41
Microsystems Laboratory UC-Berkeley, ME Dept. 1 Liwei Lin, University of California at Berkeley Micro/Nano Mechanical Systems Lab – Class#16 Liwei Lin Professor, Dept. of Mechanical Engineering Co-Director, Berkeley Sensor and Actuator Center The University of California, Berkeley, CA94720 e-mail: [email protected] http://www.me.berkeley.edu/~lwlin

Micro/Nano Mechanical Systems Lab –Class#16Micro/Nano Mechanical Systems Lab –Class#16 Liwei Lin Professor, Dept. of Mechanical Engineering Co-Director, Berkeley Sensor and Actuator

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Microsystems LaboratoryUC-Berkeley, ME Dept.

1Liwei Lin, University of California at Berkeley

Micro/Nano Mechanical Systems Lab – Class#16

Liwei Lin

Professor, Dept. of Mechanical Engineering Co-Director, Berkeley Sensor and Actuator CenterThe University of California, Berkeley, CA94720

e-mail: [email protected]://www.me.berkeley.edu/~lwlin

Microsystems LaboratoryUC-Berkeley, ME Dept.

2Liwei Lin, University of California at Berkeley

Outline

The rest of the semesterNear-field Electrospinning

Microsystems LaboratoryUC-Berkeley, ME Dept.

3/8 – Other possible MEMS/NEMS labs3/13 – MD simulation lab (no lecture)3/15 – project proposal (1-2 pages ppt)3/20 – 3/22 – MD simulation lab (no lecture)4/3 – project design/progress (5 pages ppt)4/5 – review for quiz4/10 – quiz4/12 – quiz solution4/17, 4/19, 4/24, 4/26 – final presentations

Rest of the Semester

Microsystems LaboratoryUC-Berkeley, ME Dept.

4Liwei Lin, University of California at Berkeley

Outline

Electrospinning - OverviewNear-Field ElectrospinningApplicationsPVDF Nanogenrators

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

ElectrospinningMechanical spinning Electrospinning – early

patent in 1934

SpinningSpinning

10―30 KV

Syringe

PolymersolutionNeedle

Collector

10―50 cm

Stretching

Whipping

Random, ContinuousNanofiber < 50nm

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

What are the Limitations? Diameter of nanofiber

Alignment

Thinner fibersThinner fibersLonger distance,

Lower concentration,Higher conductivity

Longer distance,Lower concentration,Higher conductivity Higher VoltageHigher Voltage

WhippingWhipping

D. Li et al, 2004D. Li et al, 2004 J. Kameoka et al, 2004

J. Kameoka et al, 2004A. Theron et al, 2001A. Theron et al, 2001

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Near-Field Electrospinning Electrode-to-collector distance: 500–1000mDrive voltage: 600–1500 VTip diameter: 25 m or smaller

Collector

High Voltage

Probe Tip

Polymer Solution

Liquid Jet h

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Results & Limitations 3~7 wt % Polyethylene oxide (PEO)Nanofiber diameter: 50nm– 2mManual control

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Potential Machine-controlled electrospinning

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Comparisons Conventional Electrospinning Near-Field

Needle Spinneret Metal probe tip

Several hundred µm Spinneret Diameter 25 µm or smaller

Continuous supply Polymer Supply Dip pen

10–30 KV Applied Voltage As low as 600 V

Very long Nanofiber Length Several cm

10–50 cm Electrode-to-collector Distance 500–1000 µm

Controllability

Microsystems LaboratoryUC-Berkeley, ME Dept.

Continuously NEFS SetupDirect writing of large area patterns

• Steel needle with 70m opening• Modified NFES process

ModifiedModifiedOriginalOriginal

Microsystems LaboratoryUC-Berkeley, ME Dept.

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Continuous NEFS ResultsDirect writing of large area patterns (last week)

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Large Area Deposition• A single nanofiber in a designed trajectory

– 4X4 cm2 area– 15 min deposition period for a total length of 108

m, nanofiber has a diameter of 700 nm

100m100m

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Application (I) - NanoSensorsDirect-write suspended nanofibers on MEMS

conductive polymer by NFES

conductive polymer by NFES

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Bias [V]

Curr

ent [

μA]

100nm Nanofiber

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Application (II) - NanoAssemblyDirect-write patterning of nanoparticles

Mixing nanoparticles in nanofibers

Mixing nanoparticles in nanofibers

Removing nanofibers and growing nanowires/tubesRemoving nanofibers and growing nanowires/tubes

5 & 20nm Au nanoparticles

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Application (III) – Fluidic ConnectorDirect-write fluidic connector (analogy to wire

bonding)

3h

h

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Fabrication ProcessConformal coating of fluidic channel material after

electrospinning & remove sacrificial nanofiber by etching or evaporation

A B

C D

Sacrificial PEO nanofiber

Chip ChipChip Chip

Coat Hydrophilic & Channel

Chip Chip

Open etch holes

Chip ChipChip Chip

Remove nanofiber

Chip ChipChip Chip

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Fabrication ResultsSuspended nanofiber

overhanging two separated chips with Parylene coating

Suspended nanofibersSuspended nanofibers

Chip

Chip Nanofiber

Parylene coatingParylene coating

Chip

Nanofiber

Parylene

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Application (IV) – Bio Scaffolds High (favorable) surface-to-volume ratio with appropriate

porosity, malleability to conform to a wide variety of sizes, textures, and shapes.

SUNY – Stony Brook

Murine calvaria cells (MC3T3-E1) seeded onto an electrospunPLLA + collagen

Ordered nanofiber by NFES might lead to preferred cell growth & differentiation, localized control, functional tissue?

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Application (V) - Composites Embedded high-modulus fibrous materials (e.g., glass

fibers, carbon fibers, carbon nanotubes) for material reinforcement

Embedding sensors & drug carriers.

Microsystems LaboratoryUC-Berkeley, ME Dept.

Liwei Lin, University of California at Berkeley

Other ApplicationsFiltration, sensing, …

©2012 University of California

Electrospun Piezoelectric Nanogenerators

Prof. Liwei Lin

Berkeley Sensor and Actuator CenterDepartment of Mechanical Engineering

University of California, Berkeley

©2012 University of California

Outline• Background

– Berkeley Sensor and Actuator Center (BSAC)– What’s electrospinning?

• Near‐Field Electrospinning (NFES)– Process design– Orderly nanofiber deposition

• Direct‐Write Piezoelectric Nanogenerator

• Conclusion

©2012 University of California

©2012 University of California

©2012 University of California

How Does It Work?• Piezoelectric Property of PVDF

– Mechanical Strain  Electrical Potential– PVDF exists in several forms:  , and 

crystalline phases– phase is primarily responsible for 

piezoelectric proper es → Dipole orientation• Poling process 

– Bulk  or thin film PVDF• Stretching and strong electric field

• Electrospinning→ In‐situ poling process– Electrospinning of PVDF from its solutions 

promoted the formation of  phase.– In contrast, only the  and  phases were 

detected in the spin‐coated samples from the same solutions

Non‐polar  phase(Before NFES)

Polar phase(After NFES)

Net dipole moment

Carbon Fluorine Hydrogenomitted

©2012 University of California

©2012 University of California

What’s the Challenge? • Conventional electrospinning

– Random orientation• The polarities of these nanofibers mostly cancel out each other and the net piezoelectric output is close to zero

• Near‐field electrospinning– Orderly  nanofiber patterns with controlled direction of polarity

©2012 University of California

PVDF Nanogenerator• Fabrication process

– Spacing between electrodes: 100~500m– Fiber diameter: 500nm~3m 

• Experimental setup– Inside a Faraday cage

(Not to scale)

Plastic

substr

ate

Electro

de

Plastic

substr

ate

Electro

de

A BSyringe needle

HighVoltagePolymer jet

Substrate moving direction

High Voltage

Substrate moving direction

Poling axis

(NFES direction)

©2012 University of California

Mechanism ‐ Piezoelectric Response

1. Start stretching2. Hold stretching

3. Start releasing4. End of release

V‐V+

+        ‐

RL

RL1.

2.

i

V‐V+

RL

3.

_ +

RL

4.

i

_ +

CNG

RNGqRL

V+

V‐

i

©2012 University of California

-4-3-2-101234

0 1 2 3 4Time (sec)

Cur

rent

(nA

)

-300

-200

-100

0

100

200

300

Cha

rge

(pC

)

Fast strain rate (0.04 sec)

Slow strain rate (0.10 sec)

0.17 sec 0.33 sec

Effect of Strain Rate• The current generated by strain in poling direction

d33:piezoelectric constant E: Young’s modulus A: cross sectional area

– Current output depends on strain rate– Charge depends on applied strain

33i q d EA

©2012 University of California

Effect on Stretching Frequency• Higher frequency → Higher electric output

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40Time (sec)

Cur

rent

(nA

)

2 Hz 3 Hz 4 Hz

Stretching

Release

-20

-15

-10

-5

0

5

10

15

0 10 20 30 40Time (sec)

Volta

ge (m

V)

2 Hz 3 Hz 4 Hz

Stretching

Release

©2012 University of California

Validation of Piezoelectric Response• Different materials under the same experimental setup

‐40

‐30

‐20

‐10

0

10

20

30

40

0 10 20 30 40

Voltag

e (m

V)

Time (sec)

Stretching

Release

PVDF single nanofibers

‐10

‐5

0

5

10

0 10 20 30

Voltag

e (m

V)

Time (sec)

Stretching

Release

PEO nanofiber

‐10

‐5

0

5

10

0 10 20 30

Voltag

e (m

V)

Time (sec)

Stretching

Release

PVDF random nanofibers mats

©2012 University of California

Long Term Stability Test• 0.04% strain applied at a frequency of 0.5Hz for 100 min

-6

-4

-2

0

2

4

2409 2414 2419 2424

Time (sec)

Cur

rent

(nA

)

-15

-10

-5

0

5

10

15

1421 1426 1431 1436

Time (sec)

Volta

ge (m

V)

-15

-10

-5

0

5

10

15

0 20 40 60 80 100

Time (min)

Volta

ge (m

V)

-6

-4

-2

0

2

4

0 20 40 60 80 100

Time (min)

Cur

rent

(nA

)

©2012 University of California

High Energy Conversion Efficiency?• Energy conversion efficiency

We/Wm• Total electric energy generated during stretching

We=  VI dt• Total elastic energy applied during stretching

Wm= 1/8D2L0E2

0

5

10

15

20

25

0 50 100 150Film thickness (μm)

Ener

gy c

onve

rsio

n ef

ficie

ncy

(%)

0 2 4 6 8Fiber diameter (μm)

PVDF FilmPVDF fiberPVDF fiberPVDF Film

-0.5

0.0

0.5

1.0

1.5

2.0

0 0.25 0.5 0.75 1Time (sec)

Volta

ge (m

V)

-0.5

0

0.5

1

1.5

Curr

ent (

nA)

VoltageCurrent

©2012 University of California

Other Related Works in Lin Lab ‐ 1

3D Electrospinning

©2012 University of California

Fabrication Results – grid patterns

3D Electrospinning

©2012 University of California

Cylinder & Flower

Wall width

©2012 University of California

Other Related Works in Lin Lab ‐ 2Direct‐write graphene FET

©2012 University of California

Transistors, Junctions & Devicesn or p type FET & pn junction

A complimentary inverter made of p-GFET and n-GFET (npn junction in this case) is constructed