18
1 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria Microinjection moulding (μIM) of thermoplastic polymers : From theory to experiment J. Giboz 1,2 , T. Copponnex 1 , P. Mélé 2 2 : LMOPS - UMR CNRS 5041 University of Savoie Le Bourget du Lac France 1 : HE-ARC University of applied science Saint-Imier Switzerland

Microinjection moulding ( µIM) of thermoplastic polymersBabyplast 6/10 ® 5T Clamping force 0,15mm thick Sesame nanomolder ® 1,5T Clamping force HDPE Borealis MG9641 x10 Moulding

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 1 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Microinjection moulding (µIM) of thermoplastic polymers :

    From theory to experiment

    J. Giboz1,2, T. Copponnex1, P. Mélé2

    2: LMOPS - UMR CNRS 5041University of SavoieLe Bourget du LacFrance

    1:HE-ARCUniversity of applied scienceSaint-ImierSwitzerland

  • 2 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Outline

    I. Main goal� Influence of the moulding conditions in injection moulding processes:

    “µpart vs Macroparts”

    II. Processing techniques� Material chosen and processing conditions

    III. Experimental Results / Discussion� “µpart vs Macroparts”: Difference in Structure and properties

    IV.Conclusions

  • 3 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Main Goal

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    Chemical degradation?

    Mechanical properties?

    Thermal properties?

    Homogeneity?

    Giboz J., Copponnex T. , Mélé P. , J Micromech. Microeng., 2007, 17 R96-R109

    Do the processing conditions modify the properties and the structure of polymers?

  • 4 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Processing techniques (1)

    Babyplast 6/10®

    5T Clamping force

    0,15mm thick

    Sesame nanomolder®

    1,5T Clamping force

    HDPE Borealis MG9641

    x10

    Moulding conditions

    T = 220°C, V inj = 200 mm/sTmould = 80°C Tmould = 30°C

    1,5mm thick

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

  • 5 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    3-Plates mould(CNC Machining)

    Mould insert (Made by UV-LIGA)

    Injection gates geometry

    Ø: 0,2mm

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    Processing techniques (2)

  • 6 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Reference: 1,33

    Process capability

    3.72 3.73 3.74 3.75 3.76 3.770.1

    1

    10

    40

    70

    95

    99.5

    SPC1 SPC2

    R=0,988

    Cum

    ulat

    ed fr

    eque

    ncy

    (%)

    Part length (mm)

    R=0,997

    3.72 3.73 3.74 3.75 3.76 3.770

    5

    10

    15

    20

    Fre

    quen

    cy

    Length (mm)

    SPC 1

    0.691.17Cpk

    1.511.35Cp

    0.0060.007σ

    3.7593.747Mean

    SPC 2SPC 1

    The µIM process is capable to produce the part withthe specified tolerances

    Two series of 300 parts

    Length

    Normal probability plot

    Fre

    quen

    cyC

    umul

    ated

    Fre

    quen

    cy(%

    )

    Length (mm)

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

  • 7 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Experimental results

    Influence of the processing conditions on

    the Microstructure and properties of Polymer

  • 8 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Theoretical analysis

    Theoretical shear rates higher than allowable ones

    Plate

    Cal

    cula

    ted

    wal

    l she

    ar r

    ates

    (s-

    1 )

    Speed (mm/s)

    Micropart

    0101

    102

    103

    104

    105

    106

    0 200 400 600 800 1000 1200

    1

    Speed (mm/s)

    Maximum shear rates(≈ 40 000s-1)

    0 200 400 600 800 1000 1200101

    102

    103

    104

    105

    106

    Speed (mm/s)

    Micropart (Ø0,2mm)

    Plate (0,5x6mm)

    Brydson J.A., Flow properties of polymer melts, 1970, Van Nostrand Reinhold, New York

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    +=2

    )12(2

    WH

    Q

    n

    nγ&

    ⋅+=

    3

    4

    4

    13

    r

    Q

    n

    n

    πγ&

  • 9 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Experimental analysis

    Molecular weight distribution:

    Gel Permeation Chromatography

    Chemical functions:

    Fourier Transformed – Infrared spectroscopy (ATR mode)

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

  • 10 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria40

    60

    80

    100

    4000 3500 3000 2500 2000 1500 1000 500

    Wave number (nm-1)

    %R

    efle

    ctan

    ce Micropart Plate Pellet

    No degradation occurs with the

    µIM process

    Separation as a function of the molecular weight

    Experimental Results

    2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,50,0

    Mw : 120000 g/mol

    Mn : 13000 g/mol

    Wei

    ghtf

    ract

    ion

    (Der

    ivat

    ive)

    Molecular weight (log)

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,50,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    Micropart Plate Pellet

    Mn MwI. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    Gel PermeationChromatography

    FT-IR spectroscopy

  • 11 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    OM(Optical microscopy)

    Polymer morphology: Crystalline structure

    WAXS(Wide angle X-Ray Scattering)

    DSC(Differential Scanning Calorymetry)

    Multiscale relationshipsPictures from: Hobbs J., Chin J Polym Sci, 2003, 21, 135

    1µµµµm

    Spherolites Lamellas

    The macroscopic properties of parts greatly depends on the morphology

    Crystal

    Scale (m)10-5 10-8 10-910-3

    Plate

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

  • 12 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Optical microscopy (Thickness)

    Plate microscopy (Half thickness)

    200µm

    Skin Core

    CoreSkin Shear zone Post-filled zone

    Mendoza R., Material PhD Thesis,ENSAM Paris, 2005

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    HDPE structure

    200µm

  • 13 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Optical microscopy (Thickness)

    A well defined “Skin-core” structureµpart morphology is more homogeneous / Macroparts

    50µm

    Micropart

    50µm

    Cryomicrotomed samples

    5 µm thick

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

  • 14 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Temperature cycle

    DSC: Experimental results

    Samples’ weight: 2.4mg ± 0.1mg10°C/min

    5 min

    10°C/min

    3 min

    5 min230°C

    40°C

    10°C/min 10°C/min

    time

    Smaller lamellas thicknesses for µIMDistribution of lamellae thicknesses more homogeneous for µIM

    110 115 120 125 130 1350

    10

    20

    30

    40

    Hea

    t flo

    w (

    J/g.

    °C)

    Temperature (°C)

    Micropart Plate Pellet

    Second heating

    EndoEndo

    1100

    10

    20

    30

    40

    Hea

    t flo

    w (

    J/g.

    °C)

    110 115 120 125 130 1350

    Temperature (°C)

    110 115 120 125 130 1350

    10

    20

    30

    40

    Micropart Plate Reference (Pellet)

    Hea

    t flo

    w (

    J/g.

    °C)

    Temperature (°C)

    EndoEndo

    First heating

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

  • 15 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    00,00

    0,02

    0,04

    0,06

    0,08

    0,10

    W

    eigh

    t dis

    trib

    utio

    n (n

    m-1)

    C)(J/flow Heat :dTdE °

    :T0mMelt temperature ofa perfect crystal (°K)

    :M Crystal weight (g)

    :eσ Surface energy (J.m-2)

    *: Albérola et al., J Polym Sci B: Polym Phys 1990. 28, 569

    Crystallite thickness in µIM are smaller / conventional processThickness distribution of crystallites is narrower

    Gibbs-Thomson relation

    Distribution of lamellas thicknesses

    ⋅−= ∞

    m

    e0m

    ∆Hl

    2σ1TT

    0 10 20 30 40

    Lamellas thickness (nm)

    Crystal thickness distribution*

    ( )MT2σ

    ρTTdTdE

    ) l (f0me

    c20

    m

    ⋅⋅

    ⋅−⋅=

    0 10 20 30 400,00

    0,02

    0,04

    0,06

    0,08

    0,10

    Lamellae thickness (nm)

    Wei

    ght d

    istr

    ibut

    ion

    (nm

    -1)

    Micropart Plate

    0 10 20 30 400,00

    0,02

    0,04

    0,06

    0,08

    0,10

    Lamellae thickness (nm)

    Wei

    ght d

    istr

    ibut

    ion

    (nm

    -1)

    Micropart Plate

    Second heatingFirst heating

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    Thermal and Shear effect?

  • 16 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    *: Giboz, J., P. Mélé, T. Copponnex, “On the morphology of microinjection moulded thermoplastics polymer”

    Submitted to Polymer

    WAXS: Crystalline structure

    40mm 1,5mm

    Bragg’s law: Determination of the crystalline structured = n.λ / 2sin(θ)

    110

    200

    No change in the crystalline structureLamellae thickness lower (as for DSC measurements)

    002

    12 16 20 24 360,0

    0,1

    0,2

    0,8

    0,9

    1,0

    Micropart Plate

    Inte

    nsity

    (C

    ount

    s (A

    .U)

    2 Theta (deg)

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    Cristallinity(%)

    Micropart 66 ± 3

    Plate 58 ± 3

  • 17 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Conclusions

    I. Goal

    II. Processing techniques

    III. Results

    IV. Conclusion

    • Mould• Mould insert

    Physical modification

    • “Skin-core” structure• Crystallinity more important• Thinner crystalline entities• More homogeneous crystalline structure

    • Small scale Productions• Capable process

    Thermal VS Shear effects?

    Polymerproperties

    Development

    Processing

    Chemical modification

    • No degradation

    Part properties?

  • 18 4M 2007 Conference, 3-5 October 2007, Borovets, Bulgaria

    Conclusions

    Thank you for your attention