35
Core indicator report Made available as reference material for State and Conservation 5-2016 Metals (lead, cadmium and mercury) Key Message This core indicator evaluates the status of the marine environment based on concentrations of heavy metals in the Baltic Sea water and biota. Good Environmental Status (GES) is achieved when the concentrations of heavy metals are below the levels used to define the GES boundary. Key message figure 1: Status assessment results based on evaluation of the indicator 'Metals (lead, cadmium and mercury)'. The assessment is carried out using Scale 3 HELCOM assessment units (defined in the HELCOM Monitoring and Assessment Strategy Annex 4). Click to enlarge.

Metals (lead, cadmium and mercury) Key Message - HELCOM

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Metals (lead, cadmium and mercury) Key Message - HELCOM

Core indicator report

Made available as reference material for State and Conservation 5-2016

© HELCOM 2015

www.helcom.fi

www.helcom.fi > Baltic Sea trends > Indicators

www.helcom.fi

Metals (lead, cadmium and mercury)

Key Message

This core indicator evaluates the status of the marine environment based on concentrations of heavy

metals in the Baltic Sea water and biota. Good Environmental Status (GES) is achieved when the

concentrations of heavy metals are below the levels used to define the GES boundary.

Key message figure 1: Status assessment results based on evaluation of the indicator 'Metals (lead, cadmium and

mercury)'. The assessment is carried out using Scale 3 HELCOM assessment units (defined in the HELCOM Monitoring

and Assessment Strategy Annex 4). Click to enlarge.

Page 2: Metals (lead, cadmium and mercury) Key Message - HELCOM

2

Environmental Status Assessment within D8

Heavy metals

Matrix Area

Danish German Swedish Polish Finish Lithuanian Latvian Estonian

Cd Seawater 2014 2014

Mussel

soft body 2012 2014 2013 2014

Hg Fish muscle

2012 2012 2013 2014 2012 2014 2007

Pb Seawater 2014 2014

Fish liver 2012 2014 2013 2014 2011 2014 2008

Mussel

soft body 2012 2013 2013 2014

Environmental Status Assessment within D9

Heavy metals

Matrix Area

Danish German Swedish Polish Finish Lithuanian Latvian Estonian

Cd Fish liver 2012 2014 2013 2014 2011 2014 2008

Mussel

soft body

2012 2014 2013 2014

Hg Fish muscle

2012 2012 2013 2014 2012 2014 2007

Pb Fish liver 2012 2014 2013 2014 2011 2014 2008

Mussel

soft body

2012 2013 2013 2014

Biorąc pod uwagę obszary monitorowane dobry stan środowiska w zakresie poziomów Cd i Pb w wodzie

morskiej stwierdzono w basenach: Bay of Mecklenburg, Bornholm Basin, Great Belt and Kiel Bay oraz

Eastern Gotland Basin. Nieodpowiedni stan środowiska w zakresie poziomów Cd w małżach odnotowano w

Page 3: Metals (lead, cadmium and mercury) Key Message - HELCOM

3

wodach pozostających pod jurysdykacją Danii, Niemiec, Szwecji i Polski. W przeciwieństwie do Cd, stężenia

Pb odnotowane w ostatnich latach małżach w tych samych rejonach wskazują na dobry stan środowiska,

podobnie jak stężenia Pb w wątrobach ryb pozostające poniżej poziomów docelowych w obszarach wód

niemieckich, szwedzkich i fińskich. Natomiast stężenie Pb obserwowane w wątrobach ryb odłowionych w

obszarach duńskich, polskich, litewskich i estońskich wskazują na stan nieodpowiedni w tym zakresie.

Stężenia docelowe dla Hg w mięśniach zostały przekroczone aż w 5 (obszarach duńskich, szwedzkich,

polskich, fińskich i litewskich) z 7 monitorowanych rejonów. W przypadku obszarów niemieckich i fińskich

osiągnięty został dobry stan środowiska w tym zakresie. Należy jednak podkreślić, że w przypadku

większości parametrów obserwuje się trendy spadkowe wskazujące na możliwość osiągnięcia dobrego

stanu w obszarze Bałtyku w zakresie trzech monitorowanych metali.

Once the evaluation is carried out, the confidence of the indicator evaluation is expected to be high since

the data on metal concentrations in fish and bivalves is spatially adequate and time series are available for

several stations. The indicator is applicable in the waters of all countries bordering the Baltic Sea.

Relevance of the core indicator

Cadmium - Cd, lead - Pb and mercury - Hg należą do metali charakteryzujących się udokumentowanym

działaniem toksycznym. Wszystkie metale wymieniane są przez DIRECTIVE 2013/39/EU OF THE EUROPEAN

PARLIAMENT AND OF THE COUNCIL of 12 August 2013 (amending Directives 2000/60/EC and 2008/105/EC

as regards priority substances in the field of water policy) jako substancje priorytetowe which pose “a

threat to the aquatic environment, with effects such as acute and chronic toxicity in aquatic organisms,

accumulation of pollutants in the ecosystem and loss of habitats and biodiversity, and also poses a threat to

human health”. Additionally mercury was identified as a priority hazardous substance. Metale ulegają

bioakumulacji w organizmach zarówno flory, jak i fauny morskiej wywołując szkodliwe oddziaływanie, które

w dużej mierze zależy od poziomu ich stężeń w tkankach. Szkodliwe oddziaływanie może występować na

poziomie pojedynczych organizmów, dotyczy to przede wszystkim przedstawicieli fauny, ze szczególnym

uwzględnieniem ichtiofauny. Additionally both Cd and Hg are biomagnifying, i.e. concentration levels

increase up through the foodchain. Obecność metali ciężkich w tkankach może wywoływać rozmaite efekty

biologiczne, które następnie mogą przekładać się na zmiany obserwowane na poziomie populacji,

gatunków i ostatecznie wpływać na bioróżnorodność i funkcjonowanie całego ekosystemu. Zawartość

metali ciężkich w rybach, szczególnie tych o znaczeniu komercyjnym przekłada się również bezpośrednio na

zdrowie ludzi spożywających ryby. Dlatego też kontrolowanie poziomu stężeń metali ciężkich, zwłaszcza

tych o krytycznym znaczeniu dla zdrowia ekosystemu oraz dla zdrowej żywności muszą być kontrolowane i

stanowią podstawowy element w ocenie stanu środowiska zarówno w zakresie desryptora D8, jak i

Deskryptora D9, wymienianych jako 2 z 11 podstawowych elementów w zakresie których należy osiągnąć

dobry stan środowiska.

There have been substantive legislations in the HELCOM area to decrease inputs of all three metals to the

Baltic Sea, but generally, except for lead no clear trend of decreasing metal concentrations in biota are

found.

Policy relevance of the core indicator

BSAP segment and objectives MSFD Descriptor and criteria

Primary link Hazardous substances

Radioactivity at pre-Chernobyl level

D8 Concentrations of contaminants 8.1 Concentration of contaminants

Page 4: Metals (lead, cadmium and mercury) Key Message - HELCOM

4

Secondary link Hazardous substances

Fish safe to eat

D9 Contaminants in fish and seafood 9.1 Levels, number and frequency of contaminants

Other relevant legislation: In some Contracting Parties also Water Framework Directive

Cite this indicator

HELCOM (2015) Metals (lead, cadmium and mercury). HELCOM Core Indicator Report. Online. [Date

Viewed], [Web link].

Download full indicator report

Core indicator report – web-based version January/February 2016 (pdf)

Extended core indicator report – outcome of CORESET II project (pdf)

Page 5: Metals (lead, cadmium and mercury) Key Message - HELCOM

5

Results and Confidence

Cadmium

Seawater

Cadmium concentrations in the waterphase have been measured by Russia (1995–1998), Germany (1998–

2014) and Lithuania (2007–2014). Nine percent of these were above the annual average Environmental

Quality Standards (AA-EQS) of 0.2 µg l-1 (the same percentage applied if looking at the measurements

reported after 2005). No samples was above the maximum annual concentration EQS (MAC-EQS) of 1.5 for

an expected CaCO3 concentration of class 5 (>200 ppb) in seawater. But for seawater the AA-EQS is already

considered high compared to the 1998 OSPAR (Convention for the Protection of the Marine Environment of

the North-East Atlantic) Environmental Assessment Criteria (EACs) in seawater of (0.01-0.1 µg l-1) and the

background assessment concentration of 0.012 µg l-1. Hence, the AA-EQS is considered to be the relevant

target.

Zmiany stężeń Cd w wodzie morskiej obserwowane w wodach basenów: Bay of Mecklenburg, Bornholm

Basin, Great Belt and Kiel Bay wskazują na istotny statystycznie trend spadkowy, chociaż obserwowane

zmiany nie są dynamiczne (Fig. 1). Wartości średnie wyznaczone dla poszczególnych lat zmieniały się od

0.19 µg l-1w roku 1998 do zaledwie 0.02 µg l-1w roku 2014, pozostając jednocześnie poniżej wartości EQS, co

mogłoby wskazywać na dobry stan środowiska w zakresie skażenia wód Bałtyku Cd.

Fig 1. Cadmium in seawater in the German area (red line - annual average Environmental Quality Standard (AA-EQS)

0.2 µg dm-3, green – trend line, circles – samples taken at different locations and different dates)

Stężenia Cd w wodzie morskiej mierzone są również w ramach monitoringu prowadzonego przez Litwę w

obszarze Eastern Gotland Basin. W 2012-2014 poziomy stężeń Cd nie przekroczyły granicy oznaczalności

stosowanej metody, która wynosiła 0.1 µg l-1, co decyduje o tym, że również w tym obszarze stan

środowiska w zakresie skażenia Cd można uznać za dobry.

19961998

20002002

20042006

20082010

20122014

20160.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cd

(se

aw

ate

r),

g

dm

-3

R = -0.2472; p = 0.00000

Page 6: Metals (lead, cadmium and mercury) Key Message - HELCOM

6

Fish

Monitoring stężeń Cd w rybach w obszarze Bałtyku prowadzony jest od wielu lat. Główną matrycą

uwzględnianą w analizach jest wątroba najbardziej specyficznych gatunków ryb, ze szczególnym

uwzględnieniem tych o znaczeniu komercyjnym, takich jak śledzie (Clupea harengus) i flounder (Platichtys

flesus).

Pomimo, że dla Bałtyku nie przyjęto wartości docelowych wyznaczających granicę pomiędzy stanem dobry i

nieodpowiednim dla Cd, to jego udokumentowane szkodliwe działanie oraz wciąż stosunkowo wysokie

stężenia obserwowane w tkankach ryb Bałtyckich nakładają konieczność kontrolowania poziomów Cd w

środowisku morskim.

W przypadku czterech obszarów: Danish, Finish, Polish, German obserwuje się istotne statystycznie trendy

wskazujące jednoznacznie na obniżanie stężeń Cd w wątrobie flądry (Fig. 2, Fig. 6) i śledzi (Fig. 3-6).

Maksymalne średnie stężenie Cd w wątrobie śledzi w obszarach duńskich w okresie objętym badaniami

odnotowano w 1999 roku i wynosiło ono 694 µg kg-1 w.w. Średnie stężenie Cd w wątrobie fląder

odłowionych w 2012 roku w rejonie wód duńskich (112 µg kg-1 w.w.) było zdecydowanie niższe od

średniego stężenia Cd odnotowanego w rybach w wodach fińskich w 2011 (419 µg kg-1 w.w.) i od średniego

stężenia Cd w rybach z obszarów polskich w 2014 (590 µg kg-1 w.w.).W obszarach niemieckich trend

spadkowy obserwowano również w przypadku śledzi w okresie obejmującym lata 1997 – 2000 i 2007 –

2008, w którym średnie stężenie Cd wynoszące 1003 µg kg-1 w.w. w roku 1997 spadło do 174 µg kg-1 w.w.

w roku 2008. Podobnie przedstawia się sytuacja w przypadku flądry w obszarach niemieckich, dla której

stężenia w okresie od 1986 do 2001 zmieniały się w zakresie od 51 µg kg-1 w.w. w 1996 do 232 µg kg-1 w.w.

w 1987. Natomiast w latach 2013 i 2014 były na bardzo zbliżonym poziomie i wynosiły odpowiednio 53 i 52.

µg kg-1 w.w. Brak jednoznacznego kierunku zmian stężeń Cd odnotowano w przypadku śledzi w obszarach

szwedzkich. Średnie stężenie Cd w roku 1981 (261 µg kg-1 w.w.) było bardzo zbliżone do stężenia w roku

2013 (283 µg kg-1 w.w.), podczas gdy maksymalną wartość odnotowano w roku 1993 (557 µg kg-1 w.w.).

Wzrost stężeń Cd odnotowano natomiast w wątrobie śledzi z obszaru Estonii w latach 2003-2008, chociaż

stężenia w 2008 roku były zbliżone do 200 µg kg-1 w.w. (Fig. 6). Wzrost stężeń charakteryzował również

flądry odłowione w obszarach litewskich, dla których zawartość Cd w 2014 roku wynosiła 420 µg kg-1 w.w. i

była dwukrotnie większa od wartości obserwowanej w 2011 roku. Należy jednocześnie podkreślić, że okresy

badań są krótkie.

1996 1998 2000 2002 2004 2006 2008 2010 2012 20140

500

1000

1500

2000

2500

3000

Cd

(liv

er)

,

g k

g-1

w.w

.

R = -0.3756; p = 0.0000

Page 7: Metals (lead, cadmium and mercury) Key Message - HELCOM

7

Fig. 2 Concentration of cadmium in flounder (Platichtys flesus) liver in the Danish area (green – trend line, circles –

samples taken at different locations and different dates)

Fig. 3 Concentration of cadmium in herring (Clupea harengus) liver in the Finish area (green – trend line, circles – samples taken at different locations and different dates)

Fig. 4 Concentration of cadmium in herring (Clupea harengus) liver in the Swedish area (green – trend line, circles – samples taken at different locations and different dates)

1996 1998 2000 2002 2004 2006 2008 2010 20120

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Cd

(liv

er)

,

g k

g-1

w.w

.

R = -0.1475; p = 0.0000

1975 1980 1985 1990 1995 2000 2005 2010 20150

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Cd

(liv

er)

,

g k

g-1

w.w

.

R = 0.0328; p = 0.1120

Page 8: Metals (lead, cadmium and mercury) Key Message - HELCOM

8

Fig. 5 Concentration of cadmium in herring (Clupea harengus) liver in the Polish area (green – trend line, circles –

samples taken at different locations and different dates)

Fig. 6 Concentration of cadmium in herring (Clupea harengus) and flounder (Platichtys flesus) liver in the German area

(green – trend line, circles – samples taken at different locations and different dates)

19961998

20002002

20042006

20082010

20122014

20160

200

400

600

800

1000

1200

1400

1600

1800

Cd

(liv

er)

,

g k

g-1

w.w

.

R = -0.2248; p = 0.0000

1996 1998 2000 2002 2004 2006 2008 20100

500

1000

1500

2000

2500

3000

Cd

(liv

er)

,

g k

g-1

w.w

.

R = -0.5564; p = 0.0000

1980 1985 1990 1995 2000 2005 2010 2015 20200

100

200

300

400

500

600

700

800

900

Cd

(liv

er)

,

g k

g-1

w.w

.

R = -0.1906; p = 0.00000

Page 9: Metals (lead, cadmium and mercury) Key Message - HELCOM

9

Fig. 7 Concentration of cadmium in herring (Clupea harengus) liver in the Estonian area and in flounder (Platichtys

flesus) liver in the Lithuanian area (green – trend line, circles – samples taken at different locations and different

dates)

Mussel

Zmiany stężeń Cd w soft body of mussels w obszarach szwedzkich i niemieckich wykazują nieznaczny, ale

istotny statystycznie wzrost. Średnie stężenie Cd w Macoma baltica w obszarach szwedzkich w 2013 roku

wynosiło aż 2347 µg kg-1 d.w., wskazując na to, że biorąc pod uwagę kryterium dobrego stanu jest na

poziomie 960 µg kg-1 d.w., dobry stan środowiska w tym zakresie nie został osiągnięty, podobnie jak w

obszarach niemieckich, gdzie średnie stężenie w roku 2014 wynosiło 1076 µg kg-1 d.w., w obszarach

polskich (1443 µg kg-1 d.w.) oraz w obszarach duńskich (1132 µg kg-1 d.w.).

Fig. 8 Concentration of cadmium in blue mussel (Mytilus edulis) soft body in the Danish area (red line – background

assessment criteria (BAC) 960 µg kg-1 d.w., green – trend line, circles – samples taken at different locations and

different dates)

1980 1985 1990 1995 2000 2005 2010 20150

2000

4000

6000

8000

10000

12000

14000

16000

Cd

(so

ft b

od

y),

g k

g-1

d.w

.

R = 0.0291; p = 3830

2002 2003 2004 2005 2006 2007 2008 20090

50

100

150

200

250

300

Cd

(liv

er)

,

g k

g-1

w.w

.

R = 0.066; p = 0.0076Estonia

2010 2011 2012 2013 2014 20150

100

200

300

400

500

600

700

800

Cd

(liv

er)

,

g k

g-1

w.w

.

R = 0.3333; p = 0.2443 Lithuania

Page 10: Metals (lead, cadmium and mercury) Key Message - HELCOM

10

Fig. 9 Concentration of cadmium in blue mussel (Mytilus edulis) soft body in the German area (red line – background

assessment criteria (BAC) 960 µg kg-1 d.w., green – trend line, circles – samples taken at different locations and

different dates)

Fig. 10 Concentration of cadmium in blue mussel (Mytilus edulis) soft body in the Polish area (red line – background

assessment criteria (BAC) 960 µg kg-1 d.w., green – trend line, circles – samples taken at different locations and

different dates)

1980 1985 1990 1995 2000 2005 2010 2015 20200

1000

2000

3000

4000

5000

6000

7000

8000

Cd

(so

ft b

od

y),

g k

g-1

d.w

.

R = 0.2636; p = 0.0002

1980 1985 1990 1995 2000 2005 2010 2015 20200

500

1000

1500

2000

2500

3000

3500

4000

Cd

(so

ft b

od

y),

g k

g-1

d.w

.

R = 0.0667; p = 0.7680

Page 11: Metals (lead, cadmium and mercury) Key Message - HELCOM

11

Fig. 11 Concentration of cadmium in Baltic macoma (Macoma baltica) soft body in the Swedish area (red line –

background assessment criteria (BAC) 960 µg kg-1 d.w., green – trend line, circles – samples taken at different

locations and different dates)

Mercury

Fish

Monitoring rtęci, podobnie, jak w przypadku kadmu, prowadzony jest w niektóry obszarach od wielu lat.

Zawatość Hg określana jest w mięśniach różnych gatunków ryb występujących w Bałtyku, jednak dla

przejrzystości porównania pomiędzy poszczególnymi obszarami wybrano do prezentacji śledzia i flądrę jako

gatunki szeroko rozpowszechnione w całym obszarze. Zmiany stężeń Hg w mięśniach ryb nie są bardzo

dynamiczne. W obszarach Danii, Szwecji i Niemiec obserwuje się nieznaczny spadek (Fig. 12, 14, 16), w

obszarach Polski i Litwy brak jest jednoznacznego trendu (Fig. 15, 18), natomiast nieznaczny wzrost

odnotowuje się w wodach Finlandii i Estonii (Fig. 13, 17), chociaż okres raportowania danych w przypadku

ostatniego państwa obejmuje tylko lata 2004-2007. Aktualnie najwyższe średnie stężenie Hg odnotowano

w mięsniach śledzi w rejonie wód duńskich w 2012 roku (113 µg kg-1 w.w.). W tym samym roku stosunkowo

wysokie średnie stężenie Hg równe 79 µg kg-1 w.w. odnotowano również w śledziach z obszarów fińskich. W

pozostały rejonach zawartość Hg w wątrobach ryb była bardzo zbliżona do wartości wyznaczającej granicę

dobrego stanu (20 µg kg-1 w.w.). W obszarach polskich średnie stężenie Hg w 2014 roku wynosiło 21 µg kg-1

w.w., w obszarach szwedzkich 27 µg kg-1 w.w. i w obszarach litewskich 30 µg kg-1 w.w. Tylko w rejonie wód

estońskich i niemieckich średnie zawartości Hg w mięśniach śledzi, wynoszące odpowiednio 12 µg kg-1 w.w. i

14 µg kg-1 w.w., nie przekroczyły wartości docelowej, wskazując na dobry stan środowiska w tym zakresie.

1975 1980 1985 1990 1995 2000 2005 2010 20150

2000

4000

6000

8000

10000

12000

Cd

(so

ft b

od

y),

g k

g-1

d.w

.

R = 0.1989; p = 0.0000

Page 12: Metals (lead, cadmium and mercury) Key Message - HELCOM

12

Fig. 12 Concentration of mercury in flounder (Platichtys flesus) muscle in the Danish area (green – trend line, red line -

Environmental Quality Standard (EQS) of 20 µg kg-1 w.w., circles – samples taken at different locations and different

dates)

Fig. 13 Concentration of mercury in herring (Clupea harengus) muscle in the Finish area (green – trend line, red line -

Environmental Quality Standard (EQS) of 20 µg kg-1 w.w., circles – samples taken at different locations and different

dates)

1975 1980 1985 1990 1995 2000 2005 2010 2015

0

100

200

300

400

500

600

700

800

900

Hg

(m

uscle

),

g k

g-1

w.w

.

R = -0.2049; p = 0.0000

1975 1980 1985 1990 1995 2000 2005 2010 20150

20

40

60

80

100

120

140

160

180

200

220

240

Hg

(m

uscle

),

g k

g-1

w.w

.

R = 0.2299; p = 0.0000

Page 13: Metals (lead, cadmium and mercury) Key Message - HELCOM

13

Fig. 14 Concentration of mercury in herring (Clupea harengus) muscle in the Swedish area (green – trend line, red line

- Environmental Quality Standard (EQS) of 20 µg kg-1 w.w., circles – samples taken at different locations and different

dates)

Fig. 15 Concentration of mercury in herring (Clupea harengus) muscle in the Polish area (green – trend line, red line -

Environmental Quality Standard (EQS) of 20 µg kg-1 w.w., circles – samples taken at different locations and different

dates)

1996 1998 2000 2002 2004 2006 2008 2010 2012 20140

20

40

60

80

100

120

140

160

180

Hg

(m

uscle

),

g k

g-1

w.w

.

R = -0.0988; p=0.0003

19961998

20002002

20042006

20082010

20122014

20160

10

20

30

40

50

60

70

80

90

100

Hg

(m

uscle

),

g k

g-1

w.w

.

R = -0.0084; 0.8448

Page 14: Metals (lead, cadmium and mercury) Key Message - HELCOM

14

Fig. 16 Concentration of mercury in flounder (Platichtys

flesus) and in herring (Clupea harengus) muscle in the German area (green – trend line, red line - Environmental

Quality Standard (EQS) of 20 µg kg-1 w.w., circles – samples taken at different locations and different dates)

Fig. 17 Concentration of mercury in herring (Clupea harengus) muscle in the Estonian area (green – trend line, red line

- Environmental Quality Standard (EQS) of 20 µg kg-1 w.w., circles – samples taken at different locations and different

dates)

2003 2004 2005 2006 2007 20082

4

6

8

10

12

14

16

18

20

22

24

Hg

(m

uscle

),

g k

g-1

w.w

.

R = 0.2326; p = 0.033

1984 1986 1988 1990 1992 1994 1996 1998 2000 20020

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800H

g (

mu

scle

),

g k

g-1

w.w

.

R = -0.3569; p = 0.0000P. flesus

1996 1998 2000 2002 2004 2006 2008 2010 2012 20140

10

20

30

40

50

60

Hg

(m

uscle

),

g k

g-1

w.w

.

R = -0.2213; p = 0.0014C. harengus

Page 15: Metals (lead, cadmium and mercury) Key Message - HELCOM

15

Fig. 18 Concentration of mercury in herring (Clupea harengus) and flounder (Platichtys flesus) muscle in the

Lithuanian area (red line - Environmental Quality Standard (EQS) of 20 µg kg-1 w.w., circles and squares – samples

taken at different locations and different dates)

Fig. 19. Temporal development of mercury concentrations (µg kg-1 ww) in herring muscle in Bothnian Bay

(Harufjärden), Bothnian Sea (Ängskärsklubb), Northern Baltic Proper (Landsort) and Bornholm Basin (Utlängan). The

green area denotes concentrations that are below the GES boundary.

The concentrations of mercury in the eggs of common guillemot have decreased since 1970s (Fig. 20).

2010 2011 2012 2013 2014 20150

20

40

60

80

100

Hg

(m

uscle

),

g k

g-1

w.w

.

C, harengus

P. flesus

Page 16: Metals (lead, cadmium and mercury) Key Message - HELCOM

16

Fig. 20. Temporal development of mercury concentrations (ng/g ww) in eggs of Common Guillemot in Stora Karlsö,

Gotland.

Lead

Seawater

Lead concentrations in the waterphase have been measured by Russia (1995–1998), Germany (1998–2014)

and Lithuania (2007–2014). Eleven percent of these measurements were above the AA-EQS of 1.3 µg l-1.

The percentage was 15% for measurements from 1998 to 2005 and reduced to 9% above AA-EQS if looking

at the measurements reported after 2005. One samples was above the MAC-EQS of 14 for an expected

CaCO3 concentration of class 5 (>200 ppb) in seawater. But for seawater the AA-EQS is already considered

high, compared to OSPARs 1998 EACs in seawater (0.5-5 µg l-1) and the background assessment

concentration of 0.02 µg l-1, so the AA-EQS is considered to be the relevant target (Fig. 19).

Średnie stężenia Pb w wodach niemieckich pozostawały poniżej wartości wyznaczającej granicę pomiędzy

stanem dobry i nieodpowiednim (Fig. 21). W 2014 roku średnie stężenie Pb w wodzie morskiej wynosiło

zaledwie 0.09 µg l-1 wskazując na dobry stan środowiska rejonów: Bay of Mecklenburg, Bornholm Basin,

Great Belt and Kiel Bay

Stężenia Pb w wodzie morskiej w obszarze Eastern Gotland Basin w latach 2012-2014 nie przekroczyły

granicy oznaczalności stosowanej metody, która wynosiła 1 µg l-1, co decyduje o tym, że również w tym

obszarze stan środowiska w zakresie skażenia Cd można uznać za dobry.

Page 17: Metals (lead, cadmium and mercury) Key Message - HELCOM

17

Fig. 21 Lead in seawater in the German area (red line - annual average Environmental Quality Standard (AA-EQS) of 1.3

µg dm-3, green – trend line, circles – samples taken at different locations and different dates)

Fish

Biorąc pod uwagę zmiany czasowe stężeń Pb w wątrobie najbardziej rozpowszechnionych gatunków:

śledzia i flądry istotne statystycznie trendy spadkowe odnotowano w obszarach wód duńskich, fińskich

szwedzkich, polskich i niemieckich (Fig. 22 – 26). W przypadku obszarów estońskich wystąpił wzrost stężeń

Pb w wątrobach śledzi, od 63 µg kg-1 w.w. w 2003 roku do 134 µg kg-1 w.w. w roku 2008 (Fig. 27). Równie

wysoka wartość charakteryzowała obszar wód litewskich, w 2014 roku wynosiła 103 µg kg-1 w.w. (Fig. 28).

Zarówno w tych obszarach, jak również w polskich, gdzie średnie stężenie Pb w 2014 wynosiło 43 µg kg-1

w.w.i obszarach duńskich (53 µg kg-1 w.w. w 2012 roku) nie został osiągnięty dobry stan środowiska, że

względu na to, że wartość docelowa równa 26 µg kg-1 w.w. była przekroczona. Natomiast średnie stężenia

Pb w rybach z obszarów fińskich, szwedzkich i niemieckich, wynoszące odpowiednio 10 µg kg-1 w.w. (2013),

16 µg kg-1 w.w. (2011) i 21 µg kg-1 w.w. (2014), nie przekroczyły tej wartości wskazując na dobry stan

środowiska w tym zakresie.

19961998

20002002

20042006

20082010

20122014

20160

2

4

6

8

10

12

14

16

18

Pb

(se

aw

ate

r),

g

dm

-3

R = - 0.2799; p = 0.0000

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

0

200

400

600

800

1000

1200

Pb

(liv

er)

, u

g k

g-1

w.w

.

R = -0.4075; p = 0.0000

Page 18: Metals (lead, cadmium and mercury) Key Message - HELCOM

18

Fig. 22 Concentration of lead in flounder (Platichtys flesus) liver in the Danish area (red line – background assessment

criteria (BAC) 26 µg kg-1 w.w., green – trend line, circles – samples taken at different locations and different dates)

Fig. 23 Concentration of lead in herring (Clupea herengus) liver in the Finish area (red line – background assessment

criteria (BAC) 26 µg kg-1 w.w., green – trend line, circles – samples taken at different locations and different dates)

Fig. 24 Concentration of lead in herring (Clupea herengus) liver in the Swedish area (red line – background assessment

criteria (BAC) 26 µg kg-1 w.w., green – trend line, circles – samples taken at different locations and different dates)

1996 1998 2000 2002 2004 2006 2008 2010 20120

100

200

300

400

500

Pb

(liv

er)

,

g k

g-1

w.w

.

R = -0.2050; p = 0.0000

1975 1980 1985 1990 1995 2000 2005 2010 20150

100

200

300

400

500

Pb

(liv

er)

,

g k

g-1

w.w

.

R = -0.4802; p = 0.0000

Page 19: Metals (lead, cadmium and mercury) Key Message - HELCOM

19

Fig. 25 Concentration of lead in herring (Clupea herengus) liver in the Polish area (red line – background assessment

criteria (BAC) 26 µg kg-1 w.w., green – trend line, circles – samples taken at different locations and different dates)

Fig. 26 Concentration of lead in herring (Clupea herengus) liver and in flounder (Platichtys flesus) in the German area

(red line – background assessment criteria (BAC) 26 µg kg-1 w.w., green – trend line, circles – samples taken at

different locations and different dates)

19961998

20002002

20042006

20082010

20122014

20160

20

40

60

80

100

120

140

160

180

200

220

240

260

Pb

(liv

er)

,

g k

g-1

w.w

.

R = -0.3608; p = 0.0000

1996 1998 2000 2002 2004 2006 2008 2010

0

20

40

60

80

100

120

140

Pb

(liv

er)

,

g k

g-1

w.w

.

R = - 0.1094; p = 02552C. harengus

1980 1985 1990 1995 2000 2005 2010 2015 20200

50

100

150

200

250

300

350

400

Pb

(liv

er)

,

g k

g-1

w.w

.

R = - 0.1419; p = 0.0003

Page 20: Metals (lead, cadmium and mercury) Key Message - HELCOM

20

Fig. 27 Concentration of lead in herring (Clupea herengus) liver in the Estonian area (red line – background assessment

criteria (BAC) 26 µg kg-1 w.w., green – trend line, circles – samples taken at different locations and different dates)

Fig.28 Concentration of lead in flounder (Platichtys flesus) liver in the Lithuanian area (red line – background

assessment criteria (BAC) 26 µg kg-1 w.w., circles – samples taken at different locations and different dates)

The lead concentrations in herring liver have decreased since leaded fuels was banned in the 1980s, but in

the last 10 years the decrease has levelled off, although the decline is still significant in 3 out of the 4 shown

Swedish stations (Fig. 29).

2002 2003 2004 2005 2006 2007 2008 20090

20

40

60

80

100

120

140

160

180

200

220

240

260

280

Pb

(liv

er)

,

g k

g-1

w.w

.

R = 0.4953; p = 0.0366

2010 2011 2012 2013 2014 20150

20

40

60

80

100

120

140

160

180

200

220

240

260

Pb

(liv

er)

,

g k

g-1

w.w

.

Page 21: Metals (lead, cadmium and mercury) Key Message - HELCOM

21

Fig. 29. Temporal development of lead concentrations (µg g-1 dw) in herring liver in Bothnian Bay (Harufjärden),

Bothnian Sea (Ängskärsklubb), Northern Baltic Proper (Landsort) and Bornholm Basin (Utlängan). The green area

denotes concentrations below the GES boundary.

Mussel

W przypadku stężeń Pb w tkance miękkiej małży odnotowuje się spadek w obszarach niemieckich, polskich i

szwedzkich, natomiast w obszarach duńskich brak jest istotnych statystycznie zmian (Fig. 30 -33). We

wszystkich rejonach objętych badaniami aktualne średnie stężenia Pb pozostają poniżej 1300 µg kg-1 d.w.,

wartości uznawanej za granicę GES/subGES, wskazując na dobry stan środowiska w zakresie poziomu

skażenia Pb w tkance miękkiej małży. Najwyższe średnie stężenie Pb charakteryzowało gatunek blue mussel

w wodach duńskich (1234 µg kg-1 w.w. w 2012 roku). Nieco niższą wartość odnotowano w przypadku

Macoma baltica w wodach szwedzkich (985 µg kg-1 w.w. w 2013). W 2013 roku średnie stężenie Pb w Mytilus

edulis w wodach niemieckich wyniosło 639 µg kg-1 w.w. , natomiast najniższymi stężeniami Pb w 2014 roku

charakteryzowały się omułki pobrane w obszarze wód polskich (307 µg kg-1 w.w.).

Page 22: Metals (lead, cadmium and mercury) Key Message - HELCOM

22

Fig. 30 Concentration of lead in blue mussel (Mytilus edulis) soft body in the Danish area (red line – background

assessment criteria (BAC) 1300 µg kg-1 d.w., green – trend line, circles – samples taken at different locations and

different dates)

Fig. 31 Concentration of lead in blue mussel (Mytilus edulis) soft body in the German area (red line – background

assessment criteria (BAC) 1300 µg kg-1 d.w., green – trend line, circles – samples taken at different locations and

different dates)

1980 1985 1990 1995 2000 2005 2010 20150

2000

4000

6000

8000

10000

12000

14000

Pb

(so

ft b

od

y),

g k

g-1

d.w

.

R = -0.0122; p = 0.7174

1980 1985 1990 1995 2000 2005 2010 20150

500

1000

1500

2000

2500

3000

3500

4000

4500

Pb

(so

ft b

od

y),

g k

g-1

d.w

.

R = -0.4781; p = 0.0181

Page 23: Metals (lead, cadmium and mercury) Key Message - HELCOM

23

Fig. 32 Concentration of lead in blue mussel (Mytilus edulis) soft body in the Polish area (red line – background

assessment criteria (BAC) 1300 µg kg-1 d.w., green – trend line, circles – samples taken at different locations and

different dates)

Fig. 33 Concentration of lead in Baltica macoma (Macoma baltica) soft body in the Swedish area (red line –

background assessment criteria (BAC) 1300 µg kg-1 d.w., green – trend line, circles – samples taken at different

locations and different dates)

1980 1985 1990 1995 2000 2005 2010 2015 20200

1000

2000

3000

4000

5000

6000

7000

8000

Pb

(so

ft b

od

y),

g k

g-1

d.w

.

R = -0.7595; p = 0.00004

1975 1980 1985 1990 1995 2000 2005 2010 20150

10000

20000

30000

40000

50000

60000

Pb

(so

ft b

od

y),

g k

g-1

d.w

.

R = -0.1147; p = 0.00007

Page 24: Metals (lead, cadmium and mercury) Key Message - HELCOM

24

Confidence of indicator status evaluation

The data on metal concentrations in seawater is not spatially adequate. Time series are available only for

German area: Bay of Mecklenburg, Bornholm Basin, Great Belt and Kiel Bay. For Eastern Gotland Basin

(Lithuanian data) there are available data only for period 2012-2014. The confidence of the results is

expected to be low.

The data on metal concentrations in fish and bivalves is spatially adequate and time series are available for

several stations therefore the confidence of the results is expected to be high.

Good Environmental Status

Good Environmental Status (GES) is achieved if the concentration of metals is below the specified GES

boundary of (Good Environmental Status figure 1).

Good environmental status figure 1. GES is achieved if the concentrations of metals are below the GES

boundaries listed in Good environmental status table 1. The boundary is an environmental quality standard (EQS)

derived at EU level as a substance included on the priority list under the Directive on Environmental Quality Standards.

The GES boundaries for metals are based on Environmental Quality Standards (EQS) for water and biota

(Good environmental status table 1) which have been defined at EU level for substances included in the

priority list under the Water Framework Directive, WFD (European Commission 2000, 2013).

The GES boundary is applicable if concentrations are measured in the appropriate matrix. For historical

reasons, the countries around the Baltic Sea have differing monitoring strategies. As a pragmatic approach,

a GES boundary is defined in this indicator. However, if suitable monitoring data is not available in a region

the secondary GES boundary can be used for the evaluation of alternative matrixes (Good environmental

status table 1). Under the WFD, Member States may establish other values than EQS for alternative

matrixes if specific criteria are met (see Art 3.3. in European Commission 2008a, revised in European

Commission 2013).

Page 25: Metals (lead, cadmium and mercury) Key Message - HELCOM

25

Good environmental status table 1. GES boundaries for the included metals. BAC = Background assessment criteria.

Metal GES boundary Secondary GES boundary

ref matrix concentration

Cadmium and its compounds

EQS

water water AA 0.2 µg/l QSsediment

[1] 2.3 mg/kg dw BAC blue mussel 960 μg/kg dw

Mercury and its compounds

EQSbiota

secondary

poisoning

fish 20 µg/kg ww (Contracting Parties' national legislation differ regarding the consideration of background concentrations)

Lead and its compounds

EQS

water water AA 1.3 µg/l QSsediment 120 mg/dw

BAC blue mussel 1,300 μg/kg dw, BAC fish 26 μg/kg ww (liver)

[1] Applies to freshwater sediment (standard for marine sediment is currently not available). Sweden however considers this

standard to be applicable also for assessment of the marine environment

The EU food safety limits are meant for fish meat (i.e. muscle samples). Concentrations in liver are generally

higher than muscle (except for Hg), so the higher values of food safety limits for bivalves are used instead

for Pb and Cd. This follows the OSPAR (2010) approach (see Law et al. 2010 for discussion). If the indicator

is used to evaluate the protection goal of human health, then the boundary values presented in Good

environmental status table 2 can be applied.

Good environmental status table 2. Boundary value concentrations that can be applied if the indicator is used to

evaluate human health. The values based on the European Commission Regulation setting maximum levels for certain

contaminants in foodstuffs (European Commission 2006a).

Cadmium and its compounds Mussel 1,000 µg/kg dw Fish muscle 50 µg/kg ww (fish liver 1,000 µg/kg ww; bivalve value, see Law et al. 2010 for discussion)

Lead and its compounds Mussel 1,500 µg/kg dw fish muscle 300 µg/kg ww fish liver 1,500 µg/kg ww

Mercury and its compounds Fish muscle 500 µg/kg ww (mussel 2,500 µg/kg dw)

Page 26: Metals (lead, cadmium and mercury) Key Message - HELCOM

26

Assessment Protocol

The concentration of metals in the marine environment are used to evaluate whether an area reflects a

Good Environmental Status (GES) compared to the specified concentration levels.

Uwzględniając zakres prowadzonego obecnie w krajach członkowskich monitoringu metali ciężkich oraz

stężenia poszczególnych metali wskazane jako granice pomiędzy stanem i nieodpowiednim

zarekomendowano odpowiednie matryce, które można wykorzystać w ocenie stanu środowiska Bałtyku w

ramach Descriptor D8 and Descriptor D9 (Assessment protocol table 1)

Assessment protocol table 1. Matrices recommended for the heavy metals assessment within D8 and D9

D8 D9

primary matrix

secondary

matrix

primary matrix

secondary

matrix

Cd seawater mussel fish muscle mussel, fish liver

Pb seawater fish liver

mussel

fish muscle mussel, fish liver

Hg fish muscle - fish muscle -

Ocena aktualnego stanu środowiska uwzględniająca poziomy metali w wytypowanych matrycach powinna

zostać przeprowadzona w miarę możliwości dla każdego z obszarów wytypowanych do oceny (assessment

units at the level 3).

The metal concentration data requires some treatment before an evaluation against the GES boundary can

be carried out due to varying sampling methods used by different countries in the Baltic Sea region.

To evaluate concentrations against the GES boundary, all biota monitoring data are to be converted to

'whole fish concentrations' using conversion factors (Assessment protocol table 3). The conversion factors

presented are to be considered preliminary and more studies on the conversion factors from tissue-specific

concentrations to whole fish concentrations are required to solve geographical and species-specific

differences in conversion factors.

Assessment protocol table 1. Conversion factors between whole fish and fish liver/muscle concentrations for cadmium

and lead in herring and perch. Factors for cadmium and mercury are based on individual samples from one station and

one year. Factors for lead are based on pooled sampled means from various geographic location and years. The

factors are to be considered as preliminary. Source of information: Swedish Museum of Natural History.

Whole fish/liver Whole fish/muscle

Species Cadmium Mercury Lead Mercury

Herring 0.11 0.52 4.58 0.86

Perch 0.16 1.63 12.18 0.72

Page 27: Metals (lead, cadmium and mercury) Key Message - HELCOM

27

It should be noted that the conversion factors have been determined based on data where several samples

were below the detection limit, especially for lead and cadmium in muscle. As chemical concentrations of

cadmium in the muscle are expected to be low this may be a more pronounced problem for the conversion

factors for liver. Estimates of whole-fish concentrations are based on carcass homogenate concentrations

from herring and perch collected from Gaviksfjärden in autumn 2011, liver concentrations from herring and

perch at Harufjärden (herring) and Kvädöfjärden (perch) collected in the autumns of 2009 and 2010.

Muscle concentrations are from herring at Harufjärden and perch at Kvädöfjärden collected in the autumn

during 2000-2006. Concentrations below detection limit are evaluated as reported concentrations divided

by two.

Whole-fish concentrations have been estimated using the following formula:

Cwf = (Cc*Wc + Cl*Wl + Cm*Wm)/(Wc+Wl+Wm)

The metal conversion factors between different organs are based on a combination of results as described

above. A dry weight percentage of 35% in herring liver has been assumed when information on dry weight

content was missing in the ICES database.

Normalization of sediment data to the same level of TOC/clay-silt content should be tested. The standard

OSPAR normalization procedure calls for normalization to 2.5% TOC or 5% Al (or 52 mg/kg Li) as indicator

for clay-silt content (OSPAR 2008).

Page 28: Metals (lead, cadmium and mercury) Key Message - HELCOM

28

Assessment units

The core indicator evaluates the status with regard to concentrations of metals using HELCOM assessment

unit scale 3 (division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore

areas). The assessment units are defined in the HELCOM Monitoring and Assessment Strategy Annex 4.

Page 29: Metals (lead, cadmium and mercury) Key Message - HELCOM

29

Relevance of the Indicator

Hazardous substances assessment

The status of the Baltic Sea marine environment in terms of contamination by hazardous substances is

assessed using several core indicators. Each indicator focuses on one important aspect of the complex

issue. In addition to providing an indicator-based evaluation of the status of the Baltic Sea in terms of

concentrations of metals in the marine environment, this indicator will also contribute to the next overall

hazardous substances assessment to be completed in 2018 along with the other hazardous substances core

indicators.

Policy relevance

The core indicator on metal concentrations addresses the Baltic Sea Action Plan's (BSAP) hazardous

substances segment's ecological objectives 'Concentrations of hazardous substances close to natural levels'

and 'All fish safe to eat'. Mercury and cadmium are included in the HELCOM list of substances or substance

groups of specific concern to the Baltic Sea.

The core indicator also addresses the following qualitative descriptors of the MSFD for determining good

environmental status (European Commission 2008b):

Descriptor 8: 'Concentrations of contaminants are at levels not giving rise to pollution effects' and

Descriptor 9: 'Contaminants in fish and other seafood for human consumption do not exceed levels

established by Community legislation or other relevant standards'.

and the following criteria of the Commission Decision (European Commission 2010):

Criterion 8.1 (concentration of contaminants)

Criterion 9.1 (levels, number and frequency of contaminants)

All the three metals are included in the EU WFD (Pb and Cd in water, Hg in biota) and EU Shellfish directive

(in shellfish) (European Commission 2000, 2006b). Part of the EU food directives set limits in a range of fish

species, shellfish and other seafood. In the OSPAR Coordinated Environmental Monitoring Programme

(CEMP), metals are to be measured on a mandatory basis in fish, shellfish and sediment (OSPAR 2010).

Article 3 of the EU directive on environmental quality standards states that also long-term temporal trends

should be assessed for substances that accumulate in sediment and/or biota (European Commission

2008a).

Role of metals in the ecosystem

Metals are naturally occurring substances that have been used by humans since the Iron Age. The metals

cadmium (Cd), lead (Pb) and mercury (Hg) are the most toxic and have no known biological function.

Mercury and cadmium are furthermore biomagnifying, implying that the toxic effect may be enhanced

through the food web. For mercury, the organic form methyl-mercury (MeHg) is more toxic than elemental

mercury and further MeHg is bioaccumulated, i.e. activity transferred to lipid containing organs. Due to its

high evaporation pressure, the net transport is from soils in the tropics up to Scandinavia to the Baltic Sea,

and further north until concentrating in the Arctic due to the low temperatures and the resulting low

evaporation - a process known as global distillation or the grasshopper effect.

Page 30: Metals (lead, cadmium and mercury) Key Message - HELCOM

30

Lead and mercury have been connected to impaired learning curves for children, even at small dosage.

Lead can cause increased blood pressure and cardio-vascular problems in adults. Acute metal poisoning

generally results in vomiting. Long term exposures of high levels of lead and mercury can affect the

neurological system. Mercury can lead to birth defects as seen in Minamata bay among fishermen in a

mercury polluted area, and also after ingestion of methylmercury treated corn in Iran. Cadmium is

concentrated in the kidney, and can result in impaired kidney function, and cadmium can exchange for

calcium in bones and produce bone fractures (Itai-Itai disease).

Human pressures linked to the indicator

General MSFD Annex III, Table 2

Strong link Contamination by hazardous substances

introduction of synthetic compounds

Weak link

The main source of all three metals are burning of fossil fuels. The atmospheric deposition to the Baltic Sea

mainly originates from long range transport of the metals from outside the Baltic Sea catchment area

(details available through the Baltic Sea Environment Fact Sheet Atmospheric deposition of heavy metals

on the Baltic Sea). All three metals have been used for centuries, but in the last decades have been banned

for most uses.

Current legal use of cadmium and lead includes rechargeable Ni-Cd batteries and for lead car batteries. For

mercury current legal use includes low energy light sources. Sources of mercury include use in amalgams

for dentistry (these have been reduced by installing mercury traps in sinks and generally reducing the use

of amalgams in dental works), as electrodes in paper bleaching, in thermometers and mercury switches and

a range of other products that have been phased out. For lead, the main source was leaded fuels until their

ban in Europe in the 1990s. Both cadmium and lead have pollution hotspots in connection with metal

processing facilities, and cadmium coexists with all zinc ores, and is typically present at levels of 0.5–2% in

the final products. Weathering of outdoor zinc-products thus leads to cadmium pollution.

Page 31: Metals (lead, cadmium and mercury) Key Message - HELCOM

31

Monitoring Requirements

Monitoring methodology

HELCOM common monitoring of relevance to the indicator is described on a general level in the HELCOM

Monitoring Manual in the programme topic: Concentrations of contaminants.

HELCOM and OSPAR guidelines for measuring metals in biota and sediment exist.

Quality assurance in the form of international workshops and intercalibrations have been organized

annually by QUASIMEME since 1993, with two rounds each year for water, sediment and biota.

Monitoring table 1. Preferred matrix to be used in monitoring sampling strategies.

Preferred matrix Secondary matrix

Mercury (Hg) Water Muscle: Herring, perch, eelpout, flounder; wet weight, with lipid content (%) Soft body: Macoma, Mytilus dry or wet weight, with DW%

Cadmium (Cd) Liver: Herring, eelpout, flounder, perch dry or wet weight, with lipid content (%) and DW%

Soft body: Macoma, Mytilus dry or wet weight, with DW% Sediment

Lead (Pb) Water Sediment dry weight (with TOC/Al/Li) Liver: Herring, eelpout, flounder, perch; Soft body: Macoma, Mytilus

Current monitoring

The monitoring activities relevant to the indicator that are currently carried out by HELCOM Contracting

Parties are described in the HELCOM Monitoring Manual in the relevant Monitoring Concept Tables.

Sub-programme: Contaminants in biota

Monitoring Concept Table

Sub-programme: Contaminants in water

Monitoring Concept Table

Sub-programme: Contaminants in sediment

Monitoring Concept Table

Concentrations of cadmium, mercury and lead are being monitored by all the Baltic Sea countries. In

addition to long-term monitoring stations of herring, cod, perch, flounder and eelpout, there is a fairly

dense grid of monitoring stations for mussels and perch at the shoreline, but very few stations in the open

areas of the Baltic Sea. The monitoring is, however, considered to be representative.

The number of sediment and biota monitoring stations per sub-basin are indicated in Monitoring Figure 1.

Page 32: Metals (lead, cadmium and mercury) Key Message - HELCOM

32

Monitoring figure 1. Number of monitoring stations in each Baltic Sea sub-basin.

Description of optimal monitoring

Cadmium, mercury and lead concentrations are spatially highly varying in the Baltic Sea. Therefore, a dense

network of monitoring stations is needed to have reliable overviews of the state of the environment. The

monitoring should contain both long-lived and mobile species (herring, cod, flounder) and more local

species (perch and shellfish).

Sediment monitoring can complement the assessment. Sediment represents longer timespans than biota

(typically years vs. months), and are available in all places, whereas especially local species are not always

available for spatial surveys. Time-trends from dated sediment cores in undisturbed (anoxic) areas can be a

valuable source of information on the development in concentrations from before monitoring was started

and even back to pre-industrialized times.

Monitoring of cadmium, mercury and lead is relevant in the entire sea area.

Page 33: Metals (lead, cadmium and mercury) Key Message - HELCOM

33

Data and updating

Access and use

The data and resulting data products (tables, figures and maps) available on the indicator web pages can be

used freely given that the source is cited. The indicator should be cited as following:

HELCOM (2015) Metals (lead, cadmium and mercury). HELCOM core indicator report. Online. [Date

Viewed], [Web link].

Metadata

The indicator is based on data held in the HELCOM COMBINE database hosted at the International Council

for the Exploration of the Seas (ICES). The COMBINE data can be complemented by data from the database

held by the European Environmental Information and Observation Network (EIONET).

The current status of the COMBINE biota dataset is that data are available for 14 species covering 9 to 32 of

45 possible parameters, and representing results from 1979 to 2013 (dataset extracted in April 2015).

Data are available for concentrations of metals in water from 1998 to 2012, but only from three countries

(Germany, Lithuania and Russia).

Data are available for sediments from 1985 to 2012, but only from three countries (Denmark, Poland and

Sweden).

Cadmium

In the Swedish monitoring programme, the non-linear trends found in the cadmium data series makes it

difficult to estimate the quality in terms of power. From the linear parts of the trends the number of years

required to detect an annual change of 10% with a power of 80% varied between 11 to 15 years.

Mercury

The number of years required to detect an annual change of 10% with a power of 80% varied between 9

and 16 years for the herring time series.

Lead

In the Swedish monitoring programme, the number of years required to detect an annual change of 10%

with a power of 80% varied between 10 to 18 years for the herring time-series. The number of years

required to detect an annual change of 10% with a power of 80% were between 11 and 14 years for the

cod time-series (Bignert et al. 2012).

Page 34: Metals (lead, cadmium and mercury) Key Message - HELCOM

34

Contributors and references

Contributors

Martin Larssen, Sara Danielsson, CORESET I expert group on hazardous substances

Archive

This version of the HELCOM core indicator report was published in January/February 2016

Core indicator report – web-based version January/February 2016 (pdf)

Extended core indicator report – outcome of CORESET II project (pdf)

Older versions of the core indicator report are available:

2013 Indicator report (pdf)

References

Bignert, A., Berger, U., Borg, H., Danielsson S., Eriksson, U., Faxneld, S., Haglund, P., Holm, K., Nyberg, E.,

Nylund, K. (2012) Comments Concerning the National Swedish Contaminant Monitoring Programme in

Marine Biota. Report to the Swedish Environmental Protection Agency 2012. 228 pp.

European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23

October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Union

L 327.

European Commission (2006a) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting

maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 364.

European Commission (2006b) Directive 2006/113/EC of the European Parliament and of the Council of 12

December 2006 on the quality required of shellfish waters. Off. J. Eur. Union L 376.

European Commission (2008a) Directive 2008/105/EC of the European Parliament and the Council on

environmental quality standards in the field of water policy (Directive on Environmental Quality Standards).

Off. J. Eur. Union L 348.

European Commission (2008b) Directive 2008/56/EC of the European Parliament and the Council

establishing a framework for community action in the field of marine environmental policy (Marine

Strategy Framework Directive). Off. J. Eur. Union L 164: 19-40.

European Commission (2010) Commission Decision of 1 September 2010 on criteria and methodological

standards on good environmental status of marine waters (2010/477/EU). Off. J. Eur. Union L232: 12-24.

European Commission (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12

August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field

of water policy. Off. J. Eur. Union L 226: 1-17.

Grasshoff, K., Kremling, K., Ehrhardt, M. (eds) (1999) Methods of Seawater Analysis, Weinheim. Wiley-VCH.

600 pp.

Page 35: Metals (lead, cadmium and mercury) Key Message - HELCOM

35

HELCOM (2010) Hazardous substances in the Baltic Sea – An integrated thematic assessment of hazardous

substances in the Baltic Sea. Balt. Sea Environ. Proc. No. 120B.

Law, R., Hanke, G., Angelidis, M., Batty, J., Bignert, A., Dachs, J., Davies, I., Denga, Y., et al. (2010) MARINE

STRATEGY FRAMEWORK DIRECTIVE Task Group 8 Report Contaminants and pollution effects. JRC Scientific

and Technical Reports.

OSPAR (2008) Monitoring and Assessment Series Publication Number No. 379

OSPAR (2010) OSPAR Quality Status Report 2010. OSPAR Commission, London. 176 pp. Available at:

http://qsr2010.ospar.org/en/downloads.html

Additional relevant publications

Bignert, A., Danielsson, S., Faxneld, S., Nyberg, E., Vasileiou, M., Fång, J., Dahlgren, H., Kylberg, E., Staveley

Öhlund, J., Jones, D., Stenström, M., Berger, U., Alsberg, T., Kärsrud, A.-S., Sundbom, M., Holm,K., Eriksson,

U., Egebäck, A.-L., Haglund, P., Kaj, L. (2015) Comments Concerning the National Swedish Contaminant

Monitoring Programme in Marine Biota 2015, 2:2015. Swedish Museum of Natural History, Stockholm,

Sweden.

Jensen, J.N. (2012) Temporal trends in contaminants in Herring in the Baltic Sea in the period 1980-2010.

HELCOM Baltic Sea Environment Fact Sheet 2012.

OSPAR CEMP Assessment Manual. Co-ordinated Environmental Monitoring Programme Assessment

Manual for contaminants in sediment and biota. OSPAR Commission, London. 39 pp.

OSPAR (2009) Draft Agreement on CEMP Assessment Criteria for the QSR 2010. Meeting of the

Environmental Assessment and Monitoring Committee (ASMO), Bonn, Germany, 20 - 24 April 2009.