8
1.- solución Método punto >> g=inline('(40-125/(x^(3)))^(1/2)'); >> ezplot('x',[0,2]),grid on, hold on >> ezplot(g,[0,2]) >> x=g(x) x = 6.278638092476449 >> x=g(x) x = 6.284502692206101 >> x=g(x) x = 6.284615073037374 >> x=g(x) x = 6.284617222429021 >> x=g(x) x = 6.284617263536701 >> x=g(x) x = 6.284617264322895 >> x=g(x) x = 6.284617264337932 >> x=g(x) x = 6.284617264338219 >> x=g(x) x = 6.284617264338225 >> x=g(x) x = 6.284617264338225 el resultado es constante

metodos numericos1

Embed Size (px)

DESCRIPTION

matlab

Citation preview

Page 1: metodos numericos1

1.- solución

Método punto

>> g=inline('(40-125/(x^(3)))^(1/2)');

>> ezplot('x',[0,2]),grid on, hold on

>> ezplot(g,[0,2])

>> x=g(x)

x = 6.278638092476449

>> x=g(x)

x = 6.284502692206101

>> x=g(x)

x = 6.284615073037374

>> x=g(x)

x = 6.284617222429021

>> x=g(x)

x = 6.284617263536701

>> x=g(x)

x = 6.284617264322895

>> x=g(x)

x = 6.284617264337932

>> x=g(x)

x = 6.284617264338219

>> x=g(x)

x = 6.284617264338225

>> x=g(x)

x = 6.284617264338225

el resultado es constante

Page 2: metodos numericos1

Método newton

>> syms x

>> f=40-125/(x^(3))-x^(2);

>> ezplot(f,[0,2]),grid on

>> format long

>> x=0.5;

>> x=x-eval(f)/eval(diff(f))

x = 0.660068344724121

>> x=x-eval(f)/eval(diff(f))

x = 0.860197308107335

>> x=x-eval(f)/eval(diff(f))

x = 1.090186667003479

>> x=x-eval(f)/eval(diff(f))

x = 1.309185858834211

>> x=x-eval(f)/eval(diff(f))

x = 1.448512863258798

>> x=x-eval(f)/eval(diff(f))

x = 1.487727101258449

>> x=x-eval(f)/eval(diff(f))

Page 3: metodos numericos1

x = 1.490099624826296

>> x=x-eval(f)/eval(diff(f))

x = 1.490107606835866

>> x=x-eval(f)/eval(diff(f))

x = 1.490107606925740

>> x=x-eval(f)/eval(diff(f))

x = 1.490107606925741

>> x=x-eval(f)/eval(diff(f))

x = 1.490107606925741

2.- solución

Método de punto

>> g=inline('(36594.38-(677.35/x)^(3))^(1/3)');

>> ezplot('x',[0,2]),grid on, hold on

>> ezplot(g,[0,2])

>> x=g(x)

x = 2.272527226990302e+02 + 3.936132618730813e+02i

>> x=g(x)

x = 33.201004576987586 + 0.000000000000000i

>> x=g(x)

Page 4: metodos numericos1

x = 30.403091887427433 + 0.000000000000000i

>> x=g(x)

x = 29.447723749379470 + 0.000000000000000i

>> x=g(x)

x = 29.014086825233164 + 0.000000000000000i

>> x=g(x)

x = 28.793097913197517 + 0.000000000000000i

Luego de varias iteraciones mas:

>> x=g(x)

x = 28.520001374388325 + 0.000000000000000i

Método de newton

>> syms x

>> f=36594.38-(677.35/x)^(3)-x^(3);

>> ezplot(f,[0,2]),grid on

>> format long

>> x=23.7;

>> x=x-eval(f)/eval(diff(f))

Page 5: metodos numericos1

x = 23.749986441637059

>> x=x-eval(f)/eval(diff(f))

x = 23.749998855440037

>> x=x-eval(f)/eval(diff(f))

x = 23.749998855479618

>> x=x-eval(f)/eval(diff(f))

x = 23.749998855479618

3.- solución:

Beneficio (y)

Venta=0.4x(30-x)

Costo =5+10lnx

Beneficio = venta –costo

Beneficio (y) = 0.4x(30-x)-( 5+10lnx)

Para hallar el beneficio max debemos obtener la derivada de la función benefio e igualarla a cero

0=12-0.8x-10/x

15-12.5/x=x

Método de punto:

>> g=inline('15-12.5/x');

Page 6: metodos numericos1

>> ezplot('x',[0,2]),grid on, hold on

>> ezplot(g,[0,2])

>> x=14.11;

>> x=g(x)

x = 14.112903225806452

>> x=g(x)

x =14.114285714285714

>> x=g(x)

x = 14.114372469635628

>> x=g(x)

x = 14.114377913230548

luego de mas iteraciones:

>> x=g(x)

x = 14.114378277661476

>> x=g(x)

x = 14.114378277661476

Es el valor constante

Método de newton:

>> syms x

>> f= 12-0.8*x-10/x ;

Page 7: metodos numericos1

>> ezplot(f,[0,2]),grid on

>> format long

>> x=x-eval(f)/eval(diff(f))

x = 0.885621606679308

>> x=x-eval(f)/eval(diff(f))

x = 0.885621722338507

>> x=x-eval(f)/eval(diff(f))

x = 0.885621722338523

>> x=x-eval(f)/eval(diff(f))

x = 0.885621722338524

4.- solución: