7
Methane and Nutrient cycling in Septic Leach Field Systems Cristina Fernandez-Baca, Civil and Environmental Engineering, email: [email protected] Abstract Onsite septic systems treat approximately 25% of U.S. domestic wastewater. Despite their prevalence and continued use in new building, few studies have attempted to characterize septic systems’ air and water quality impacts. Understanding septic systems’ effectiveness is vital to managing them in a way that promotes both air and water quality. Systems that are improperly sited and/or managed can cause ground and surface water contamination as well as increased greenhouse gas (GHG) emissions as compared to well-managed systems. To examine microbial populations and potential GHG and nutrient cycling within leach field soil systems, we constructed two leach field soil columns in the lab. Reactors were subjected to either flooded conditions (Column A) or well-maintained conditions (Column B) and compared in: (1) measured atmospheric methane (CH 4 ) fluxes; (2) measured CH 4 depth profile, (3) distribution and activity of key organisms involved in CH 4 cycling; (4) measured chemical oxygen demand (COD) and nutrient treatment (N, P). Overall, the columns performed more similarly in nutrient removal than in CH 4 cycling with flooded conditions significantly increasing CH 4 fluxes and overall CH 4 production. COD removal was variable and is negatively impacted by flooding while nutrient removal appears to be unaffected by flooded conditions. Three Summary Points of Interest Methane emissions from flooded septic leach field soils are significantly higher when compared to well- maintained systems. Overall, flooded systems create more methane that is not consumed by microbial communities. Nutrient (nitrogen and phosphorus) removal is not affected by flooding, however COD removal is variable and does appear to be negatively affected by long-term flooding. Abundance of microbial populations involved in methane cycling were affected by flooding. With methane producing organisms more abundant in flooded conditions. Keywords Greenhouse gases, septic systems, biomarkers, COD (chemical oxygen demand) N EW Y ORK S TATE W ATER R ESOURCES I NSTITUTE Department of Biological and Environmental Engineering 230 Riley-Robb Hall, Cornell University Tel: (607) 254-7163 Ithaca, NY 14853-5701 Fax: (607) 255-4449 http://wri.cals.cornell.edu Email: [email protected]

Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

MethaneandNutrientcyclinginSepticLeachFieldSystemsCristinaFernandez-Baca,CivilandEnvironmentalEngineering,email:[email protected]

AbstractOnsitesepticsystemstreatapproximately25%ofU.S.domesticwastewater.Despitetheirprevalenceandcontinueduseinnewbuilding,fewstudieshaveattemptedtocharacterizesepticsystems’airandwaterqualityimpacts.Understandingsepticsystems’effectivenessisvitaltomanagingtheminawaythatpromotesbothairandwaterquality.Systemsthatareimproperlysitedand/ormanagedcancausegroundandsurfacewatercontaminationaswellasincreasedgreenhousegas(GHG)emissionsascomparedtowell-managedsystems.ToexaminemicrobialpopulationsandpotentialGHGandnutrientcyclingwithinleachfieldsoilsystems,weconstructedtwoleachfieldsoilcolumnsinthelab.Reactorsweresubjectedtoeitherfloodedconditions(ColumnA)orwell-maintainedconditions(ColumnB)andcomparedin:(1)measuredatmosphericmethane(CH4)fluxes;(2)measuredCH4depthprofile,(3)distributionandactivityofkeyorganismsinvolvedinCH4cycling;(4)measuredchemicaloxygendemand(COD)andnutrienttreatment(N,P).Overall,thecolumnsperformedmoresimilarlyinnutrientremovalthaninCH4cyclingwithfloodedconditionssignificantlyincreasingCH4fluxesandoverallCH4production.CODremovalwasvariableandisnegativelyimpactedbyfloodingwhilenutrientremovalappearstobeunaffectedbyfloodedconditions.ThreeSummaryPointsofInterest• Methane emissions from flooded septic leach field soils are significantly higher when compared to well-

maintained systems. Overall, flooded systems create more methane that is not consumed by microbialcommunities.

• Nutrient (nitrogenandphosphorus) removal is not affectedby flooding, howeverCOD removal is variable anddoesappeartobenegativelyaffectedbylong-termflooding.

• Abundance of microbial populations involved in methane cycling were affected by flooding. With methaneproducingorganismsmoreabundantinfloodedconditions.

KeywordsGreenhousegases,septicsystems,biomarkers,COD(chemicaloxygendemand)

NEW YORK STATE WATER RESOURCES INSTITUTE

Department of Biological and Environmental Engineering 230 Riley-Robb Hall, Cornell University Tel: (607) 254-7163 Ithaca, NY 14853-5701 Fax: (607) 255-4449 http://wri.cals.cornell.edu Email: [email protected]

Page 2: Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

MethaneandNutrientcyclinginSepticLeachFieldSystems

ThisreportwaspreparedfortheNewYorkStateWaterResourcesInstitute(WRI)andtheHudsonRiverEstuaryprogramoftheNewYorkStateDepartmentofEnvironmentalConservation,withsupportfromtheNYSEnvironmentalProtectionFund

IntroductionOn-sitesepticsystemscurrentlytreatwastewaterfromapproximately25%ofU.S.households(USEPA2013).Septicsystemsareapracticalandinexpensivemeansofdecentralizedwastewatertreatmentforruralandperi-urbanareas.Theyareabletoachievesimilartreatmentlevelsastheirlarger,centralized,andmoreenergy-intensivewastewatertreatmentplantcounterpartswhilestillmaintainingmanyofthesamepublichealthandenvironmentalbenefits(USEPA2012;USEPA2014).Despitethepopularityandnumerousadvantagesofthesedecentralizedsystems,thereisafundamentallackofinformationonhowtheyeffectthesurroundingenvironment.Inparticular,theirimpactonwaterqualityandpotentialgreenhousegas(GHG)emissionsispoorlyunderstood.Septicsystemsarepopularinpartduetotheirlowoperatingandmaintenancerequirements.However,becausethesesystemsrequiresuchinfrequentserviceandareinconspicuousbynature,failurescanariseandremainunnoticedandthusun-repaired.Inparticular,failedsepticsystemscausinggroundand/orsurfacewatercontaminationaredifficulttoidentifyanddiagnose.ConsequentlythenumberoffailingsepticsystemsintheU.S.isunknown.Complicatingtheissueisthefactthatthereisnostrictdefinitionastowhatconstitutesafailingsystem(USEPA2002).Currentlytherearenorequirementsforstatestocollectdataonsepticsystemfailures.Statesthatdocollectthisinformationcreatetheirowndefinitionoffailure,whichcanrangefrom“sewageback-up”to“surfaceand/orgroundwatercontamination”(USEPA,2002).Severalstudieshavelookedatthepotentialforsepticsystemstocontaminategroundwateranddrinkingwatersources,howevernonehavelookedathowfailingsystemscomparetofunctioningsystemsintermsofwaterqualityimpacts(Coggeretal.,1984;Katzetal.,2011).IntermsofGHGemissions,functioningsepticsystemshavebeenestimatedtorelease0.22tonneCO2-equivalents(CO2e)capita-1year-1totheenvironment(Diaz-Valbuenaetal.,2011).However,dataonGHGemissionsfromsepticsystemsremainssparsewithonlyahandfulofpapersaddressingthesubjectandofthosenostudyto-datehasaddressedthequestionofhowfailing,floodedsepticsystemscomparetowell-

maintainedsystems(Diaz-Valbuenaetal.,2011;Kinnicuttetal.,1910;Truhlaretal.,2016).Basedona2002EPAreport,thepercentageoffailedsystemscouldrangeanywherefrom0.5%to70%bystate(USEPA,2002).Ifthesesystemsarefailingattheupperendoftheestimatedrate,theircontributionstoGHGemissionsaswellastheireffectsonneighboringwaterbodiescouldbesignificant.Itisimportanttodeterminetheextenttowhichthelackofmanagementandregulationsonthesesystemscanimpactbothairandwaterquality.PreviousstudieshaveoverlookedtheimportanceofmicrobialcommunitiescontrollingGHGemissionsfromsepticsystemleachfieldsystems.Microorganismsinvolvedinmethaneproduction(methanogens)anddestruction(methanotrophs)canbestudiedusingfunctionalgenebiomarkersmcrAandpmoA,respectively,forquantificationandcharacterizationandhavepreviouslybeenfoundtocorrelatewithCH4emissionsfromsoils(Freitagetal.,2010;Leeetal.,2014).Inparticular,greatermethanefluxeshavebeenobservedinfloodedsoilswithcorrespondinghigherabundancesofmcrAgenecopiesandtranscripts(Maetal.,2012).Floodedsepticleachfieldsystemsareexpectedtodisplaythesamerelationshipandcouldhavesignificantlydifferentmicrobialpopulationsascomparedtowell-maintainedsystems. Thedemandforlow-cost,decentralizedwastewatertreatmentcouldriseasgrowthinthesuburbanareasofNewYork’sHudsonandMohawkValleyscontinues(Roberts,2006).Thus,itisbecomingincreasinglyimperativetodeterminetheimpactofthesesystemsontheenvironment,withparticularattentiontohowfailingsystemscontributetoairandwaterpollution.TheHudsonRiverEstuaryActionAgenda(NYSDEC,2010)includesgoalsforprotectingwaterqualityandreducingGHGemissions,septicsystemshavethepotentialtoimpactbothoftheseareasandthereisasignificantlackofinformationsurroundingthesesystemsthatneedstobeaddressed.ObjectivesThisprojectbuildsonpreviousyears’workinwhichwefoundsignificantGHGemissionsfromsepticsystemsrelativetothesurroundinglandscape,particularlyforfailingsystems,aswellastheubiquitouspresenceof

Page 3: Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

MethaneandNutrientcyclinginSepticLeachFieldSystems

ThisreportwaspreparedfortheNewYorkStateWaterResourcesInstitute(WRI)andtheHudsonRiverEstuaryprogramoftheNewYorkStateDepartmentofEnvironmentalConservation,withsupportfromtheNYSEnvironmentalProtectionFund

keyfunctionalbiomarkergenesinvolvedinGHGcycling(Truhlaretal.,2016;Fernandez-Baca,unpublished).Wefurtherwantedtocharacterizethemicrobialcommunitiespopulatingtheseleachfieldsystemsandexaminetheimpactoffailingsystems,specificallyfloodedsystems,onbothairandwaterquality.Theobjectiveofthisprojectwastocomparetwosepticleachfieldsystemsinfourcategories:(1)measuredatmosphericmethane(CH4)fluxes;(2)measuredCH4depthprofile,(3)distributionandactivityofkeyorganismsinvolvedinCH4cycling;(4)measuredchemicaloxygendemand(COD)andnutrienttreatment(N,P).Thisresearchwillaidingainingabetterunderstandingofhowsepticsystemsimpactwaterqualityandcontributetoclimatechange.Thisworkwillemphasizetheimportanceofeffectivelymanagingthesesystemstoreduceairandwaterpollution.Results&DiscussionOperationTwocolumnswereoperatedunderdifferentconditions(Figure1).ColumnAwasoperatedunderpermanently‘Flooded’conditionswhileColumnBwasoperatedunder‘Well-Maintained’conditionsuntilAugust10,2016.FromAugust10th,2016untilFebruary19th,2017,ColumnBwasoperatedunderfloodedconditions.AfterFebruary19thColumnBwasrevertedbackto‘Well-Maintained’conditions.

Figure 1. Schematic of soil column operation and setup. Column B has been operated under both ‘well-maintained’ and ‘flooded’ regimes.

MethaneDepthProfileandFluxesColumnAhadgreaterCH4productioninthesoilprofilecomparedtoColumnB(Figure2)priortofloodingofColumnB.MethaneconcentrationsinColumnAwerehighestnearthewastewaterinlet(Ports2and3),

whereconditionsareanaerobic.ColumnBshowednomethaneproductionatanydepthbeforeflooding.

Figure 2. Methane depth profile for (A) Column A and (B) Column B. Soil column schematic indicates location of port number with relation to soil column depth.

CH4fluxesforColumnAweresignificantlyhigherthanColumnB(p<0.05)priortofloodingofB.NetemissionsforColumnBwereonaverage0gCH4/day.

Figure 3. CH4 fluxes from Column A and B prior to flooding of B showed significant differences in CH4 emissions.

Uponflooding,ColumnBbegantodisplayincreasedCH4porewaterconcentrationswithcorrespondingincreasesinsurfaceCH4fluxes(Figures4and5).Withtime,ColumnB’sCH4depthprofilebegantoresemblethatofColumnA.

Figure 4. Pore water CH4 concentrations with depth for (A) Column A and (B) Column B after flooding Column B. Methane concentrations in Column B increased to levels comparable to Column A.

Ө

Ө

1#

2#

3#

4#

5#

1"

2"

3"

4"

5"

0" 200" 400" 600" 800" 1000"

Port"Num

ber"

CH4"Concentra8on"(uM)"

1"

2"

3"

4"

5"

0" 200" 400" 600" 800" 1000"

Port"Num

ber"

CH4"Concentra8on"(uM)"

A# B#

*"p"<"0.05"

1"

2"

3"

4"

5"

0" 200" 400" 600" 800" 1000"

Port"Num

ber"

CH4"Concentra8on"(uM)"

1"

2"

3"

4"

5"

0" 200" 400" 600" 800" 1000"

Port"Num

ber"

CH4"Concentra8on"(uM)"

A" B"

Page 4: Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

MethaneandNutrientcyclinginSepticLeachFieldSystems

ThisreportwaspreparedfortheNewYorkStateWaterResourcesInstitute(WRI)andtheHudsonRiverEstuaryprogramoftheNewYorkStateDepartmentofEnvironmentalConservation,withsupportfromtheNYSEnvironmentalProtectionFund

AfterprolongedfloodingofColumnB,therewasnosignificantdifferencebetweenemissionsfromColumnAandColumnB(Figure5).

Figure 5. Methane fluxes from Column A and B when both were operated in flooded conditions. Fluxes from Column B increased during this time.

AfterreturningColumnBtonormal,‘well-maintained’operation,theporewaterCH4concentrationsbegantodecreaseonceagaintopre-floodedlevels.ColumnAcontinuedtoproduceCH4neartheinlet.

Figure 6. Pore water CH4 concentrations for (A) Column A and (B) Column B after returning Column B to 'well-maintained conditions. Column A remained flooded and producing CH4 while Column B had a decrease in CH4 production.

GeneabundancesGenecopiesofpmoAandmcrAwerefoundinbothsystems(FigureXXX).DNAanalysisofsoilsshowedColumnAhadhigherabundanceofmcrAcomparedtoColumnBimmediatelyafterfloodingColumnB,howeverunderprolongedfloodedconditionstheabundanceofmcrAgenecopiesinColumnCincreasedrelativetoColumnA.Bothcolumnshada‘peak’inmcrAgeneabundancenearestPorts2and3,wheretheinfluentwastewaterisdosed.

PmoAhadgreatergenecopylevelsinsurfacesoilsthanmcrAinbothcolumns.Surprisingly,bothcolumnsshowedgreaterabundanceofpmoA(aswellasmcrA)

belowthesoilsurfacenearthewastewaterinlet–likelyreflectinganicheformethanotrophsclosetothesubsurfacesourceofmethane.

Figure 7. Gene abundances for mcrA and pmoA from two soil sample dates. Abundance of mcrA increases in Column B with sustained flooding. PmoA is found throughout the column.

ColumnBhadgreaterCODremovalonaverage(>90%)comparedtoA(30-65%)beforeflooding(Figure8).

Figure 8. COD removal was variable. Column B pre-flood had consistently higher COD removals than Column A but this difference was less prominent after both columns were flooded.

Bothcolumnshad>90%phosphorus(P)andammonium(NH4

+)removalsuggestingnutrientremovalwasunaffectedbyflooding(Figures9and10).Nitrate/nitritewereproducedatlowlevels(0.3-2mg-N/L)inthecolumns’porewaterandwerereducedtobelowdetectionineffluent.Thisindicatesthatanyproductionofnitrateandnitritewaslowinthesesystemsandlikelynotcontributingtogroundwatercontamination.

1"

2"

3"

4"

5"

0" 200" 400" 600" 800" 1000"

Port"Num

ber"

CH4"Concentra8on"(uM)"

1"

2"

3"

4"

5"

0" 200" 400" 600" 800" 1000"

Port"Num

ber"

CH4"Concentra8on"(uM)"

A" B"

0"

20"

40"

60"

80"

100"

120"

7/7/16%

8/3/16%

8/9/16%

8/26/16%

8/29/16%

9/28/16%

10/17/16%

1/19/17%

2/3/17%

COD%Pe

rcen

t%Rem

oval%(%

)%

Column"A" Column"B"

Pre$Flood) Flooded)

mcrA,10/10/16

mcrA,1/19/17

pmoA,10/10/16

pmoA,1/19/17

Page 5: Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

MethaneandNutrientcyclinginSepticLeachFieldSystems

ThisreportwaspreparedfortheNewYorkStateWaterResourcesInstitute(WRI)andtheHudsonRiverEstuaryprogramoftheNewYorkStateDepartmentofEnvironmentalConservation,withsupportfromtheNYSEnvironmentalProtectionFund

Figure 9. NH4 removal in both columns was consistent.

Figure 10. P removal from both columns was >90% and was unaffected by flooding.

FutureshiftsinDNAgenecopieswithtimewillbedetermined.AsColumnBrevertsbacktoa‘well-maintained’systemweexpecttoseeadecreaseinmcrAgeneabundance.Wearefurthercharacterizingthemicrobialcommunityusinghigh-throughputsequencingofoursoilsamples.ThisadditionaldatasetwillinformthegroupsofmethanogensandmethanotrophsresponsibleforthemajorityofCH4cyclingandwillshedlightonthecommunityshiftswithsoildepthandmoisture.UnderstandinghowthepresenceandabundanceofbiomarkergenesarerelatedtoCH4cyclingcanelucidatewhatcontrolsCH4emissionsfromthesesystemsandinformfuturesepticsystemsdesignsforbetterGHGmitigationstrategies. Overall,thetwocolumnsperformedmoresimilarlyinnutrientremovalthaninCH4cyclingunderboth‘flooded’and‘well-maintained’conditions.Althougheffectivenutrientremovals(NandP)wereachievedbybothfloodedandnon-floodedleachfieldsoils,CODremovalwasvariableanddidappeartobeimpactedbyflooding.Methanewasshowntobesignificantlyhigherinfloodedsystemsboththroughout

thesoilprofileandinemissionsfromthesoilsurface.TheseresultsshowthatmanagementoffailingsepticsystemsisvitalforminimizingairandwaterpollutioninNewYorkstate.PolicyImplicationsThis researchshowsthat failingsystemscannegativelyimpact air quality and potentially also impair waterquality.Policiesshouldfocusonenforcingmaintenanceofsepticsystems.MethodsFluxmeasurementsweredonefollowingamodifiedfieldfluxchambermethodfromMolodovskyaetal.(2011).Briefly,5mLgassamplesaretakenthroughaseptaatthetopofthecapevery10minutesfor30minutesandinjectedintopre-sealed9mLvial.ThestoredgassampleisanalyzedviaGC-FIDonthesameday.Alinearregressionwasfittothedatatoestimatefluxfromsoilsurface.Thecalculatedfluxwasscaledbyatypicalleachfieldareaadomestichousehold.Porewatersampleswereanalyzedforammonium,nitrate,nitrite,PandCODaswellasdissolvedmethane.Nutrientconcentrationsweredeterminedusingpublishedcolorimetricassaysammonium(BowerandHolm-Hansen,1980),nitrate/nitrite(Mirandaetal.,2001),phosphorus(APHA,2005)modifiedforamicroplatereader.CODmeasurementsweredoneusingaCHEMetricskit(Cat.No.K-7365).Dissolvedmethanewasmeasuredbyinjecting5mLofporewaterintoapre-sealed9mLvial,shakingfor5minutesandsamplingtheheadspaceforGC-FIDanalysis.Dissolvedmethaneconcentrationswereback-calculatedusingHenry’sConstantformethanepartitioninginwater.Soilsweresampledperiodicallybydrillingthroughthecolumnandsubsamplingsoil.DNAextractionsweredoneusingtheMoBioRNAPowerSoilextractionkit(MoBio Laboratories,Carlsbad,CA).Allreactionswererunintriplicateusingatotalreactionvolumeof25µL.Eachreactionwascomprisedof2XiQSYBRGreenSupermix(Bio-Rad,US),17.5pmolofprimer,and3uLoftemplateDNA(withconcentrationsof10ng/uL).ThermalcyclingwasconductedonaniCyclerIQ(Bio-Rad).QuantificationanalysiswascarriedoutusingCtvaluesfromtheiCyclerIQsoftware.Meltcurveanalyseswereconductedonallproductstoensurespecificity.

0"

10"

20"

30"

40"

50"

60"

70"

80"

29,Ju

n"

29,Ju

l"

28,Aug"

27,Sep

"

27,Oct"

26,Nov"

26,Dec"

25,Ja

n"

NH4

"Con

centraAo

n"(m

g/L"as"N)"

Influent"A" Effluent"A" Influent"B" Effluent"B"

Pre$Flood) Post$Flood)

0"

1"

2"

3"

4"

5"

6"

7"

8"

29,Ju

n"

29,Ju

l"

28,Aug"

27,Sep

"

27,Oct"

26,Nov"

P"Co

ncen

tra@

on"(m

g/L)"

Influent"A" Effluent"A" Influent"B" Effluent"B"

Pre$Flood) Post$Flood)

Page 6: Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

MethaneandNutrientcyclinginSepticLeachFieldSystems

ThisreportwaspreparedfortheNewYorkStateWaterResourcesInstitute(WRI)andtheHudsonRiverEstuaryprogramoftheNewYorkStateDepartmentofEnvironmentalConservation,withsupportfromtheNYSEnvironmentalProtectionFund

ConfirmationofproductsbySangersequencingshowedamplificationoftargetedgenes.StudentTrainingTwoundergraduatestudentsweretrainedduringthecourseofthisproject.BothwereJuniorsinEnvironmentalEngineeringandcontributeddirectlytothedatasummarizedhere.Additionalfinalreportsrelatedtowaterresourceresearchareavailableathttp://wri.cals.cornell.edu/news/research-reportsReferences APHA(2005)Standardmethodsfortheexaminationofwaterandwastewater,21stedn.AmericanPublicHealthAssociation,Washington,DC

Bower,C.E.,&Holm-Hansen,T.(1980).ASalicylate–HypochloriteMethodforDeterminingAmmoniainSeawater.CanadianJournalofFisheriesandAquaticSciences,37(5),794–798.

Cogger,C.G.,&Carlile,B.L.(1984).FieldPerformanceofConventionalandAlternativeSepticSystemsinWetSoils1.JournalofEnvironmentQuality,13(1),137.

Diaz-Valbuena,L.R.,H.L.Leverenz,C.D.Cappa,G.Tchobanoglous,W.R.Horwath,J.L.Darby.2011.Methane,carbondioxide,andnitrousoxideemissionsfromSepticTankSystems.EnvironmentalScience&Technology45(7):2741-2747.

Fernandez-Baca,C.,Pollard,J.,Richardson,R.

(2017).Methaneandnutrientcycling:activeprocessesinleachfieldsoilsystems.Manuscriptinpreparation.

Freitag,T.E.,Toet,S.,Ineson,P.,&Prosser,J.I.(2010).Linksbetweenmethanefluxandtranscriptionalactivitiesofmethanogensandmethaneoxidizersinablanketpeatbog.FEMSMicrobiologyEcology,73(1),157–65.

Katz,B.G.,Eberts,S.M.,&Kauffman,L.J.(2011).UsingCl/Brratiosandotherindicatorstoassesspotentialimpactsongroundwaterqualityfromsepticsystems:AreviewandexamplesfromprincipalaquifersintheUnitedStates.JournalofHydrology,397(3-4),151–166.

Kinnicutt,L.P.,C.E.A.Winslow,R.WPratt.(1910)SewageDisposal.JohnWileyandSons:NewYork,1910.

Lee,H.J.,Kim,S.Y.,Kim,P.J.,Madsen,E.L.,&Jeon,C.O.(2014).Methaneemissionanddynamicsofmethanotrophicandmethanogeniccommunitiesinafloodedricefieldecosystem.FEMSMicrobiologyEcology,88(1),195–212.

Ma,K.,Conrad,R.,&Lu,Y.(2012).ResponsesofmethanogenmcrAgenesandtheirtranscriptstoanalternatedry/wetcycleofpaddyfieldsoil.AppliedandEnvironmentalMicrobiology,78(2),445–54.

Miranda,K.M.,Espey,M.G.,&Wink,D.A.(2001).Arapid,simplespectrophotometricmethodforsimultaneousdetectionofnitrateandnitrite.NitricOxide :BiologyandChemistry/OfficialJournaloftheNitricOxideSociety,5(1),62–71.

Molodovskaya,M.,Warland,J.,Richards,B.K.,Öberg,G.,& Steenhuis,T.S.(2011).NitrousOxidefromHeterogeneousAgriculturalLandscapes:SourceContributionAnalysisbyEddyCovarianceandChambers.SoilScienceSocietyofAmericaJournal,75(5),1829.

NYSDEC(2010)HudsonRiverEstuaryActionAgenda2010-2014.pp.55.

Roberts,Sam.(2006).HudsonValleybecomesnotableforitsexurbanites,studyfinds.NewYorkTimes.October19,2006.

Truhlar,A.M.,Rahm,B.G.,Brooks,R.A.,Nadeau,S.A.,Makarsky,E.T.,&Walter,M.T.(2016).GreenhouseGasEmissionsfromSepticSystemsinNewYorkState.JournalofEnvironmentQuality,45(4),1153.

Page 7: Methane and Nutrient cycling in Septic Leach Field Systems...Methane and Nutrient cycling in Septic Leach Field Systems This report was prepared for the New York State Water Resources

MethaneandNutrientcyclinginSepticLeachFieldSystems

ThisreportwaspreparedfortheNewYorkStateWaterResourcesInstitute(WRI)andtheHudsonRiverEstuaryprogramoftheNewYorkStateDepartmentofEnvironmentalConservation,withsupportfromtheNYSEnvironmentalProtectionFund

USEPA.2002.OnsiteWastewaterTreatmentSystemsManual.EnvironmentalProtectionAgencyReportEPA625/R-00/008,175pp.

USEPA.2012.DecentralizedWastewaterTreatmentCan

BeGreenandSustainable.USEPA.<http://water.epa.gov/infrastructure/septic/upload/MOU-Green-Paper-081712-v2.pdf.>

USEPA(lastupdatedOct.2013)OfficeofWastewaterManagementDecentralizedProgram

<www.epa.gov/owm/onsite>.USEPA.2014.DecentralizedWastewaterManagement

ProgramHighlights,EPA-832-R-140006.USEPA.