14
Characterisation of nanographite for MEMS resonators Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 [email protected]

Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 [email protected] . Carbon materials

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Characterisation of nanographite

for MEMS resonators

Sam Fishlock, Harold Chong, John McBride,

Sean O’Shea, Suan Hui Pu MRS Fall 2015

[email protected]

Page 2: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Carbon materials for MEMS and NEMS • Investigated materials: diamond-like carbon, graphite, graphene

• Applications: switches, low friction materials and resonators

• Good mechanical properties and device scalability

• AIM: Demonstrate fabrication and characterisation of nanographite MEMS

resonators without transfer

1

CVD onto catalyst

Transfer onto substrate

Low yield for fragile NEMS

Our plan:

direct deposition

K.M. Milaninia, Appl. Phys. Lett. 95 (2009)

Page 3: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Nanocrystalline graphite deposition

• 6-inch silicon wafer substrate

• Oxford instruments Nanofab PECVD

• Scalable and reproducible →

standard microfabrication process

Temperature (°C) 750

Methane flow (sccm) 75

Hydrogen flow (sccm) 60

Pressure (mTorr) 1500

RF Power (W) 100

M.E. Schmidt et. Al, Mater. Res. Exp. 1 (2014). www.azom.com

2

Page 4: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Material characterisation • Raman and SEM confirm nanocrystalline grain structure

• Electrical resistivity 10.0 mΩ cm

• XRR measurement – density ρ 1900 kg/m3

• Typical roughness 3 nm RMS from AFM contact mode

• Film thickness between 8 and 340 nm

Resistivity by

electrical

measurements

100 nm

3

Page 5: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Film stress

Stress gradient in

the film…

… causes curvature

in cantilevers

Applied stress

Average compressive stress causes

buckling in doubly clamped beams

20 um 20 um

4

Page 6: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Device fabrication

• Surface micromachining, optical lithography

• Pattern and etch

nanographite into

beam shape

• E-beam evaporated

Ni/Ti electrodes

• HF vapour isotropic

etch for beam release

Nanographite

PECVD Silicon dioxide

SC Silicon substrate

KEY:

Anchor

Undercut

Undercut changes stress in beam section

5

Page 7: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Simulation

• Modelled as classic beams under tension where Natural frequency f varies

with : Length L , Stiffness E, density ρ ,Stress S and Moment of Inertia I :

• Finite element simulation shows added

length due to the undercut ~ 3%

Nominal length

Effective length

2 2

2 21

EI SLf

L EI

6

Page 8: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Laser source

Split beam – Doppler

shift used to calculate

vibration amplitude

Actuation and measurement

• DC VDC + AC V0 voltage creating electrostatic force F to actuate the beam

• Sweep AC voltage at frequency f and measure the vibration using vibrometer

Measured 1st

vibration mode

2 2

0

1 12 sin 2

2 2DC DC

C CF V V V V ft

r r

Actuation

7

Page 9: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Resonance results

• Verification from the finite element model

• Young’s modulus from the cantilevers is 23 GPa

• Frequency of the doubly clamped beams dominated by stress

0

5

10

15

20

25

30

35

10 20 30 40 50 60

Fre

qu

en

cy

(kH

z)

Thickness / length2 (m-1)

Experimental

results

Linear (FE

Simulation)

Simulation for Young’s modulus

→ 23 GPa

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Fre

qu

en

cy (

kH

z)

Thickness / length2 (m-1)

Experimental results

Linear (Analytical

stressed model)

Linear (Analytical

stress free)

Cantilever results Doubly clamped beam results

9 MPa tensile stress

Device lengths 75 to150 µm. Thickness 300 nm to 340 nm

8

Page 10: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Results - quality factor

30 mTorr

Q ~ 1300

Ambient

Q ~ 20

• Quality factor ‘Q’ – energy loss at resonance. Calculated from the FWHM

of fitted curve

• Losses are intrinsic, clamping, extrinsic

9

Page 11: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Increasing bias voltage

Tuning the natural frequency

• Increasing the DC bias causes electrostatic spring softening to change the

natural frequency

• 0.2 % per volt average tunability in linear range

10

250

260

270

280

290

300

310

320

330

340

350

0 500 1000 1500 2000 2500 3000

Fre

quency

(kH

z)

DC Bias2 (V2)

Page 12: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

Conclusions

• Route to standard fabrication of thin nanographite and nanographene

devices by PECVD

• Electrostatically actuated and tuned resonator device

• Low modulus, high stress material → used the stress gradient to create

tensile devices which raises the vibration frequency

11

Page 13: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

• Dr Suan Hui Pu

• Dr Harold Chong

• Prof John McBride

• Dr Kian Kiang

• Dr Owain Clark

• Mr Michael Perry

• Dr Sean O’Shea

• Dr Xiaosong Tang

• Mr Andrew Breeson

• Dr Meysam Mirshekarloo

• Mr Lim Poh Chong

Sincere thanks to co-authors and technical help

12

Thankful acknowledgment of funding from:

• A*STAR research attachment scheme, Singapore

• Faculty of Engineering and the environment, University of Southampton

• Malaysian Ministry of Higher Education grant FRGS/2/2014/TK03/USMC/02/1

Page 14: Micromechanical nanographite resonators20nanograph… · Sam Fishlock, Harold Chong, John McBride, Sean O’Shea, Suan Hui Pu MRS Fall 2015 sjf1e12@soton.ac.uk . Carbon materials

0

5

10

15

20

25

30

35

10 20 30 40 50 60

Fre

qu

en

cy

(kH

z)

Thickness / length 2 (m-1)

Experimental

results

Linear (FE

Simulation)

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Fre

qu

en

cy (

kH

z)

Thickness / length2 (m-1)

Experimental results

Linear (Analytical

stressed model)

Linear (Analytical

stress free)

Thank you - Any questions?

13