5
THE AUSTRALIAN NATIONAL UNIVERSITY Mid-Semester Examination – Second Semester 2011 – Make-up version 1: solutions DISCRETE MATHEMATICAL MODELS (MATH1005) Writing p eriod: 2 Hours duratio n Study per iod: 15 Minutes dur ation No permitted material. Calculators are not allowed. Notes to candidates : Begin each question on a new page and label it clearly. All questions are to be completed in the script book provided, and not on the examination paper. The maximum grade obtainable for each question is 2.5. The maximum grade obtainable for the exam is 30. Page 1 of 5 - Discrete Mathematical Models - (MATH1005)

MidSem11 Alt Sol

Embed Size (px)

Citation preview

Page 1: MidSem11 Alt Sol

8/12/2019 MidSem11 Alt Sol

http://slidepdf.com/reader/full/midsem11-alt-sol 1/5

THE AUSTRALIAN NATIONAL UNIVERSITY

Mid-Semester Examination – Second Semester 2011 – Make-up version 1:solutions 

DISCRETE MATHEMATICAL MODELS

(MATH1005)

Writing period: 2 Hours duration 

Study period: 15 Minutes duration 

No permitted material.Calculators are not allowed.

Notes to candidates :

Begin each question on a new page and label it clearly.

All questions are to be completed in the script book provided, and not on the examination 

paper.

The maximum grade obtainable for each question is 2.5.

The maximum grade obtainable for the exam is 30.

Page 1 of 5 - Discrete Mathematical Models - (MATH1005)

Page 2: MidSem11 Alt Sol

8/12/2019 MidSem11 Alt Sol

http://slidepdf.com/reader/full/midsem11-alt-sol 2/5

1.  Negate the following statement:

∃n ∈ N\{1, 2} ∃x,y,z  ∈ N   xn + yn = z n.

(∃n ∈ N\{1, 2} ∃x,y,z  ∈ N   xn+yn = z n) ≡ (∀n ∈ N\{1, 2} ∀x,y,z  ∈ N   xn+yn = z n).

2.   Let   p,q,r  be statements. Prove the following logical equivalence, then draw the corre-sponding electronic circuit.

( p ∧ q ) ∨ ( p ∧ ¬q ∧ r) ≡ p ∧ (q ∨ r).

 p q r p ∧ q   ¬q p ∧ ¬q p ∧ ¬q ∧ r q ∨ r   ( p ∧ q ) ∨ ( p ∧ ¬q ∧ r)   p ∧ (q ∨ r)0 0 0 0 1 0 0 0 0 00 0 1 0 1 0 0 1 0 00 1 0 0 0 0 0 1 0 00 1 1 0 0 0 0 1 0 0

1 0 0 0 1 1 0 0 0 01 0 1 0 1 1 1 1 1 11 1 0 1 0 0 0 1 1 11 1 1 1 0 0 0 1 1 1

(b)

p

q

r

3.   Let A be a finite set. Prove that

P (A × {0}) = {∅} ∪ {T  × {0} ;   T  ⊆  A , T  = ∅}.

Let  S  ∈ P (A × {0}) be non-empty. Define  T   = {a ∈ A  ; (a, 0) ∈ S }. Then, for  x = (a, 0) ∈A × {0}

x ∈ T  × {0} ⇐⇒   a ∈ T  ⇐⇒   x ∈ S.

So  S  ∈ {T  × {0} ;   T  ⊆  A , T  = ∅}. This proves that

P (A × {0}) ⊆ {∅} ∪ {T  × {0} ;   T  ⊆  A , T  = ∅}.

Now let  T  ⊆  A. Then  T  × {0} = {(a, 0) ∈ A × {0} ;   a ∈ T } ⊆ A × {0}.

4.   Let A, B ,C  be subsets of a universe of discourse  U . Find a counterexample to

A ∩ Bc ∩ C  = A ∩ B ∩ C c.

Page 2 of 5 - Discrete Mathematical Models - (MATH1005)

Page 3: MidSem11 Alt Sol

8/12/2019 MidSem11 Alt Sol

http://slidepdf.com/reader/full/midsem11-alt-sol 3/5

Take  A  = {1}, B  = ∅, C  = {1, 2}, U  = {1, 2, 3}. Then A ∩Bc∩C  = {1} and  A ∩B ∩C c = ∅.

5.   Let U  be a non-empty finite set of finite sets. Define  R ⊆ U × U   by

ARB  ⇐⇒   P (A) ⊆ P (B).

Prove that  R  is a partial order relation.Let  A ∈ U .   P (A) = P (A), so  ARA. Therefore  R  is reflexive.Let A, B ∈ U  and assume that  ARB and B RA, i.e.   P (A) ⊆ P (B) and P (B) ⊆ P (A). ThenP (A) =   P (B). Since   A ∈   P (A) =   P (B), we have   A ⊆   B. Similarly   B ⊆   A. ThereforeB = A. This proves that  R  is antisymmetric.Let   A,B ,C  ∈ U , and assume that   ARB   and   BRC . Then   P (A) ⊆   P (B) ⊆   P (C ). SoP (A) ⊆ P (C ), and thus  ARC . This proves that  R  is transitive.The relation  R is thus a partial order relation.

6.   Let F  ⊆ Z× Z3  be defined by

xF y  ⇐⇒   x ≡ y  (mod 3).

(a) Prove that  F   is a function.

(b) Determine whether or not  F   is onto.

(c) Determine whether or not  F   is one-to-one.

(a) Let x ∈ Z. There exists q  ∈ Z and y ∈ Z3 such that x  = 3q +y, by the division algorithm.Therefore   x ≡   y  (mod 3), i.e.   xF y. Now, let   x ∈  Z  and   y, z  ∈  Z3  be such that   xF y   andxF z . Then  x ≡ y  (mod 3) = z  (mod 3), so  x =  z . The relation  F   is thus a function.(b) We have  F (1) = 1,  F (2) = 2, and  F (3) = 3, so

∀y ∈ Z3   ∃x ∈ Z   F (x) = y,

i.e  F   is onto.(c) We have 4 = 1 + 3 ≡ 1 (mod 3), so  F (4) = 1 = F (1). Therefore  F  is not one-to-one.

7.

(a) Compute  A116 × 1316.

(b) Write AE 316   in base 2.

(c) Write −7 as four binary digits, using the usual encoding of  Z.

Page 3 of 5 - Discrete Mathematical Models - (MATH1005)

Page 4: MidSem11 Alt Sol

8/12/2019 MidSem11 Alt Sol

http://slidepdf.com/reader/full/midsem11-alt-sol 4/5

(a)  A116 × 1316  = 1E 316 + A1016 =  B F 316.(b)  AE 316 = 1010111000112.(c) −7 = −1112 = −(01102 + 00012). Therefore −7 is encoded as 11001.

8.

(a) Compute 643 × 327 (mod 5).

(b) Find a number  x ∈ Z such that  x ≥ 26 and

xd ≡ x  (mod 11)

for all  d ∈ N.

(a) 643 × 327 (mod 5) = 3 × 6 (mod 5) = 1 (mod 5).

(b) We want  xd−1

≡ 1 (mod 11). 34 ≡ 1 (mod 11) so 34d−1

≡ 1d−1

(mod 11) = 1 (mod 11).

9.  Let (xn)n∈N ⊆ Q  be such thatxn+1 =  x2

n  ∀n ∈ N ∪ {0},

x0  = 2.

Prove that  xn = 22n ∀n ∈ N.Let  P (n) : xn = 22n. We have  x1 =  x2

0 = 4 = 221, so  P (1) holds.

Let k

 ∈N

 and assume P 

(1) ∧P 

(2) ∧...

∧P 

(k

).Then xk+1 =  x2k

 = (22k

)2, since  P (k) holds.Therefore xk = 22×2k = 22k+1, i.e.   P (k + 1) holds.By induction, this gives  xn = 22n ∀n ∈ N ∪ {0}.

10.  Let (xn)n∈N ⊆ R be such that

xn+2 − 4xn+1 + xn = 0   ∀n ∈ N ∪ {0},

x0 = 2,

x1 = 2√ 

3.

Prove that  xn = (2 +√ 

3)n − (2 − √ 3)n ∀n ∈ N.

Let  P (n) : xn = (2 +√ 

3)n − (2 − √ 3)n. We have  x1  = 2

√ 3 = (2 +

√ 3)1 − (2 − √ 

3)1.

Let  k ∈ N and assume  P (1) ∧ P (2) ∧ ... ∧ P (k).Then xk+1 = 4xk − xk−1 = 4(2 +

√ 3)k − (2 − √ 

3)k − (2 +√ 

3)k−1 + (2 − √ 3)k−1, since  P (k)

and  P (k − 1) hold. Therefore

xk+1 = (2+√ 

3)k−1(4(2+√ 

3)−1)−(2−√ 

3)k−1(4(2−√ 

3)−1) = (2+√ 

3)k−1(7+4√ 

3)−(2−√ 

3)k−1(7−

Page 4 of 5 - Discrete Mathematical Models - (MATH1005)

Page 5: MidSem11 Alt Sol

8/12/2019 MidSem11 Alt Sol

http://slidepdf.com/reader/full/midsem11-alt-sol 5/5

Now remark that (2 +√ 

3)2 = 7 + 4√ 

3 and (2 − √ 3)2 = 7 − 4

√ 3. This implies that

xk+1 = (2 +√ 

3)k+1 − (2 − √ 3)k+1, i.e.   P (k + 1) holds.

By induction, this gives  xn = (2 +√ 

3)n − (2 − √ 3)n ∀n ∈ N.

11.  Let (x, y) ∈ Q2

. Compute   1 22 1

3  x

y

.

  1 22 1

3  x

y

=

  5 44 5

  1 22 1

  x

y

=

  13 1414 13

  x

y

=

  13x + 14y

14x + 13y

.

12.

(a) Prove that  A =   2 2

2 3 is invertible.

(b) Compute  A−1.

(c) Find an inverse to

2 2 0

2 3 00 0 1

of the form

a b   0

c d   00 0 1

.

(a) det(A) = 6 − 4 = 2 = 0. Therefore  A is invertible.(b)

A−1

= 1

2   3

  −2

−2 2

.

(c)

1

2

3   −2 0

−2 2 00 0 2

2 2 0

2 3 00 0 1

=

1 0 0

0 1 00 0 1

,

so

2 2 0

2 3 00 0 1

−1

=   1

2

3   −2 0

−2 2 00 0 2

.

Page 5 of 5 - Discrete Mathematical Models - (MATH1005)