35
Meteotsunamis in the Balearic Sea Renault L ., Vizoso G., Wilkin J., Tintore J. [email protected]

Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. [email protected]

Embed Size (px)

Citation preview

Page 1: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Meteotsunamis in the Balearic Sea

Renault L., Vizoso G., Wilkin J., Tintore [email protected]

Page 2: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

IntroductionIntroduction::The Balearic SeaThe Balearic Sea

Page 3: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Introduction: The Ciutadella Harbor, a peaceful natural harbor

Jansa et al., 2007

Page 4: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

IntroductionIntroduction::But, sometimes ...

Page 5: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Seiche : Wave heigth can reach up to 4 meters !

They dammage boats and the ciutadella harbor !

They cause flood

Millions of Euros of Dammage !

Jansa et al., 2007

IntroductionIntroduction::A Rissaga happens !A Rissaga happens !

Page 6: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

-MeteoTsunami !

>7mb!

Vilibic et al., 2008

2006 : wave up to 4 meters into the inlet ! More than 10 Millions $ of dammage !

-Meteorit ??

-Earthquake ??

-Storm surge ??

‘Meteotsunamis’ are generated by traveling air-pressure disturbances over a shallow region through resonant processes

WHY ???WHY ???

Page 7: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Problematic• Some studies, mostly theorical or based on observations, only a few numericals

They don’t allow us to predict the Rissagas intensity.

•Some atmospheric studies, without ocean response ... Are they realistic ?

• Signifiant rissaga (~1 meter) occur a few times per year (summer)Only small floods

• Destructive rissaga (>2 meters) occurs every 4-5 years

To avoid these dramatic Rissagas effect, need to predict both Rissagas occurences and intensities.Mesoscale phenomenon, use both oceanic and atmospheric modeling with high temporal and spatial res. WRF and ROMSAim : Reproduce Rissaga,both atmospheric and oceanic part

Document the sensitivity of this ocean/atmosphere coupling

Page 8: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Presentation plan

I. Introduction

II.Origin of the Rissaga

III.Ideal cases

IV.Realistic cases

Page 9: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Gravity waves (and/or convection) appear in the layer (3), the vertical oscillations are transmitted to the inversion layer, resulting in pressure oscillations at surface

Jansa et al., 2007 (1) low level Mediterranean air, with a weak surface depression

(2) warmer African air blowing above,around 850 hPa,

Separated by an inversion layer

3) a poorly stable or a conditionally unstable layer between the African air and colder air in the upper levels, with a marked vertical wind shear across this layer (Ramis and Jansa (1983), Monserrat et al., 1991a, b).

Origen of the Rissagas ?Origen of the Rissagas ? An atmospheric remote forcingAn atmospheric remote forcing

SLP 850Hpa wind and temp

500Hpa geopot and temp

300Hpa geopot

ECMWF

Page 10: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

mbars

Wav

e pr

opag

ation

Oscillations, can be due to:

atmospheric gravity waves (Ramis and Jansa, 1983; Monserrat et al., 1991a, b) and/or to convective pressure jumps (Jansa, 1986).

Long surface waves in the ocean which in turn produce an amplified “seiche” whithin the inlet (Tintoré et al.,1988; Gomis et al., 1993; Garcies et al., 1996).

Renault et al., 2010, in preparation

Dimensiones: Small convective core : ~20 km Structure more synoptical: with wave train, ~100-150 km.Form: semi-circle

Jansa (p.c.)

Origen of the Rissagas ?Origen of the Rissagas ? An atmospheric remote forcingAn atmospheric remote forcing

WRF

Page 11: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

hh

LL

UU

C=C=√gh√gh

hh

3. A resonant amplification in a harbour/inlet :

• Incoming wave with a maximum energy on the harbour eigenfrequencies

• A large amplification factor

T=4L/T=4L/√gh, √gh, ~10mn~10mn

same mecanism for any tsunami amplification !!

1. A traveling air-pressure disturbance

2. A resonant transfert of energy from the atmosphere to the sea Proudman resonance (Proudman, 1929)

Origen of the Rissagas ?Origen of the Rissagas ? Three main conditionsThree main conditions

Page 12: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Presentation plan

I. Introduction

II.Origen of the Rissaga

III.Ideal cases

IV. Realistic cases

Page 13: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Ideal cases Ideal cases Idealized pressure with idealized bathymetries.Idealized pressure with idealized bathymetries.

THE RESPONSE OF SEA LEVEL TO TRAVELLING PRESSURE DISTURBANCES:

patm x,y, t p0 pexp x x pert t 2 y y pert t 2

2

• Rectangular ocean basin (100m depth) on a f plane centered at N39.5º

• Dimension : 500km x 150km

• Initial condition: a state of rest with uniform and flat ocean

• DP = 7HPa

Page 14: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Ideal cases Ideal cases Idealized pressure with idealized bathymetries.Idealized pressure with idealized bathymetries.

Vibilic, I. Numerical simulations of the Proudman resonance, Continental Shelf Research, 28. 2008Mercer D et al. Barotropic waves generated by rapidly moving storms, Journal of Geophysical Research, 107. 2002Gill, A. E., Atmosphere-Ocean Dynamics. Academic press. 1982

1. Deep waters: static barometric response2. Shelf: resonant response

Solution (Proudman, 1929) for sea level when an atmospheric pressure disturbance is travelling over a channel of uniforme depth (Vibilic, 2008)

1

1 Fr2x Ut 1

2 1 Fr P x ct 1

2 1Fr P x ct

Fr U

cU

gH

“forced wave” Free bar. waves

Based on the work of Vibilic, Mercer, Gill, etc …, we will try to reproduce the physical ocean response using ROMS

Page 15: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

When U<<c, elliptic solution, as is the case of deep waters (or very slow storms), the response to the perturbation will be isostatic (inverse barometer). No resonant amplification

Ideal cases Ideal cases U/c <1U/c <1

20 mn 100 mn 160 mn

Page 16: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Hyperbolic solution. The perturbation generates a wake behind, analogous to the wake generated by a ship

Ideal cases Ideal cases U/c >1U/c >1

Page 17: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Resonant case. Transition from elliptic to hyperbolic behaviorIn our case, the typical speed of the perturbation is about 25-28 m/s. So the resonant case corresponds to depth 80-100 m

Ideal cases Ideal cases U/c=1U/c=1

Page 18: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

ROMS is able to reproduce the Proudman

resonance, now, we will use a realistic bathymetry

If Fr=1 Proudman maximal Strong Proudman resonance along the shelf

Fr=U/c

Origen of the Rissagas ?Origen of the Rissagas ? Ocean responseOcean response

Page 19: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Ideal cases Ideal cases Real bathymetryReal bathymetry

Threre is a strong non-isostatic response when the perturbation moves near the local gravity wave speed.Strong Proudman resonance and also shallowing effect ! Frequencies are in good agreement with the obs and

litterature.

Fr<1 Fr~1

Page 20: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Ideal cases Ideal cases Harbor resonanceHarbor resonance

Harbor : bath=5m

Constant bathymetry:

100m

Shelf: bathymetry: 10010m

Shelf

X=DY=1km X=DY=20

m

• Ideal Bathmetry

• One way nesting

• Atmospheric forcing : Gaussian pressure

ProudmanShelf amp

1000

m.

100

m5m

Page 21: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Ideal cases Ideal cases Harbor resonanceHarbor resonance

ROMS is able to reproduce the oceanic response to a pressure oscillation from deep

water to inside the inlet

0.4

-0.4

1

-1

5

-5

1

25mn10 mn

• Harbor resonance !

• Amplification factor ~5

• Frequencies comparable with the reality :

•25 mn: Shelf mode, 20mn oscillation multiple of the harbor eigenfreq.

•10 mn: Harbor mode

20mn

Page 22: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

2006 Strong event

Vilibic et al., 2008

Origen of the Rissagas ?Origen of the Rissagas ? Sum-upSum-up

Page 23: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Ideal cases Ideal cases Sum-upSum-up

• Results are consistents with other studies and with observations.

• Very sensitive system :

Froud number ( wave velocity)

Intensity

Orientation

• Resonance exitation of the harbor very important due to the linecoast and bathymetrie.

•Based on our hypotesis, ROMS is able to reproduce an ocean response similar to the observed

Page 24: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Presentation plan

I. Introduction

II.Origen of the Rissaga

III.Ideal cases

IV.Realistic cases

Page 25: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

WRF is able to reproduce a rissaga event, but some problems with the mean position To Study the ocean response, we translate the slp oscillation over

the shelf

• Consistent with observations

• July 1997 Rissaga is due to an atmospheric wave train

• Lengthscale ~30-40km

• V~=25-28m/s and dP~=3-5mbar

Realistic case 1: July 1997 Realistic case 1: July 1997 The atmospheric perturbationThe atmospheric perturbation

5mbar

Wave train!

Renault et al., 2010, in preparation

Page 26: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

The Rissaga event outside the harbor is well simulated by the model. What about the inlet ?

20-25 min.

50cm.

Proudman

- Good agreement with the observations, both in intensity than in frequency

-The shelf frequency is reproduced

-Proudman + shelf amp ~4-5cm 50cm!

Realistic case 2:July 1997Realistic case 2:July 1997OceanicOceanic response over the shelf response over the shelf

Renault et al., 2010, in preparation

Page 27: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

The model is able to reproduce the July 97 Rissaga event, both outside the inlet than inside. The fundamental period is pretty

well reproduced.

-Good agreement with the observations and vilibic et al., 2008: wave >1 meter !

-The simulated inlet fundamnental period is similar than the oberved : ~ 10 minutes (Helmholds period)

-Current ~1meter/s !

- Amplification harbor > 2

10 mn

24mn

>1 meter!

10mn

Realistic case 1: July 1997Realistic case 1: July 1997Inlet responseInlet response

Max current

20mn

Renault et al., 2010, in preparation

Page 28: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Conclusions and perspectives (1)• Numerical regional model are able to reproduce some Rissagas ! But problems with wave orientation and intensity

• Resonant phenomenon simulated are consistants with the observed and the litterature (Mercer, Gill, ...)• Frequencies simulated have a good agrement with the observed (10mn and 24mn mainly)• Intensities of the generated wave comparable with other studies (i.e. Vilibic et al., 2008) and obs.

• From a low resolution atmospheric forcing, we are able to reproduce traveling pressure disturbance

• Wave train during the July 1997 Rissaga• dP=3-5mb, V=25-28m/s, angle~45º, wavelength : ~30-40km• Some problems with the 2006 complex strong rissaga (convective case), on work ....

Page 29: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Conclusions and perspectives (2)

• Impact of the trapped wave on the oceanic response ??

•Meteotsunami occurs not only in the Balearic sea but around the world ! i.e: ‘rissaga’ ‘milghuba’ , ‘marrubio’, ‘abiki’

• Mostly a barotropic response, but stratification impact (Cushman-roisin et al., 2004) ? What it the orden of the baroclinic response ? Wind efect ?

• Toward an operational forecasting of the Rissaga

• How to improve the atmospheric wave simuation ?? Boundaries conditions ? Physics ? Data assimilation ?

Great Lakes

Ciutadella Sicillia

Vela Luka Bay

South AfricaGreece

Japan

Kuril islandBritish Columbia

Page 30: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Thank you !

Page 31: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Add on

Page 32: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Fig. 3: The WRF model configuration

WRF domains

• Three embedded domains, two way nesting

• 30km 6km ( 1.5km)

• SST forcing by medinspiron

Main phsyics option

Page 33: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es
Page 34: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Realisitic Case 2: June 2006Realisitic Case 2: June 2006Convective RissagaConvective Rissaga

• WRF simulate an atmospheric pressure jump, but problems :

1. Location

2. Intensity : only 3-4mb

• Ocean response too weak:

1. Only ~40cm entrance

WEAK ENERGY

1. Frequencies are not multiple of the harbor frequencies WEAK HARBOR RESONANCE

Problem to simulate the 2006 event with various WRF configuration. It was a strong particular event, with convective

atmospheric effect. Data assimilation ? Boundaries conditions ?

Page 35: Meteotsunamis in the Balearic Sea Renault L., Vizoso G., Wilkin J., Tintore J. lrenault@imedea.uib-csic.es

Realistic case 2: June 2006Realistic case 2: June 2006Extrapolated mesured pressure Extrapolated mesured pressure

• Realistic response ! Why ? Stronger atmospheric signal stronger energy.

•Ocean respond violently generating strong eigenoscillation insite both coastline.

•Into the harbor, wave up to 2 meters, weaker than the testimomies but stronger than the one simulated in Vilibic et al., 2008

• currents about -2 2 m/s

• Same metodology than Vibilic et al., 2008 : propagation of the observed pressure : 25ms and 45º, wavelength ~130km

2006 event pretty well reproduced by ROMS. Main diff. between observed and simulated atmospheric pressure: pressure

gradient

~1h30