19
ARTICLES https://doi.org/10.1038/s41559-020-1225-3 Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre  1 , Carla Bardua  1,2 , Margot Bon 1 , Julien Clavel 1,3 , Ryan N. Felice  4 , Jeffrey W. Streicher 1 , Jeanne Bonnel 2 , Edward L. Stanley  5 , David C. Blackburn  5 and Anjali Goswami 1 1 Department of Life Sciences, The Natural History Museum, London, UK. 2 Department of Genetics, Evolution and Environment, University College London, London, UK. 3 Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France. 4 Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK. 5 Florida Museum of Natural History, University of Florida, Gainesville, FL, USA. e-mail: [email protected] SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. NATURE ECOLOGY & EVOLUTION | www.nature.com/natecolevol

Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

Articleshttps://doi.org/10.1038/s41559-020-1225-3

Metamorphosis shapes cranial diversity and rate of evolution in salamandersAnne-Claire Fabre   1 ✉, Carla Bardua   1,2, Margot Bon1, Julien Clavel1,3, Ryan N. Felice   4, Jeffrey W. Streicher1, Jeanne Bonnel2, Edward L. Stanley   5, David C. Blackburn   5 and Anjali Goswami1

1Department of Life Sciences, The Natural History Museum, London, UK. 2Department of Genetics, Evolution and Environment, University College London, London, UK. 3Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France. 4Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK. 5Florida Museum of Natural History, University of Florida, Gainesville, FL, USA. ✉e-mail: [email protected]

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

NAtuRE ECoLoGy & EvoLutioN | www.nature.com/natecolevol

Page 2: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

1

Supplementary Information for

Metamorphosis shapes cranial diversity and rate of evolution in salamanders

Anne-Claire Fabre, Carla Bardua, Margot Bon, Julien Clavel, Ryan N. Felice, Jeffrey W.

Streicher, Jeanne Bonnel, Edward L. Stanley, David C. Blackburn, Anjali Goswami

Page 3: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

2

Supplementary Figures

Supplementary Figure 1: The phylogenetic relationships of the species used in this study

(based on43). The time scale is in millions of years. The different life cycles are indicated by red

circles for biphasic species, yellow circles for direct developers, blue circles for paedomorphic

species, and black circles for strictly viviparous species.

Page 4: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

3

Supplementary Figure 2: The phylogenetic relationships of the species used in this study

(based on43). The time scale is in millions of years. The different fine-grained classification of

life cycles is indicated as in the legend. Abbreviations are as follows: f-bi pd1 indicates

facultative biphasic species, as some populations can be paedomorphic in these species. When

they are paedomorphic they display external gills, gill slits, a tail fin, no eyelids, no maxillary

bones, no septomaxilla, and no prefrontal; f-bi pd4 indicates facultative biphasic species, as

some populations can be paedomorphic in these species. When they are paedomorphic they

display external gills, gill slits, tail fin, no eyelids, no septomaxilla and with maxillary and

prefrontal bones developing before adulthood; f-bi pd4tri indicates species that are triphasic;

pd1 indicates paedomorphic species with external gills, gill slits, tail fin, no eyelids, no maxillary

bones, no septomaxilla, and no prefrontal; pd2 indicates paedomorphic species with external

Page 5: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

4

gills, gill slits, tail fin, no eyelids, no septomaxilla, no prefrontal and with maxillary bones

developing before adulthood; pd3 indicates paedomorphic species without external gills but with

gill slits, tail fin, no eyelids, no septomaxilla and with maxillary and prefrontal bones developing

before adulthood; pd4 indicates paedomorphic species with external gills, gill slits, tail fin, no

eyelids, no septomaxilla and with maxillary and prefrontal bones developing before adulthood;

vipu indicates strictly puereparate viviparous species; f-vila indicates facultative larviparate

viviparous species; ovi indicates oviparous species.

Page 6: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

5

Supplementary Figure 3: The phylogenetic relationships of the species used in this study

(based on43). The time scale is in millions of years. The different microhabitats are indicated as

in legend.

Page 7: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

6

Supplementary Figure 4: Phylomorphospace of the first two principal component scores

describing the skull shape distribution of Caudata. Data point shapes are coded by family

group and colors represent the size of the specimen, as indicated by the key.

Page 8: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

7

Supplementary Figure 5: Phylomorphospace of the first two principal component scores

showing the skull shape distribution of Caudata. Data point shapes are coded by family group

and colors represent microhabitats as indicated by the key.

Page 9: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

8

Supplementary Figure 6: trace plots and comparison of several independent runs for the

whole cranium data set.

Page 10: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

9

Supplementary Tables

Regression R2 P-value

Paedomorphic 0.145 0.001

Direct developer 0.140 0.001

Biphasic 0.091 0.001

Entire dataset 0.063 0.002

Supplementary Table 1: Results of the PGLS regression performed on the cranial shape

depending on life cycle and for the entire dataset. Results are significant. There is a moderate

impact of centroid size on cranial shape for paedomorphic and direct developing species.

However, allometry is less strong in biphasic species. Overall, the impact of the centroid size on

cranial shape for the entire dataset is low.

Page 11: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

10

Life cycle

Fine-grained life

cycle

F P-value F P-value

Premaxilla 2.600 0.003 1.59 0.007

Frontal 2.950 0.001 1.24 0.080

Parietal 2.600 0.003 1.08 0.300

Squamosal 2.600 0.004 1.17 0.170

Quadrate 3.190 0.001 0.37 0.057

Parasphenoid 5.200 0.001 1.66 0.001

Vomer 6.300 0.001 2.06 0.001

Occipital 6.870 0.001 1.83 0.003

Otic region 4.676 0.001 1.54 0.006

Nasal 7.565 0.001 2.23 0.001

Maxilla 11.524 0.001 3.14 0.001

Orbitosphenoid 4.350 0.001 1.56 0.012

Prefrontal 7.719 0.001 2.06 0.001

Pterygoid 9.739 0.001 3.23 0.001

Overall head shape 5.558 0.001 1.84 0.001

Supplementary Table 2: Results of the phylogenetic MANOVAs for each bone testing for

shape differences depending on life cycle (biphasic, paedomorphic and direct developers)

and on subcategories of life cycles (biphasic; facultative biphasic: f-bi pd1, f-bi pd4, f-bi

pd4tri ; direct developers; paedomorphic: pd1, pd2, pd3, pd4; viviparous: vipu,vila;

oviparous). The analyses for life cycle were run on the whole data set excluding the strictly

viviparous species.

Results in bold are significant. Nevertheless, it is important to note that some fine-grained life

cycle categories have less than 5 species (f-vila, vipu, ovi, f-bi pd1) and that the results have to

be interpreted with caution.

Page 12: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

11

F P-value

Premaxilla 0.9 0.5

Frontal 0.9 0.52

Parietal 1 0.39

Squamosal 1.5 0.02

Quadrate 1.2 0.18

Parasphenoid 1.7 0.004

Vomer 1.4 0.046

Occipital 1.3 0.16

Otic region 1.1 0.2

Nasal 0.7 0.9

Maxilla 1.8 0.01

Orbitosphenoid 1.1 0.25

Prefrontal 1.3 0.16

Pterygoid 0.9 0.5

Overall head shape 1.3 0.03

Supplementary Table 3: Results of the phylogenetic MANOVAs for each bone testing for

shape differences depending on microhabitats (aquatic, semi-aquatic, semi-fossorial,

terrestrial, arboreal species and species inhabiting cave).

Results in bold are significant. Nevertheless, it is important to note that some microhabitat

categories have less than 5 species (semi-fossorial and aquatic species inhabiting cave category)

and that the results have to be taken cautiously.

Page 13: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

12

Equal rates model Symmetric model All rates different model

AIC 133.2147 130.4413 134.1485

AICc 133.2421 131.037 136.4596

k 1 6 12

Supplementary Table 4: Results of the Akaike information criterion (AIC) and Akaike

information criterion with correction (AICc) for each model fit of the ancestral state

reconstruction of life cycle. The best model selected is the symmetric one.

Page 14: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

13

Equal rates model Symmetric model All rates different model

AIC 315.3114 263.5621 309.8952

AICc 315.3388 264.1579 312.2063

k 1 6 12

Supplementary Table 5: Results of the Akaike information criterion (AIC) and Akaike

information criterion with correction (AICc) for each model fit of the ancestral state

reconstruction of fine-grained classifications life cycle. The best model selected is the

symmetric one.

Page 15: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

14

Lh Lh+Prior No.Pram Alpha Sigma.2

First run 316.522 631.773 246.381 2221.19 1774.52

Second run 357.8 688.392 167.648 4340.82 3620.76

Supplementary Table 6: Effective sample size for the first run and second run of the whole

cranium.

Page 16: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

15

Point

est.

Upper

C.I.

Lh 1 1.01

Lh...Prior 1 1.01

No.Pram 1 1

Alpha 1 1

Sigma.2 1 1

Multivariate psrf 1.08

Supplementary Table 7: test comparing several independent runs using Gelman and

Rubin's convergence diagnostic.

Page 17: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

16

Supplementary references

1. Bonett, R. M. & Blair, A. L. Evidence for complex life cycle constraints on salamander

body form diversification. Proc. Natl. Acad. Sci. USA 114, 9936–9941 (2017).

2. Brandon, R. A. Size range, size at maturity, and reproduction of Ambystoma

(Bathysiredon) dumerilii (Dugès), a paedogenetic mexican salamander endemic to Lake

Pátzcuaro, Michoacán. Copeia 1970, 385–388 (1970).

3. Raffaëlli, J. Les urodèles du monde, 2nd editions (Penclen Edition, 2014).

4. Baken, E. K. & Adams, D. C. Macroevolution of arboreality in salamanders. Ecol. Evol.

9, 7005-7016, doi:10.1002/ece3.5267 (2019).

5. AmphibiaWeb. Ambystoma gracile: Northwestern Salamander

<http://amphibiaweb.org/species/3833> University of California, Berkeley, CA, USA.

Accessed Jan 31, 2020 (2008).

6. AmphibiaWeb. <http://amphibiaweb.org> University of California, Berkeley, CA, USA.

Accessed 30 Jan 2020 (2020).

7. AmphibiaWeb. Ambystoma mexicanum: Mexican Axolotl

<http://amphibiaweb.org/species/3842> University of California, Berkeley, CA, USA.

Accessed Jan 31, 2020 (2018).

8. AmphibiaWeb. Ambystoma tigrinum: Eastern Tiger Salamander

<http://amphibiaweb.org/species/3850> University of California, Berkeley, CA, USA.

Accessed Jan 31, 2020 (2011).

9. Bonett, R. M. in Evolutionary Developmental Biology (eds. L. Nuño de la Rosa & G. B.

Müller) 1-14 (Springer, 2018).

10. Wake, D. B. Comparative osteology and evolution of the lungless salamanders, family

Plethodontidae. Mem. Calif. Acad. Sci. 4, 1–111 (1966).

11. AmphibiaWeb. Dicamptodon ensatus: California Giant Salamander

<http://amphibiaweb.org/species/3866> University of California, Berkeley, CA, USA.

Accessed Jan 31, 2020 (2018).

12. Dunn, E. R. The salamanders of the family Hynobiidae. Proc. Am. Acad. Arts Sci. 58,

445–523 (1923).

13. Kami, H. G. The biology of the Persian mountain salamander, Batrachuperus persicus

(Amphibia, Caudata, Hynobiidae) in Golestan Province, Iran. Asiat. Herpetol. Res. 10,

182-190 (2004).

14. Blankers, T., Adams, D. C. & Wiens, J. J. Ecological radiation with limited

morphological diversification in salamanders. J. Evol. Biol. 25, 634–646 (2012).

15. Capshaw, G., Soares, D. & Carr, C. E. Bony labyrinth morphometry reveals hidden

diversity in lungless salamanders (Family Plethodontidae): Structural correlates of

ecology, development, and vision in the inner ear. Evolution 73, 2135–2150 (2019).

16. Brame, A. H. & Wake, D. B. The salamanders of South America. Contrib. sci 69, 1–72

(1963).

17. Paterson, E. Observation of a paedomorphic palmate newt (Lissotriton helveticus) in

Scotland. The Herpetological Bulletin 139, 34–35 (2017).

18. AmphibiaWeb. Bolitoglossa lignicolor <http://amphibiaweb.org/species/3984>

University of California, Berkeley, CA, USA. Accessed Apr 3, 2019 (2010).

Page 18: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

17

19. Acevedo, M., Wake, D. B., Köhler, G. & Vasquez, C. Bolitoglossa salvinii (errata

version published in 2017). The IUCN Red List of Threatened Species 2010:

e.T59203A114583580 (2017).

20. Parra-Olea, G., Wake, D. B. & Hanken, J. Chiropterotriton chiropterus. The IUCN Red

List of Threatened Species 2008: e.T59222A11901075 (2008).

21. AmphibiaWeb. Plethodon vandykei: Van Dyke's Salamander

<http://amphibiaweb.org/species/4156> University of California, Berkeley, CA, USA.

Accessed Jan 30, 2020 (2011).

22. Organ, J. A. Studies on the life history of the salamander, Plethodon welleri. Copeia

1960, 287-297 (1960).

23. Wake, D. B. Adaptive Radiation of Salamanders in Middle American Cloud Forests.

Ann. Missouri Bot. 74, 242-264 (1987).

24. Good, D. A. & Wake, D. B. Geographic Variation and Speciation in the Torrent

Salamanders of the Genus Rhyacotriton (Caudata: Rhyacotritonidae) (University of

California Publications in Zoology, 1992).

25. Arnold, S. J. The comparative ethology of courtship in salamandrid salamanders. 1.

Salamandra and Chioglossa. Ethology 74, 133–145 (1987).

26. AmphibiaWeb. Cynops wolterstorffi: Kunming Lake Newt.

<http://amphibiaweb.org/species/4246> University of California, Berkeley, CA, USA.

Accessed Apr 3, 2019 (2001).

27. Heiss, E. & Grell, J. Same but different: aquatic prey capture in paedomorphic and

metamorphic Alpine newts. Zool. Lett. 5, 5–24 (2019).

28. Slijepčević, M. D. Evidence for paedomorphosis in Macedonian crested newt (Triturus

macedonicus) from Montenegro. Arch. Biol. Sci. Belgrade 67, 7–10 (2015).

29. Göçmen, B., Çiçek, K., Mermer, A. & Akman, B. Notes on the reproduction of

Lyciasalamandra atifi (Başoğlu, 1967) (Amphibia: Salamandridae) from Cebireis

Mountain (Antalya, Turkey). Biharean Biol.7, 52–53 (2013).

30. AmphibiaWeb Lyciasalamandra luschani: Lycian

salamander<http://amphibiaweb.org/species/4256> University of California, Berkeley,

CA, USA. Accessed Jan 30, 2020 (2013).

31. Vaissi, S. & Sharifi, M. Larval and post-metamorphic growth in the endangered yellow

spotted mountain newt Neurergus microspilotus (Caudata, Salamandridae). World J.

Zool. 10, 365–373 (2015).

32. Kraemer, A. C. & Adams, D. C. Predator perception of batesian mimicry and

conspicuousness in a salamander. Evolution 68, 1197–1206 (2014).

33. Kaya, U., Sayim, F., Başkale, E. & Cevik, I. E. Paedomorphosis in the banded newt,

Triturus vittatus (Jenyns, 1835). Belg. J. Zool. 138, 196–197 (2008).

34. AmphibiaWeb. Paramesotriton labiatus: Zhao Ermi's Smooth Warty Newt

<http://amphibiaweb.org/species/4268> University of California, Berkeley, CA, USA.

Accessed Feb 11, 2020 (2015).

35. Ceacero, F., Donaire-Barroso, D., García-Muñoz, E., Beltrán, J. F. & Tejedo, M. On the

occurrence of facultative paedomorphosis in the three newt species of Southern Iberian

Peninsula (Amphibia, Salamandridae). Amphibia-Reptilia 31, 571–575 (2010).

36. Donaire, B. D. & Bogaerts, S. Observations on viviparity of Salamandra algira in North

Morocco (SEH, 2001).

Page 19: Metamorphosis shapes cranial diversity and rate of ...10.1038/s41559-020-122… · Metamorphosis shapes cranial diversity and rate of evolution in salamanders Anne-Claire Fabre 1

18

37. Nöllert, A. & Nöllert, C. Die Amphibien Europas (Franckh-Kosmos Verlags-GmbH and

Company, 1992).

38. Miaud, C., Cheylan, M., Sindaco, R. & Romano, A. (IUCN Red List of Threatened

Species. 2012.2. www.iucn.org. Downloaded on 16 February 2013, 2009).

39. Sparreboom, M. Salamanders of the Old World: the salamanders of Europe, Asia and

Northern Africa. (KNNV Publishing, 2014).

40. Beukema, W., Nicieza, A. G., Lourenço, A. & Velo-Antón, G. Colour polymorphism in

Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and

environmental differentiation between distinct phenotypes. J. Zool. Syst. Evol. Res. 54,

127–136 (2016).

41. Bruni, G., Tessa, G. & Angelini, C. Body size, age and population structure of Triturus

carnifex (Urodela: Salamandridae) in the context of facultative paedomorphosis. Acta

Herpetol. 13, 177–183 (2018).

42. Khatiwada, J. R. et al. A New Species of the Genus Tylototriton (Amphibia: Urodela:

Salamandridae) from Eastern Himalaya. Asian Herpetol. Res. 6, 245–256 (2015).

43. Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation

with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858

(2018).