>10years

    CategoryIII

    Semipermanentmedium tolowvolumeinpitbench access,expitdump,or ramproads.Operatinglife 50kt/day)or

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign MechanisticMechanistic

    Whenabaselayerofselected blastedwasterockisusedin thestructure,amechanistic approachismoreappropriate.

    Theselectedwasterocklayeris locatedunderthewearing course, Roadperformanceis

    significantlyimproved, primarilyduetotheload carryingcapacityofthe wasterocklayer.

  • www.mining.curtin.edu.au

    PracticalApplicationPracticalApplication MechanisticMechanistic

    Designchart(examples)are basedonafullyladenhaul truck,atmaximumGVM,(tons) withstandardradialtyres, inflatedto800kPa.

    Theroaddesignincorporates 200mmofsheetingwith CBR=80%,aselectedblasted wasterockbaselayer,builton 3mofinsitumaterialwiththe indicatedEmodulusshownon thecharts.

    0

    200

    400

    600

    800

    1000

    1200

    1400

    10 100 1000

    T

    h

    i

    c

    k

    n

    e

    s

    s

    (

    m

    m

    )

    E Modulus (MPa)

    CAT789C Base Layer Thickness Design800kPa tyre pressure, fully laden truck at OEM GVM

    For limiting strains of 2000

    Category I Category II Category III

    Wearingcourse200mm

    E=350MPa

    Baselayerthickness

    E=3000MPa

    InsituThickness3000mm

    Eeff Modulus of In-situ material (MPa)

  • www.mining.curtin.edu.au

    0

    200

    400

    600

    800

    1000

    1200

    1400

    10 100 1000

    T

    h

    i

    c

    k

    n

    e

    s

    s

    (

    m

    m

    )

    E Modulus (MPa)

    CAT789C Base Layer Thickness Design800kPa tyre pressure, fully laden truck at OEM GVM

    For limiting strains of 2000

    Category I Category II Category III

    Wearingcourse200mm

    E=350MPa

    Baselayerthickness

    E=3000MPa

    InsituThickness3000mm

    Eeff Modulus of In-situ material (MPa)

  • www.mining.curtin.edu.au

    StructuralDesignStructuralDesign CBRCoverCurveCBRCoverCurve

    CBRcovercurvedesign approachusespavement layerCBRvalues; Thicknessofsuccessive

    layersbasedonCBR (strength)ofunderlying layerandtruckwheelload (tonnes).

    55 40 25 150.0

    500.0

    1000.0

    1500.0

    2000.0

    2500.0

    3000.0

    3500.0

    4000.0

    4500.0

    1 10 100

    CoverThickness(mm)

    CaliforniaBearingRatioCBR(%)

    . 1 2 3 4 6 8 . 10 , 20 40 60 80 100

    10 14 21 28 35 41 55 69 104 138 207 276 345 414 . .

    CBR (%)

    Modulus (Eeff)(MPa) .

    TruckTruckwheelGVM(t)load(t)9015

    150 25

    240 40

    320 55

    390 65450 75510 85570 95630 105

  • www.mining.curtin.edu.au

    In-situ CBR 7%

    Sub-base CBR 30%

    Base CBR 55%

    Wearing course CBR 80%

    Compacted In-situ CBR 13%

  • www.mining.curtin.edu.au

    IntegratedRoadHaulDesignIntegratedRoadHaulDesignBASIC HAUL ROAD

    DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

    M

    O

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    LFUNCTIONAL DESIGN GUIDELINES

  • www.mining.curtin.edu.au

    FunctionalDesignFunctionalDesign

    Wearingcoursematerial selection.Designfor; Improvedtraction,skid

    resistance,reduceddust,

    Reducedrollingresistance throughreducedwearing coursedefects,

    Reduceddeterioration ratesandmaintenance frequency.

  • www.mining.curtin.edu.au

    Here,thestonesinthemix or aggregate istoobig thiscant easilybegradedandifitis,the largestoneswillcomeloose seeding potholesanddamaging trucktyres.

    Inthiscase thewearing coursehastoomuchfine materialanditformsa slipperysoftlayeronthe road.Carryover?

  • www.mining.curtin.edu.au

    FunctionalDesignFunctionalDesign

    Thisisprobablyagoodmixofcrushedrocktouse,everythingsmallerthan40mminsizeandnottoomuchfinematerial(

  • www.mining.curtin.edu.au

    FunctionalDesignFunctionalDesign

    Asmalljawcrushercanbeused toprepareblastedrockasa wearingcourseaggregate, ofteninamixofoneormore othermaterialstoformthe finalproduct.

    Itisalsousefulforcreatinga fineaggregatefromwasterock tobeplacedasadressingin loadingareas toreducetyre damageintheseareas.

  • www.mining.curtin.edu.au

    FunctionalDesignFunctionalDesign

    Correctwearingcourse materialselectionwill; Reduceroadrolling

    resistance through reducedwearingcourse defects &

    Reduceroaddeterioration ratesandmaintenance frequency.

    Wearing Course Selection

    0

    50100

    150

    200

    250300

    350

    400

    0 5 10 15 20 25 30 35 40 45 50

    Grading Coefficient

    S

    h

    r

    i

    n

    k

    a

    g

    e

    P

    r

    o

    d

    u

    c

    t

    .

    Recommended (1) Recommended (2)

    Dustiness Slippery when wet

    Loose material

    Loose stonesTyre damage Corrugates

  • www.mining.curtin.edu.au

    FunctionalDesignFunctionalDesignWearing Course Selection

    0

    50100

    150

    200

    250300

    350

    400

    0 5 10 15 20 25 30 35 40 45 50

    Grading Coefficient

    S

    h

    r

    i

    n

    k

    a

    g

    e

    P

    r

    o

    d

    u

    c

    t

    .

    Recommended (1) Recommended (2)

    Dustiness Slippery w hen w et

    Loose material

    Loose stonesTyre damage Corrugates

  • www.mining.curtin.edu.au

    PracticalApplicationPracticalApplication

    050

    100150200250300350400450500550

    0 10 20 30 40 50

    Grading coefficient

    S

    h

    r

    i

    n

    k

    a

    g

    e

    p

    r

    o

    d

    u

    c

    t

    .

    DustinessWet skid resistance

    Loosestoniness

    Corrugations

    Loose material

    Dry skid resistance

    1

    2

  • www.mining.curtin.edu.au

    PracticalApplicationPracticalApplication

    050

    100150200250300350400450500550

    0 10 20 30 40 50

    Grading coefficient

    S

    h

    r

    i

    n

    k

    a

    g

    e

    p

    r

    o

    d

    u

    c

    t

    .

  • www.mining.curtin.edu.au

    DustPalliativesDustPalliatives

    Dustiscausedthroughloss offines,soconsider specifically; Wearingcoursematerial

    selection; Sizedistribution,clay

    content,

    Restraintoffines, Trafficvolumes, Climaticconditions.

  • www.mining.curtin.edu.au

    DustPalliativesDustPalliatives

    Allsuppressionsystemsaim tominimise erosivity ofthe wearingcourse.Options include; Improvedwearingcourse

    material,

    Regularwatering, Useofchemical

    suppressants.

  • www.mining.curtin.edu.au

    DustPalliativesDustPalliatives

    Chemicalpalliativesavailable include; Water/wettingagents,

    Hygroscopicsalts, Lignosulphonates, Modifiedwaxes, Polymers, Tar/bitumenproducts, Sulphonated oils, Enzymes.

  • www.mining.curtin.edu.au

    DustPalliativesDustPalliatives

    Useofchemicaldust suppressants; Shouldbeconsideredonlyas

    anadjuncttoother methods,

    Chemicaldustsuppressants havealimitedlifeandwill requireregularapplications,

    Variousgenerictypesto choosefrom,basedmainly onclimaticconditionsand wearingsurfacematerial.

  • www.mining.curtin.edu.au

    DustPalliativesDustPalliatives

    Trialachemicaldust suppressantfirstbefore makingafirm commitment,

    Carefulattentionshouldbe giventowholeoflife costingbeforeusinga chemicaldustsuppressant.

  • www.mining.curtin.edu.au

    DustPalliativesDustPalliatives

    Themostappropriate selectionandmanagement strategyshouldconsider; Safetyandhealthbenefits, Roadmanagement

    philosophy,

    Improvedcostefficiency.

    Locality Data

    Equipment Data

    Water Data

    Determine Cost of Establishment

    Determine Cost of Water-based Spraying

    Summarise Annual Costs (Application and Road Maintenance)

    Method selection

    Cost ($/kilo-liter) and application rates (l/m2)

    Road, Climate, Wearing course parametersHours per day of dust control required

    Productivity and operating costs of road (re)-construction, maintenance and (spraying) equipment

    Palliative Data

    Cost ($/litre) and application rates (establishment and rejuvenation)

    Determine Cost of Rejuvenation (re-application) and Interval

    Determine Wearing Course Maintenance Interval and Cost with

    Palliative Applied

    Determine Wearing Course Maintenance Interval and Cost with

    Water-based Spraying

    Set Maximum Dust Defect Allowable

  • www.mining.curtin.edu.au

    Locality Data

    Equipment Data

    Water Data

    Determine Cost of Establishment

    Determine Cost of Water-based Spraying

    Summarise Annual Costs (Application and Road Maintenance)

    Method selection

    Cost ($/kilo-liter) and application rates (l/m2)

    Road, Climate, Wearing course parametersHours per day of dust control required

    Productivity and operating costs of road (re)-construction, maintenance and (spraying) equipment

    Palliative Data

    Cost ($/litre) and application rates (establishment and rejuvenation)

    Determine Cost of Rejuvenation (re-application) and Interval

    Determine Wearing Course Maintenance Interval and Cost with

    Palliative Applied

    Determine Wearing Course Maintenance Interval and Cost with

    Water-based Spraying

    Set Maximum Dust Defect Allowable

  • www.mining.curtin.edu.au

    IntegratedHaulRoadDesignIntegratedHaulRoadDesignBASIC HAUL ROAD

    DESIGN DATA

    STRUCTURAL DESIGN GUIDELINES

    GEOMETRIC DESIGN GUIDELINES

    FUNCTIONAL DESIGN GUIDELINES

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    GIS PERFORMANCE

    OPTIMUM

    AND

    DELIVERING MINIMUM TOTAL

    ROAD-USER COSTS?

    MOST COST EFFICIENT SOLUTION TO HAUL ROAD DESIGN AND OPERATION

    MAINTENANCE MANAGEMENT

    GUIDELINES MO

    D

    I

    F

    Y

    W

    E

    A

    R

    I

    N

    G

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    O

    U

    R

    S

    E

    M

    A

    T

    E

    R

    I

    A

    L

    C

    H

    E

    M

    I

    C

    A

    L

    P

    A

    L

    L

    I

    A

    T

    I

    O

    N

    O

    R

    W

    A

    T

    E

    R

    -

    B

    A

    S

    E

    D

    S

    P

    R

    A

    Y

    I

    N

    G

  • www.mining.curtin.edu.au

    MaintenanceManagementMaintenanceManagement

    Maintenancedesignand management; Routineroadmaintenance

    asaresultofprogressive wearingcourse deterioration. Asatisfactoryroaddesign

    willrequireminimum maintenance.

    Toofrequent maintenance?Review designdatatofindrootof problem.

  • www.mining.curtin.edu.au

    MaintenanceManagementMaintenanceManagement

    Maintenance frequency

    Rolling resistance

    Max

    Min

    Minimum totalcost solution

    LOW VOLUME SURFACE

    ROADS

    Max

    Min

    Costs

    Maintenance frequency

    Rolling resistance

    Max

    Min

    Minimum total

    cost solution - RAMPS

    Max

    Min

    Costs

    Maintenance frequency

    Rolling resistance

    Max

    Min

    Minimum totalcost solution

    Max

    Min

    Costs

  • www.mining.curtin.edu.au

    MaintenanceManagementMaintenanceManagementPercentage increase in total road-user costs with

    maintenance interval

    05

    10152025303540

    0 1 2 3 4 5 6 7 8 9 10

    Days between maintenance

    P

    e

    r

    c

    e

    n

    t

    c

    h

    a

    n

    g

    e

    B02 B03 B04B05 S Ramp

  • www.mining.curtin.edu.au

    PracticalApplicationsPracticalApplications

    Whyisthesegment maintenanceintensive? Poordesignand/orbuild

    specs; Geometrics, Structure(layerworks

    andmaterials),

    Functional(wearing course surfacing materials).

  • www.mining.curtin.edu.au

    BenchmarkingRollingBenchmarkingRolling ResistanceResistance

    Roadperformance evaluation, Usedefectdegreeand

    extenttodetermineRR%.

  • www.mining.curtin.edu.au

    Defect extentDefect extent % road area % road area effectedeffected

    Extent Extent scorescore

    Not seen or isolated onlyNot seen or isolated only 60 55

  • www.mining.curtin.edu.au

  • www.mining.curtin.edu.au

    PracticalApplicationPracticalApplication

    DefectDefect Degree Degree (1(1--5)5)

    ExtentExtent(1(1--5)5)

    DegreeDegreexx

    ExtentExtent

    PotholesPotholes 55 11 55CorrugationsCorrugations 33 33 99RuttingRutting 33 55 1515Loose materialLoose material 55 22 1010Stones Stones -- fixedfixed 55 22 1010

    Total scoreTotal score 4949

  • www.mining.curtin.edu.au

    PracticalApplicationPracticalApplication

    49

    3,25%

  • www.mining.curtin.edu.au

    Percentage increase in total road-user costs with maintenance interval

    05

    10152025303540

    0 1 2 3 4 5 6 7 8 9 10

    Days between maintenance

    P

    e

    r

    c

    e

    n

    t

    c

    h

    a

    n

    g

    e

    B02 B03 B04B05 S Ramp

  • www.mining.curtin.edu.au

  • www.mining.curtin.edu.au

    ResourcesResources

    Formoreinformationonissuedraisedtoday; http://mining.curtin.edu.au/people clickonRJTfor

    furtherlinkstohaulroadpublications

    www.edumine.com searchforhaulroaddesignand construction Uni BritishColumbiaandABET/ISO/IACET accreditedselfstudycourse.

    www.smartmines.com/mhroad/guidelines.pdf haul roaddesignguidelines(2000)forOilSandsMines (AlbertaCanada).

  • www.mining.curtin.edu.au

    ResourcesResources

    www.cdc.gov/niosh/mining/pubs searchfor IC8758.pdf 1977USBMhaulroaddesignguidelines

    www.mhsa.gov/readroom/handbook searchforph99I 4.pdfdesignandauditguidelinesformineroads

    www.smenet.org SMEMiningEngineering Handbook,ThirdEdition,2011,Ch10MineHaulRoads

    Copyofpresentationandfullsupportingnotesavailable throughDEEDIMinesSafetyandHealthwebsite.